1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
# Copyright 2016 Feather Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# distutils: language = c++
# cython: embedsignature = True
from libcpp.string cimport string
from libcpp cimport bool as c_bool
cimport cpython
from cython.operator cimport dereference as deref
from libfeather cimport *
import pandas as pd
from feather.compat import pdapi
from numpy cimport ndarray
cimport numpy as cnp
import numpy as np
from feather.compat import frombytes, tobytes, encode_file_path
import six
cnp.import_array()
class FeatherError(Exception):
pass
cdef extern from "interop.h" namespace "feather::py":
Status pandas_to_primitive(object ao, PrimitiveArray* out)
Status pandas_masked_to_primitive(object ao, object mask,
PrimitiveArray* out)
object get_null_mask(const PrimitiveArray& arr)
object raw_primitive_to_pandas(const PrimitiveArray& arr)
object primitive_to_pandas(const PrimitiveArray& arr)
void set_numpy_nan(object nan)
cdef check_status(const Status& status):
if status.ok():
return
cdef string c_message = status.ToString()
raise FeatherError(frombytes(c_message))
cdef update_mask_with_datatype_nulls(mask, values):
datatype_nulls = pd.isnull(values)
if datatype_nulls.any():
if mask is None:
return datatype_nulls
else:
return mask | datatype_nulls
set_numpy_nan(np.nan)
cdef class FeatherWriter:
cdef:
unique_ptr[TableWriter] writer
int64_t num_rows
def __cinit__(self, object name):
cdef:
string c_name = encode_file_path(name)
check_status(TableWriter.OpenFile(c_name, &self.writer))
self.num_rows = -1
def close(self):
if self.num_rows < 0:
self.num_rows = 0
self.writer.get().SetNumRows(self.num_rows)
check_status(self.writer.get().Finalize())
def write_array(self, object name, object col, object mask=None):
if self.num_rows >= 0:
if len(col) != self.num_rows:
raise ValueError('prior column had a different number of rows')
else:
self.num_rows = len(col)
if pdapi.is_categorical_dtype(col.dtype):
self.write_category(name, col, mask)
elif pdapi.is_datetime64_any_dtype(col.dtype):
self.write_timestamp(name, col, mask)
else:
self.write_primitive(name, col, mask)
cdef write_category(self, name, col, mask):
cdef:
string c_name = tobytes(name)
PrimitiveArray values
PrimitiveArray levels
col_values = _unbox_series(col)
mask_to_file = update_mask_with_datatype_nulls(mask, col_values)
self.write_ndarray(col_values.codes, mask_to_file, &values)
check_status(pandas_to_primitive(np.asarray(col_values.categories),
&levels))
check_status(self.writer.get().AppendCategory(c_name, values, levels,
col_values.ordered))
cdef write_primitive(self, name, col, mask):
cdef:
string c_name = tobytes(name)
PrimitiveArray values
col_values = _unbox_series(col)
self.write_ndarray(col_values, mask, &values)
check_status(self.writer.get().AppendPlain(c_name, values))
cdef write_timestamp(self, name, col, mask):
cdef:
string c_name = tobytes(name)
PrimitiveArray values
TimestampMetadata metadata
col_values = _unbox_series(col)
mask_to_file = update_mask_with_datatype_nulls(mask, col_values)
self.write_ndarray(col_values.view('i8'), mask_to_file, &values)
metadata.unit = TimeUnit_NANOSECOND
tz = getattr(col.dtype, 'tz', None)
if tz is None:
metadata.timezone = b''
else:
metadata.timezone = tobytes(tz.zone)
check_status(self.writer.get().AppendTimestamp(c_name, values,
metadata))
cdef int write_ndarray(self, values, mask, PrimitiveArray* out) except -1:
if mask is None:
check_status(pandas_to_primitive(values, out))
else:
check_status(pandas_masked_to_primitive(values, mask, out))
return 0
cdef _unbox_series(col):
if isinstance(col, pd.Series):
col_values = col.values
else:
col_values = col
return col_values
cdef class Column:
cdef:
shared_ptr[CColumnMetadata] metadata
CColumnMetadata* mp
FeatherReader parent
int column_index
def __cinit__(self):
self.mp = NULL
cdef init(self, FeatherReader parent, int i):
cdef TableReader* tbl = parent.reader.get()
self.parent = parent
self.column_index = i
check_status(tbl.GetColumnMetadata(i, &self.metadata))
self.mp = self.metadata.get()
property name:
def __get__(self):
return frombytes(self.mp.name())
property type:
def __get__(self):
return self.mp.type()
property user_metadata:
def __get__(self):
return frombytes(self.mp.user_metadata())
property null_count:
def __get__(self):
cdef:
unique_ptr[CColumn] col
CColumn* cp
check_status(self.parent.reader.get()
.GetColumn(self.column_index, &col))
return col.get().values().null_count
def read(self):
cdef:
unique_ptr[CColumn] col
CColumn* cp
check_status(self.parent.reader.get()
.GetColumn(self.column_index, &col))
cp = col.get()
if cp.type() == ColumnType_PRIMITIVE:
values = primitive_to_pandas(cp.values())
elif cp.type() == ColumnType_CATEGORY:
values = category_to_pandas(cp)
elif cp.type() == ColumnType_TIMESTAMP:
values = timestamp_to_pandas(cp)
else:
raise NotImplementedError(cp.type())
return values
cdef class FeatherReader:
cdef:
unique_ptr[TableReader] reader
def __cinit__(self, object name):
cdef:
string c_name = encode_file_path(name)
check_status(TableReader.OpenFile(c_name, &self.reader))
property num_rows:
def __get__(self):
return self.reader.get().num_rows()
property num_columns:
def __get__(self):
return self.reader.get().num_columns()
def get_column(self, int i):
if i < 0 or i >= self.num_columns:
raise IndexError(i)
cdef Column col = Column()
col.init(self, i)
return col
cdef category_to_pandas(CColumn* col):
cdef CategoryColumn* cat = <CategoryColumn*>(col)
values = raw_primitive_to_pandas(cat.values())
mask = get_null_mask(cat.values())
values[mask] = -1
levels = primitive_to_pandas(cat.levels())
return pd.Categorical(values, categories=levels,
fastpath=True)
cdef timestamp_to_pandas(CColumn* col):
cdef TimestampColumn* ts = <TimestampColumn*>(col)
values = raw_primitive_to_pandas(ts.values())
mask = get_null_mask(ts.values())
tz = frombytes(ts.timezone())
if tz:
values = (pd.DatetimeIndex(values).tz_localize('utc')
.tz_convert(tz))
result = pd.Series(values)
else:
result = pd.Series(values, dtype='M8[ns]')
result.iloc[mask] = pd.NaT
return result
|