1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
# coding: utf-8
#
# Project: X-ray image reader
# https://github.com/silx-kit/fabio
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
"""
Basic read support for HDF5 files saved by LImA.
"""
__authors__ = ["Jérôme Kieffer"]
__contact__ = "jerome.kieffer@esrf.fr"
__license__ = "MIT"
__copyright__ = "ESRF"
__date__ = "01/06/2022"
import logging
logger = logging.getLogger(__name__)
import os
import numpy
from .fabioimage import FabioImage
from .fabioutils import NotGoodReader
from . import nexus
try:
import h5py
except ImportError:
h5py = None
try:
import hdf5plugin
except ImportError:
hdf5plugin = None
class LimaImage(FabioImage):
"""FabIO image class for Images for LIMA detector
LIMA is the Library for Image Acquisition:
https://lima1.readthedocs.io/en/latest/
https://github.com/esrf-bliss/LImA
"""
DESCRIPTION = "HDF5 file produces by LImA"
DEFAULT_EXTENSIONS = ["h5", "hdf5"]
def __init__(self, data=None, header=None):
"""
Set up initial values
"""
if not h5py:
raise RuntimeError("fabio.LimaImage cannot be used without h5py. Please install h5py and restart")
self.dataset = [data]
self._data = None
FabioImage.__init__(self, data, header)
self.h5 = None
@property
def nframes(self):
"""Returns the number of frames contained in this file
:rtype: int
"""
return len(self.dataset)
def get_data(self):
if self._data is None and len(self.dataset) >= self.currentframe:
self._data = self.dataset[self.currentframe]
return self._data
def set_data(self, data, index=None):
"""Set the data for frame index
:param data: numpy array
:param int index: index of the frame (by default: current one)
:raises IndexError: If the frame number is out of the available range.
"""
if index is None:
index = self.currentframe
if isinstance(self.dataset, list):
if index == len(self.dataset):
self.dataset.append(data)
elif index > len(self.dataset):
# pad dataset with None ?
self.dataset += [None] * (1 + index - len(self.dataset))
self.dataset[index] = data
else:
self.dataset[index] = data
if index == self.currentframe:
self._data = data
data = property(get_data, set_data)
def __repr__(self):
if self.h5 is not None:
return "LImA-HDF5 dataset with %i frames from %s" % (self.nframes, self.h5.filename)
else:
return "%s object at %s" % (self.__class__.__name__, hex(id(self)))
def _readheader(self, infile):
"""
Read and decode the header of an image:
:param infile: Opened python file (can be stringIO or bzipped file)
"""
# list of header key to keep the order (when writing)
self.header = self.check_header()
with h5py.File(infile, mode="r") as h5:
entry_name = h5.attrs.get("default")
if entry_name is None:
raise NotGoodReader("HDF5 file does not contain any default entry.")
if entry_name in h5:
entry = h5[entry_name]
else:
raise NotGoodReader("HDF5's default entry does not exist.")
if "default" in entry.attrs:
nxdata = entry.attrs["default"]
self.header["detector"] = nxdata.split("/")[-2]
else:
self.header["detector"] = "detector"
def read(self, fname, frame=None):
"""
Try to read image
:param fname: name of the file
:param frame: number of the frame
"""
self.resetvals()
with self._open(fname) as infile:
self._readheader(infile)
# read the image data and declare it
self.dataset = None
# read the image data
self.h5 = h5py.File(fname, mode="r")
entry_name = self.h5.attrs.get("default")
if entry_name is None:
raise NotGoodReader("HDF5 file does not contain any default entry.")
if entry_name in self.h5:
entry = self.h5[entry_name]
else:
raise NotGoodReader("HDF5's default entry does not exist.")
if "measurement" in entry:
measurement = entry["measurement"]
else:
raise NotGoodReader("HDF5's default entry has no measurement group.")
if "data" in measurement:
ds = measurement["data"]
else:
raise NotGoodReader("HDF5's measurement group has no dataset.")
self.dataset = ds
self._nframes = ds.shape[0]
if frame is not None:
return self.getframe(int(frame))
else:
self.currentframe = 0
self.data = self.dataset[self.currentframe]
self._shape = None
return self
def getframe(self, num):
""" returns the frame numbered 'num' in the stack if applicable"""
if self.nframes > 1:
new_img = None
if (num >= 0) and num < self.nframes:
data = self.dataset[num]
new_img = self.__class__(data=data, header=self.header)
new_img.dataset = self.dataset
new_img.h5 = self.h5
new_img._nframes = self.nframes
new_img.currentframe = num
else:
raise IOError(f"getframe({num}) out of range [0, {self.nframes}[")
else:
new_img = FabioImage.getframe(self, num)
return new_img
def previous(self):
""" returns the previous file in the series as a FabioImage """
new_image = None
if self.nframes == 1:
new_image = FabioImage.previous(self)
else:
new_idx = self.currentframe - 1
new_image = self.getframe(new_idx)
return new_image
def next(self):
"""Returns the next file in the series as a fabioimage
:raise IOError: When there is no next file or image in the series.
"""
new_image = None
if self.nframes == 1:
new_image = FabioImage.next(self)
else:
new_idx = self.currentframe + 1
new_image = self.getframe(new_idx)
return new_image
def close(self):
if self.h5 is not None:
self.h5.close()
self.dataset = None
def write(self, filename):
"""Write a file that looks like one saved by LIMA."""
start_time = nexus.get_isotime()
abs_name = os.path.abspath(filename)
if os.path.exists(abs_name):
mode = "a"
else:
mode = "w"
if hdf5plugin is None:
logger.warning("hdf5plugin is needed for bitshuffle-LZ4 compression, falling back on gzip (slower)")
compression = {"compression":"gzip",
"compression_opts":1}
else:
compression = hdf5plugin.Bitshuffle()
with nexus.Nexus(abs_name, mode=mode, creator="LIMA-1.9.7") as nxs:
entry = nxs.new_entry(entry="entry",
program_name=None,
title="Lima 2D detector acquisition",
force_time=start_time,
force_name=False)
measurement_grp = nxs.new_class(entry, "measurement", class_type="NXcollection")
instrument_grp = nxs.new_class(entry, "instrument", class_type="NXinstrument")
detector_grp = nxs.new_class(instrument_grp, self.header.get("detector", "detector"), class_type="NXdetector")
acq_grp = nxs.new_class(detector_grp, "acquisition", class_type="NXcollection")
info_grp = nxs.new_class(detector_grp, "detector_information", class_type="NXcollection")
info_grp["image_lima_type"] = f"Bpp{8*numpy.dtype(self.dtype).itemsize}"
max_grp = nxs.new_class(info_grp, "max_image_size", class_type="NXcollection")
max_grp["xsize"] = numpy.int32(self.shape[-1])
max_grp["ysize"] = numpy.int32(self.shape[-2])
header_grp = nxs.new_class(detector_grp, "header", class_type="NXcollection")
header_grp["acq_nb_frames"] = str(self.nframes)
header_grp["image_bin"] = "<1x1>"
header_grp["image_flip"] = "<flip x : False,flip y : False>"
header_grp["image_roi"] = f"<0,0>-<{self.shape[-2]}x{self.shape[-1]}>"
header_grp["image_rotation"] = "Rotation_0"
op_grp = nxs.new_class(detector_grp, "image_operation", class_type="NXcollection")
op_grp["rotation"] = "Rotation_0"
bin_grp = nxs.new_class(op_grp, "binning", class_type="NXcollection")
bin_grp["x"] = numpy.int32(1)
bin_grp["y"] = numpy.int32(1)
dim_grp = nxs.new_class(op_grp, "dimension", class_type="NXcollection")
dim_grp["xsize"] = numpy.int32(self.shape[-1])
dim_grp["ysize"] = numpy.int32(self.shape[-2])
flp_grp = nxs.new_class(op_grp, "flipping", class_type="NXcollection")
flp_grp["x"] = numpy.uint8(0)
flp_grp["y"] = numpy.uint8(0)
roi_grp = nxs.new_class(op_grp, "region_of_interest", class_type="NXcollection")
roi_grp["xsize"] = numpy.int32(self.shape[-1])
roi_grp["ysize"] = numpy.int32(self.shape[-2])
roi_grp["xstart"] = numpy.int32(0)
roi_grp["ystart"] = numpy.int32(0)
plot_grp = nxs.new_class(detector_grp, "plot", class_type="NXdata")
acq_grp["nb_frames"] = numpy.int32(self.nframes)
shape = (self.nframes,) + self.shape
dataset = detector_grp.create_dataset("data", shape=shape, chunks=(1,) + self.shape, dtype=self.dtype, **compression)
dataset.attrs["interpretation"] = "image"
plot_grp["data"] = dataset
plot_grp.attrs["signal"] = "data"
measurement_grp["data"] = dataset
for i, frame in enumerate(self.dataset):
dataset[i] = frame
entry.attrs["default"] = plot_grp.name
# This is not compatibility with old code:
limaimage = LimaImage
|