1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
from typing import List, Dict, Tuple, Union, Optional
from fakeredis import _msgs as msgs
from fakeredis._helpers import Database, SimpleError
class TimeSeries:
def __init__(
self,
name: bytes,
database: Database,
retention: int = 0,
encoding: bytes = b"compressed",
chunk_size: int = 4096,
duplicate_policy: bytes = b"block",
ignore_max_time_diff: int = 0,
ignore_max_val_diff: int = 0,
labels: Dict[str, str] = None,
source_key: Optional[bytes] = None,
):
super().__init__()
self.name = name
self._db = database
self.retention = retention
self.encoding = encoding
self.chunk_size = chunk_size
self.duplicate_policy = duplicate_policy
self.ts_ind_map: Dict[int, int] = dict() # Map from timestamp to index in sorted_list
self.sorted_list: List[Tuple[int, float]] = list()
self.max_timestamp: int = 0
self.labels = labels or {}
self.source_key = source_key
self.ignore_max_time_diff = ignore_max_time_diff
self.ignore_max_val_diff = ignore_max_val_diff
self.rules: List[TimeSeriesRule] = list()
def add(
self, timestamp: int, value: float, duplicate_policy: Optional[bytes] = None
) -> Union[int, None, List[None]]:
if self.retention != 0 and self.max_timestamp - timestamp > self.retention:
raise SimpleError(msgs.TIMESERIES_TIMESTAMP_OLDER_THAN_RETENTION)
if duplicate_policy is None:
duplicate_policy = self.duplicate_policy
if timestamp in self.ts_ind_map: # Duplicate policy
if duplicate_policy == b"block":
raise SimpleError(msgs.TIMESERIES_DUPLICATE_POLICY_BLOCK)
if duplicate_policy == b"first":
return timestamp
ind = self.ts_ind_map[timestamp]
curr_value = self.sorted_list[ind][1]
if duplicate_policy == b"max":
value = max(curr_value, value)
elif duplicate_policy == b"min":
value = min(curr_value, value)
self.sorted_list[ind] = (timestamp, value)
return timestamp
self.sorted_list.append((timestamp, value))
self.ts_ind_map[timestamp] = len(self.sorted_list) - 1
self.rules = [rule for rule in self.rules if rule.dest_key.name in self._db]
for rule in self.rules:
rule.add_record((timestamp, value))
self.max_timestamp = max(self.max_timestamp, timestamp)
return timestamp
def incrby(self, timestamp: int, value: float) -> Union[int, None]:
if len(self.sorted_list) == 0:
return self.add(timestamp, value)
if timestamp == self.max_timestamp:
ind = self.ts_ind_map[timestamp]
self.sorted_list[ind] = (timestamp, self.sorted_list[ind][1] + value)
elif timestamp > self.max_timestamp:
ind = self.ts_ind_map[self.max_timestamp]
self.add(timestamp, self.sorted_list[ind][1] + value)
else: # timestamp < self.sorted_list[ind][0]
raise ValueError()
return timestamp
def get(self) -> Optional[List[Union[int, float]]]:
if len(self.sorted_list) == 0:
return None
ind = self.ts_ind_map[self.max_timestamp]
return [self.sorted_list[ind][0], self.sorted_list[ind][1]]
def delete(self, from_ts: int, to_ts: int) -> int:
prev_size = len(self.sorted_list)
self.sorted_list = [x for x in self.sorted_list if not (from_ts <= x[0] <= to_ts)]
self.ts_ind_map = {k: v for k, v in self.ts_ind_map.items() if not (from_ts <= k <= to_ts)}
return prev_size - len(self.sorted_list)
def get_rule(self, dest_key: bytes) -> Optional["TimeSeriesRule"]:
for rule in self.rules:
if rule.dest_key.name == dest_key:
return rule
return None
def add_rule(self, rule: "TimeSeriesRule") -> None:
self.rules.append(rule)
def delete_rule(self, rule: "TimeSeriesRule") -> None:
self.rules.remove(rule)
rule.dest_key.source_key = None
def range(
self,
from_ts: int,
to_ts: int,
value_min: Optional[float],
value_max: Optional[float],
count: Optional[int],
filter_ts: Optional[List[int]],
reverse: bool,
) -> List[Tuple[int, float]]:
value_min = value_min or float("-inf")
value_max = value_max or float("inf")
res: List[Tuple[int, float]] = [
x
for x in self.sorted_list
if (from_ts <= x[0] <= to_ts)
and value_min <= x[1] <= value_max
and (filter_ts is None or x[0] in filter_ts)
]
if reverse:
res.reverse()
if count is not None:
return res[:count]
return res
def aggregate(
self,
from_ts: int,
to_ts: int,
latest: bool,
value_min: Optional[float],
value_max: Optional[float],
count: Optional[int],
filter_ts: Optional[List[int]],
align: Optional[int],
aggregator: bytes,
bucket_duration: int,
bucket_timestamp: Optional[bytes],
empty: Optional[bool],
reverse: bool,
) -> List[Tuple[int, float]]:
align = align or 0
value_min = value_min or float("-inf")
value_max = value_max or float("inf")
rule = TimeSeriesRule(self, TimeSeries(b"", self._db), aggregator, bucket_duration)
for x in self.sorted_list:
if from_ts <= x[0] <= to_ts and value_min <= x[1] <= value_max and (filter_ts is None or x[0] in filter_ts):
rule.add_record((x[0], x[1]), bucket_timestamp)
if latest and len(rule.current_bucket) > 0:
rule.apply_curr_bucket(bucket_timestamp)
if empty:
min_bucket_ts = rule.dest_key.sorted_list[0][0]
for ts in range(min_bucket_ts, rule.current_bucket_start_ts, bucket_duration):
if ts not in rule.dest_key.ts_ind_map:
rule.dest_key.add(ts, float("nan"))
rule.dest_key.sorted_list = sorted(rule.dest_key.sorted_list)
if reverse:
rule.dest_key.sorted_list.reverse()
if count:
return rule.dest_key.sorted_list[:count]
return rule.dest_key.sorted_list
class Aggregators:
@staticmethod
def var_p(values: List[float]) -> float:
if len(values) == 0:
return 0
avg = sum(values) / len(values)
return sum((x - avg) ** 2 for x in values) / len(values)
@staticmethod
def var_s(values: List[float]) -> float:
if len(values) == 0:
return 0
avg = sum(values) / len(values)
return sum((x - avg) ** 2 for x in values) / (len(values) - 1)
@staticmethod
def std_p(values: List[float]) -> float:
return Aggregators.var_p(values) ** 0.5
@staticmethod
def std_s(values: List[float]) -> float:
return Aggregators.var_s(values) ** 0.5
AGGREGATORS = {
b"avg": lambda x: sum(x) / len(x),
b"sum": sum,
b"min": min,
b"max": max,
b"range": lambda x: max(x) - min(x),
b"count": len,
b"first": lambda x: x[0],
b"last": lambda x: x[-1],
b"std.p": Aggregators.std_p,
b"std.s": Aggregators.std_s,
b"var.p": Aggregators.var_p,
b"var.s": Aggregators.var_s,
b"twa": lambda x: 0,
}
def apply_aggregator(
bucket: List[Tuple[int, float]], bucket_start_ts: int, bucket_duration: int, aggregator: bytes
) -> float:
if len(bucket) == 0:
return 0.0
if aggregator == b"twa":
total = 0.0
curr_ts = bucket_start_ts
for i, (ts, val) in enumerate(bucket):
# next_ts = bucket[i + 1][0] if len(bucket) > i + 1 else bucket_start_ts + bucket_duration
total += (ts - curr_ts) * val
curr_ts = ts
total += val * (bucket_start_ts + bucket_duration - curr_ts)
return total / bucket_duration
relevant_values = [x[1] for x in bucket]
return AGGREGATORS[aggregator](relevant_values)
class TimeSeriesRule:
def __init__(
self,
source_key: TimeSeries,
dest_key: TimeSeries,
aggregator: bytes,
bucket_duration: int,
align_timestamp: int = 0,
):
self.source_key = source_key
self.dest_key = dest_key
self.aggregator = aggregator.lower()
self.bucket_duration = bucket_duration
self.align_timestamp = align_timestamp
self.current_bucket_start_ts: int = 0
self.current_bucket: List[Tuple[int, float]] = list()
self.dest_key.source_key = source_key.name
def add_record(self, record: Tuple[int, float], bucket_timestamp: Optional[bytes] = None) -> bool:
ts, val = record
bucket_start_ts = ts - (ts % self.bucket_duration) + self.align_timestamp
if self.current_bucket_start_ts == bucket_start_ts:
self.current_bucket.append(record)
if (
self.current_bucket_start_ts != bucket_start_ts
or ts == self.current_bucket_start_ts + self.bucket_duration - 1
):
should_add = self.current_bucket_start_ts != bucket_start_ts
self.apply_curr_bucket(bucket_timestamp)
self.current_bucket_start_ts = (
bucket_start_ts
if self.current_bucket_start_ts != bucket_start_ts
else self.current_bucket_start_ts + self.bucket_duration
)
if should_add:
self.current_bucket.append(record)
return True
return False
def apply_curr_bucket(self, bucket_timestamp: Optional[bytes] = None) -> None:
if len(self.current_bucket) == 0:
return
value = apply_aggregator(
self.current_bucket, self.current_bucket_start_ts, self.bucket_duration, self.aggregator
)
self.current_bucket = list()
timestamp = self.current_bucket_start_ts
if bucket_timestamp == b"+":
timestamp = int(self.current_bucket_start_ts + self.bucket_duration)
elif bucket_timestamp == b"~":
timestamp = int(self.current_bucket_start_ts + self.bucket_duration / 2)
self.dest_key.add(timestamp, value)
|