1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
# coding: utf-8
#
# Project: X-ray image reader
# https://github.com/silx-kit/fabio
#
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
"""Authors: Henning O. Sorensen & Erik Knudsen
Center for Fundamental Research: Metal Structures in Four Dimensions
Risoe National Laboratory
Frederiksborgvej 399
DK-4000 Roskilde
email:erik.knudsen@risoe.dk
Jérôme Kieffer, ESRF, Grenoble, France
Sigmund Neher, GWDG, Göttingen, Germany
"""
# get ready for python3
from __future__ import absolute_import, print_function, with_statement, division
__authors__ = ["Henning O. Sorensen", "Erik Knudsen", "Jon Wright",
"Jérôme Kieffer", "Sigmund Neher"]
__status__ = "production"
__copyright__ = "2007-2009 Risoe National Laboratory; 2015-2016 ESRF, 2016 GWDG"
__licence__ = "MIT"
import numpy
import logging
import os
from math import ceil
logger = logging.getLogger(__name__)
try:
from PIL import Image
except ImportError:
Image = None
from .brukerimage import BrukerImage
from .readbytestream import readbytestream
from .fabioutils import pad, StringTypes
class Bruker100Image(BrukerImage):
DESCRIPTION = "SFRM File format used by Bruker detectors (version 100)"
DEFAULT_EXTENSIONS = ["sfrm"]
bpp_to_numpy = {1: numpy.uint8,
2: numpy.uint16,
4: numpy.int32}
version = 100
def __init__(self, data=None, header=None):
BrukerImage.__init__(self, data, header)
self.nover_one = self.nover_two = 0
def _readheader(self, infile):
"""
The bruker format uses 80 char lines in key : value format
In the first 512*5 bytes of the header there should be a
HDRBLKS key, whose value denotes how many 512 byte blocks
are in the total header. The header is always n*5*512 bytes,
otherwise it wont contain whole key: value pairs
"""
line = 80
blocksize = 512
nhdrblks = 5 # by default we always read 5 blocks of 512
self.__headerstring__ = infile.read(blocksize * nhdrblks).decode("ASCII")
self.header = self.check_header()
for i in range(0, nhdrblks * blocksize, line):
if self.__headerstring__[i: i + line].find(":") > 0:
key, val = self.__headerstring__[i: i + line].split(":", 1)
key = key.strip() # remove the whitespace (why?)
val = val.strip()
if key in self.header:
# append lines if key already there
self.header[key] = self.header[key] + os.linesep + val
else:
self.header[key] = val
# we must have read this in the first 5*512 bytes.
nhdrblks = int(self.header['HDRBLKS'])
self.header['HDRBLKS'] = nhdrblks
# Now read in the rest of the header blocks, appending
self.__headerstring__ += infile.read(blocksize * (nhdrblks - 5)).decode("ASCII")
for i in range(5 * blocksize, nhdrblks * blocksize, line):
if self.__headerstring__[i: i + line].find(":") > 0: # as for first 512 bytes of header
key, val = self.__headerstring__[i: i + line].split(":", 1)
key = key.strip()
val = val.strip()
if key in self.header:
self.header[key] = self.header[key] + os.linesep + val
else:
self.header[key] = val
# set the image dimensions
self.dim1 = int(self.header['NROWS'].split()[0])
self.dim2 = int(self.header['NCOLS'].split()[0])
self.version = int(self.header.get('VERSION', "100"))
def toPIL16(self, filename=None):
if not Image:
raise RuntimeError("PIL is not installed !!! ")
if filename:
self.read(filename)
PILimage = Image.frombuffer("F", (self.dim1, self.dim2), self.data, "raw", "F;16", 0, -1)
return PILimage
def read(self, fname, frame=None):
'''data is stored in three blocks: data (uint8), overflow (uint32), underflow (int32). The blocks are
zero paded to a multiple of 16 bits '''
with self._open(fname, "rb") as infile:
self._readheader(infile)
rows = self.dim1
cols = self.dim2
npixelb = int(self.header['NPIXELB'][0])
# you had to read the Bruker docs to know this!
# We are now at the start of the image - assuming bruker._readheader worked
# Get image block size from NPIXELB.
# The total size is nbytes * nrows * ncolumns.
self.data = readbytestream(infile, infile.tell(), rows, cols, npixelb,
datatype="int", signed='n', swap='n')
# now process the overflows
for k, nover in enumerate(self.header['NOVERFL'].split()):
if k == 0:
# read the set of "underflow pixels" - these will be completely disregarded for now
continue
nov = int(nover)
if nov <= 0:
continue
bpp = 1 << k # (2 ** k)
datatype = self.bpp_to_numpy[bpp]
# upgrade data type
self.data = self.data.astype(datatype)
# pad nov*bpp to a multiple of 16 bytes
nbytes = (nov * bpp + 15) & ~(15)
# Multiple of 16 just above
data_str = infile.read(nbytes)
# ar without zeros
ar = numpy.frombuffer(data_str[:nov * bpp], datatype)
# insert the the overflow pixels in the image array:
lim = (1 << (8 * k)) - 1
# generate an array comprising of the indices into data.ravel()
# where its value equals lim.
flat = self.data.ravel()
mask = numpy.where(flat >= lim)[0]
# now put values from ar into those indices
if k != 0:
flat.put(mask, ar)
else: # only working because nov = - is treated bevor
self.ar_underflows = ar
logger.debug("%s bytes read + %d bytes padding" % (nov * bpp, nbytes - nov * bpp))
# infile.close()
# replace zeros with values from underflow block
if int(self.header["NOVERFL"].split()[0]) > 0:
flat = self.data.ravel()
self.mask_undeflows = numpy.where(flat == 0)[0]
self.mask_no_undeflows = numpy.where(self.data != 0)
flat.put(self.mask_undeflows, self.ar_underflows)
# add basline
if int(self.header["NOVERFL"].split()[0]) != -1:
baseline = int(self.header["NEXP"].split()[2])
self.data[self.mask_no_undeflows] += baseline
# print(self.data.max(), self.data.min(), self.data[numpy.where(self.data==0)].shape)
self.resetvals()
return self
def gen_header(self):
"""
Generate headers (with some magic and guesses)
format is Bruker100
"""
headers = []
for key in self.HEADERS_KEYS:
if key in self.header:
value = self.header[key]
if key == "CFR":
line = key.ljust(4) + ":"
else:
line = key.ljust(7) + ":"
if type(value) in StringTypes:
if key == 'NOVERFL':
line += str(str(self.nunderFlows).ljust(24, ' ') + str(self.nover_one).ljust(24) + str(self.nover_two))
elif key == "DETTYPE":
line += str(value)
elif key == "CFR":
line += str(value)
elif os.linesep in value:
lines = value.split(os.linesep)
for i in lines[:-1]:
headers.append((line + str(i)).ljust(80, " "))
line = key.ljust(7) + ":"
line += str(lines[-1])
elif len(value) < 72:
line += str(value)
else:
for i in range(len(value) // 72):
headers.append((line + str(value[72 * i:72 * (i + 1)])))
line = key.ljust(7) + ":"
line += value[72 * (i + 1):]
elif "__len__" in dir(value):
f = "\%.%is" % 72 // len(value) - 1
line += " ".join([f % i for i in value])
else:
line += str(value)
headers.append(line.ljust(80, " "))
header = "".join(headers)
if len(header) > 512 * self.header["HDRBLKS"]:
tmp = ceil(len(header) / 512.0)
self.header["HDRBLKS"] = int(ceil(tmp / 5.0) * 5.0)
for i in range(len(headers)):
if headers[i].startswith("HDRBLKS"):
headers[i] = ("HDRBLKS:%s" % self.header["HDRBLKS"]).ljust(80, " ")
else:
self.header["HDRBLKS"] = 15
res = pad("".join(headers), self.SPACER + "." * 78, 512 * int(self.header["HDRBLKS"]))
return res
def gen_overflow(self):
"""
Generate an overflow table, including the underflow, marked as 65535 .
"""
bpp = 2
limit = 255
# noverf = int(self.header['NOVERFL'].split()[1])
noverf = self.noverf
read_bytes = (noverf * bpp + 15) & ~(15) # since data b
dif2usedbyts = read_bytes - (noverf * bpp)
pad_zeros = numpy.zeros(dif2usedbyts / bpp).astype(self.bpp_to_numpy[bpp])
flat = self.data.ravel() # flat memory view
flow_pos = numpy.logical_or(flat >= limit, flat < 0)
# flow_pos_indexes = numpy.where(flow_pos)[0]
flow_vals = (flat[flow_pos])
flow_vals[flow_vals < 0] = 65535 # limit#flow_vals[flow_vals<0]
flow_vals_paded = numpy.hstack((flow_vals, pad_zeros)).astype(self.bpp_to_numpy[bpp])
return flow_vals_paded # pad(overflow, ".", 512)
def gen_underflow100(self):
"""
Generate an underflow table
"""
bpp = 4
noverf = int(self.header['NOVERFL'].split()[2])
# nunderf = self.nunderf
read_bytes = (noverf * bpp + 15) & ~(15)
dif2usedbyts = read_bytes - (noverf * bpp)
pad_zeros = numpy.zeros(dif2usedbyts / bpp).astype(self.bpp_to_numpy[bpp])
flat = self.data.ravel() # flat memory view
underflow_pos = numpy.where(flat < 0)[0]
underflow_val = flat[underflow_pos]
underflow_val = underflow_val.astype(self.bpp_to_numpy[bpp])
nderflow_val_paded = numpy.hstack((underflow_val, pad_zeros))
return nderflow_val_paded
def write(self, fname):
"""
Write a bruker image
"""
if numpy.issubdtype(self.data.dtype, float):
if "LINEAR" in self.header:
try:
slope, offset = self.header["LINEAR"].split(None, 1)
slope = float(slope)
offset = float(offset)
except Exception:
logger.warning("Error in converting to float data with linear parameter: %s" % self.header["LINEAR"])
slope, offset = 1.0, 0.0
else:
offset = self.data.min()
max_data = self.data.max()
max_range = 2 ** 24 - 1 # similar to the mantissa of a float32
if max_data > offset:
slope = (max_data - offset) / float(max_range)
else:
slope = 1.0
tmp_data = numpy.round(((self.data - offset) / slope)).astype(numpy.uint32)
self.header["LINEAR"] = "%s %s" % (slope, offset)
else:
if int(self.header["NOVERFL"].split()[0]) > 0:
baseline = int(self.header["NEXP"].split()[2])
self.data[self.mask_no_undeflows] -= baseline
tmp_data = self.data
minusMask = numpy.where(tmp_data < 0)
bpp = self.calc_bpp(tmp_data)
# self.basic_translate(fname)
limit = 2 ** (8 * bpp) - 1
data = tmp_data.astype(self.bpp_to_numpy[bpp])
reset = numpy.where(tmp_data >= limit)
self.nunderFlows = int(self.header["NOVERFL"].split()[0])
self.nover_one = len(reset[0]) + len(minusMask[0])
self.nover_two = len(minusMask[0])
data[reset] = limit
data[minusMask] = limit
if not numpy.little_endian and bpp > 1:
# Bruker enforces little endian
data.byteswap(True)
with self._open(fname, "wb") as bruker:
bruker.write(self.gen_header().encode("ASCII"))
bruker.write(data.tostring())
overflows_one_byte = self.overflows_one_byte()
overflows_two_byte = self.overflows_two_byte()
if int(self.header["NOVERFL"].split()[0]) > 0:
underflows = self.underflows()
bruker.write(underflows.tostring())
bruker.write(overflows_one_byte.tostring())
bruker.write(overflows_two_byte.tostring())
def underflows(self):
"""
Generate underflow table
"""
bpp = 1
# limit = 255
nunderFlows = self.nunderFlows
# temp_data = self.data
read_bytes = (nunderFlows * bpp + 15) & ~(15) # multiple of 16
dif2usedbyts = read_bytes - (nunderFlows * bpp)
pad_zeros = numpy.zeros(dif2usedbyts / bpp).astype(self.bpp_to_numpy[bpp])
# flat = self.data.ravel() # flat memory view
# flow_pos_indexes = self.mask_undeflows
flow_vals = (self.ar_underflows)
# flow_vals[flow_vals<0] = 65535#limit#flow_vals[flow_vals<0]
flow_vals_paded = numpy.hstack((flow_vals, pad_zeros)).astype(self.bpp_to_numpy[bpp])
return flow_vals_paded # pad(overflow, ".", 512)
def overflows_one_byte(self):
"""
Generate one-byte overflow table
"""
bpp = 2
limit = 255
nover_one = self.nover_one
# temp_data = self.data
read_bytes = (nover_one * bpp + 15) & ~(15) # multiple of 16
dif2usedbyts = read_bytes - (nover_one * bpp)
pad_zeros = numpy.zeros(dif2usedbyts // bpp, dtype=self.bpp_to_numpy[bpp])
flat = self.data.ravel() # flat memory view
flow_pos = (flat >= limit) + (flat < 0)
# flow_pos_indexes = numpy.where(flow_pos == True)[0]
flow_vals = (flat[flow_pos])
flow_vals[flow_vals < 0] = 65535 # limit#flow_vals[flow_vals<0]
# print("flow_vals",flow_vals)
flow_vals_paded = numpy.hstack((flow_vals, pad_zeros)).astype(self.bpp_to_numpy[bpp])
return flow_vals_paded # pad(overflow, ".", 512)
def overflows_two_byte(self):
"""
Generate two byte overflow table
"""
bpp = 4
noverf = int(self.header['NOVERFL'].split()[2])
# nover_two = self.nover_two
read_bytes = (noverf * bpp + 15) & ~(15) # multiple of 16
dif2usedbyts = read_bytes - (noverf * bpp)
pad_zeros = numpy.zeros(dif2usedbyts // bpp, dtype=self.bpp_to_numpy[bpp])
flat = self.data.ravel() # flat memory view
underflow_pos = numpy.where(flat < 0)[0]
underflow_val = flat[underflow_pos] # [::-1]
# underflow_val[underflow_val 0] = 65535#limit#flow_vals[flow_vals<0]
underflow_val = underflow_val.astype(self.bpp_to_numpy[bpp])
nderflow_val_paded = numpy.hstack((underflow_val, pad_zeros))
return nderflow_val_paded # pad(overflow, ".", 512)
bruker100image = Bruker100Image
|