File: bench.py

package info (click to toggle)
python-falcon 4.0.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,172 kB
  • sloc: python: 33,608; javascript: 92; sh: 50; makefile: 50
file content (434 lines) | stat: -rwxr-xr-x 11,335 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/bin/env python

# Copyright 2014 by Rackspace Hosting, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
from collections import defaultdict
from collections import deque
from decimal import Decimal
import gc
import inspect
import platform
import random
import sys
import tempfile
import timeit

try:
    import cProfile
except ImportError:
    import profile as cProfile

try:
    import guppy
except ImportError:
    heapy = None
else:
    heapy = guppy.hpy()

try:
    import pprofile
except ImportError:
    pprofile = None

try:
    import vmprof
    from vmshare.service import Service
except ImportError:
    vmprof = None

from falcon.bench import create  # NOQA
from falcon.constants import PYPY
import falcon.testing as helpers


# NOTE(kgriffs): Based on testing, these values provide a ceiling that's
# several times higher than fast x86 hardware can achieve today.
ITER_DETECTION_MAX_ATTEMPTS = 27
ITER_DETECTION_MULTIPLIER = 1.7
ITER_DETECTION_STARTING = 3000

# NOTE(kgriffs): Benchmark duration range, in seconds, to target
ITER_DETECTION_DURATION_MIN = 1.0
ITER_DETECTION_DURATION_MAX = 6.0

JIT_WARMING_MULTIPLIER = 30

BODY = helpers.rand_string(10240, 10240).encode('utf-8')  # NOQA
HEADERS = {'X-Test': 'Funky Chicken'}  # NOQA


class StartResponseMockLite:
    """Mock object representing a WSGI `start_response` callable."""

    def __init__(self):
        self._called = 0
        self.status = None
        self.headers = None
        self.exc_info = None

    def __call__(self, status, headers, exc_info=None):
        """Implement the PEP-3333 `start_response` protocol."""

        self._called += 1

        self.status = status
        self.headers = headers
        self.exc_info = exc_info

    @property
    def call_count(self):
        return self._called


def bench(func, iterations, stat_memory):
    gc.collect()
    heap_diff = None

    if heapy and stat_memory:
        heap_before = heapy.heap()

    total_sec = timeit.timeit(func, setup=gc.enable, number=iterations)

    if heapy and stat_memory:
        heap_diff = heapy.heap() - heap_before

    sec_per_req = Decimal(str(total_sec)) / Decimal(str(iterations))

    return (sec_per_req, heap_diff)


def determine_iterations(func):
    # NOTE(kgriffs): Algorithm adapted from IPython's magic timeit
    # function to determine iterations so that 0.2 <= total time < 2.0
    iterations = ITER_DETECTION_STARTING
    for __ in range(1, ITER_DETECTION_MAX_ATTEMPTS):
        gc.collect()

        total_sec = timeit.timeit(func, setup=gc.enable, number=int(iterations))

        if total_sec >= ITER_DETECTION_DURATION_MIN:
            assert total_sec < ITER_DETECTION_DURATION_MAX
            break

        iterations *= ITER_DETECTION_MULTIPLIER

    return int(iterations)


def profile(name, env, filename=None, verbose=False):
    if filename:
        filename = name + '-' + filename
        print('Profiling %s ==> %s' % (name, filename))

    else:
        filename = None

        title = name + ' profile'
        print()
        print('=' * len(title))
        print(title)
        print('=' * len(title))

    func = create_bench(name, env)
    gc.collect()

    num_iterations = 100000

    if PYPY:
        print('JIT warmup...')

        # TODO(kgriffs): Measure initial time, and keep iterating until
        # performance increases and then steadies
        for x in range(num_iterations * JIT_WARMING_MULTIPLIER):
            func()

        print('Ready.')

    code = 'for x in range({0}): func()'.format(num_iterations)

    if verbose:
        if pprofile is None:
            print('pprofile not found. Please install pprofile and try again.')
            return

        pprofile.runctx(code, locals(), globals(), filename=filename)

    else:
        cProfile.runctx(code, locals(), globals(), sort='tottime', filename=filename)


def profile_vmprof(name, env):
    if vmprof is None:
        print('vmprof not found. Please install vmprof and try again.')
        return

    func = create_bench(name, env)
    gc.collect()

    #
    # Based on: https://github.com/vmprof/vmprof-python/blob/master/vmprof/__main__.py
    #

    prof_file = tempfile.NamedTemporaryFile(delete=False)
    filename = prof_file.name

    vmprof.enable(prof_file.fileno())

    try:
        for __ in range(1000000):
            func()

    except BaseException as e:
        if not isinstance(e, (KeyboardInterrupt, SystemExit)):
            raise

    vmprof.disable()

    service = Service('vmprof.com')
    service.post(
        {
            Service.FILE_CPU_PROFILE: filename,
            Service.FILE_JIT_PROFILE: filename + '.jit',
            'argv': ' '.join(sys.argv[:]),
            'VM': platform.python_implementation(),
        }
    )

    prof_file.close()


def exhaust(iterator_or_generator):
    # from https://docs.python.org/dev/library/itertools.html#itertools-recipes
    deque(iterator_or_generator, maxlen=0)


def create_bench(name, env):
    srmock = StartResponseMockLite()

    function = name.lower().replace('-', '_')
    app = eval('create.{0}(BODY, HEADERS)'.format(function))

    def bench():
        app(env, srmock)
        assert srmock.status == '200 OK'

    def bench_generator():
        exhaust(app(env, srmock))
        assert srmock.status == '200 OK'

    if inspect.isgeneratorfunction(app):
        return bench_generator
    else:
        return bench


def consolidate_datasets(datasets):
    results = defaultdict(list)
    for dataset in datasets:
        for name, sec_per_req, _ in dataset:
            results[name].append(sec_per_req)

    return [(name, min(vector)) for name, vector in results.items()]


def round_to_int(dec):
    return int(dec.to_integral_value())


def avg(array):
    return sum(array) / len(array)


def hello_env():
    request_headers = {'Content-Type': 'application/json'}
    return helpers.create_environ(
        '/hello/584/test', query_string='limit=10&thing=ab', headers=request_headers
    )


def queues_env():
    request_headers = {'Content-Type': 'application/json'}
    path = '/v1/852809/queues/0fd4c8c6-bd72-11e2-8e47-db5ebd4c8125/claims/db5ebd4c8125'

    qs = 'limit=10&thing=a+b&x=%23%24'
    return helpers.create_environ(path, query_string=qs, headers=request_headers)


def get_env(framework):
    return queues_env() if framework == 'falcon-ext' else hello_env()


def run(frameworks, trials, iterations, stat_memory):
    # Skip any frameworks that are not installed
    for name in frameworks:
        try:
            create_bench(name, hello_env())
        except ImportError as ex:
            print(ex)
            print('Skipping missing library: ' + name)
            del frameworks[frameworks.index(name)]

    print()

    datasets = []

    if not frameworks:
        print('Nothing to do.\n')
        return datasets

    benchmarks = []
    for name in frameworks:
        bm = create_bench(name, get_env(name))

        bm_iterations = iterations if iterations else determine_iterations(bm)

        if PYPY:
            print('{}: JIT warmup'.format(name))

            # TODO(kgriffs): Measure initial time, and keep iterating until
            # performance increases and then steadies
            bench(bm, bm_iterations * JIT_WARMING_MULTIPLIER, False)

        bm_iterations = iterations if iterations else determine_iterations(bm)

        benchmarks.append((name, bm_iterations, bm))
        print('{}: {} iterations'.format(name, bm_iterations))

    print()

    for r in range(trials):
        random.shuffle(frameworks)

        sys.stdout.write('Benchmarking, Trial %d of %d' % (r + 1, trials))
        sys.stdout.flush()

        dataset = []
        for name, bm_iterations, bm in benchmarks:
            sec_per_req, heap_diff = bench(bm, bm_iterations, stat_memory)

            dataset.append((name, sec_per_req, heap_diff))

            sys.stdout.write('.')
            sys.stdout.flush()

        datasets.append(dataset)
        print('done.')

    return datasets


def main():
    frameworks = [
        'bottle',
        'django',
        'falcon',
        'falcon-ext',
        'flask',
        'pecan',
        'werkzeug',
    ]

    parser = argparse.ArgumentParser(description='Falcon benchmark runner')
    parser.add_argument(
        '-b',
        '--benchmark',
        type=str,
        action='append',
        choices=frameworks,
        dest='frameworks',
        nargs='+',
    )
    parser.add_argument('-i', '--iterations', type=int, default=0)
    parser.add_argument('-t', '--trials', type=int, default=10)
    parser.add_argument(
        '-p', '--profile', type=str, choices=['standard', 'verbose', 'vmprof']
    )
    parser.add_argument('-o', '--profile-output', type=str, default=None)
    parser.add_argument('-m', '--stat-memory', action='store_true')
    args = parser.parse_args()

    if args.stat_memory and heapy is None:
        print('WARNING: Guppy not installed; memory stats are unavailable.\n')

    if args.frameworks:
        frameworks = args.frameworks

    # Normalize frameworks type
    normalized_frameworks = []
    for one_or_many in frameworks:
        if isinstance(one_or_many, list):
            normalized_frameworks.extend(one_or_many)
        else:
            normalized_frameworks.append(one_or_many)

    frameworks = normalized_frameworks

    # Profile?
    if args.profile:
        framework = 'falcon-ext'

        if args.profile == 'vmprof':
            profile_vmprof(framework, get_env(framework))
        else:
            profile(
                framework,
                get_env(framework),
                filename=args.profile_output,
                verbose=(args.profile == 'verbose'),
            )

        print()
        return

    # Otherwise, benchmark
    datasets = run(frameworks, args.trials, args.iterations, args.stat_memory)

    if not datasets:
        return

    dataset = consolidate_datasets(datasets)
    dataset = sorted(dataset, key=lambda r: r[1])
    baseline = dataset[-1][1]

    print('\nResults:\n')

    for i, (name, sec_per_req) in enumerate(dataset):
        req_per_sec = round_to_int(Decimal(1) / sec_per_req)
        us_per_req = sec_per_req * Decimal(10**6)
        factor = round_to_int(baseline / sec_per_req)

        print(
            '{3}. {0:.<20s}{1:.>06d} req/sec or {2: >3.2f} μs/req ({4}x)'.format(
                name, req_per_sec, us_per_req, i + 1, factor
            )
        )

    if heapy and args.stat_memory:
        print()

        for name, _, heap_diff in datasets[0]:
            title = 'Memory change induced by ' + name
            print()
            print('=' * len(title))
            print(title)
            print('=' * len(title))
            print(heap_diff)

    print()


if __name__ == '__main__':
    main()