1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
|
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_H_
#define FLATBUFFERS_H_
#include <assert.h>
#include <cstdint>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <string>
#include <type_traits>
#include <vector>
#include <algorithm>
#include <functional>
#include <memory>
/// @cond FLATBUFFERS_INTERNAL
#if __cplusplus <= 199711L && \
(!defined(_MSC_VER) || _MSC_VER < 1600) && \
(!defined(__GNUC__) || \
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__ < 40400))
#error A C++11 compatible compiler with support for the auto typing is required for FlatBuffers.
#error __cplusplus _MSC_VER __GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__
#endif
#if !defined(__clang__) && \
defined(__GNUC__) && \
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__ < 40600)
// Backwards compatability for g++ 4.4, and 4.5 which don't have the nullptr and constexpr
// keywords. Note the __clang__ check is needed, because clang presents itself as an older GNUC
// compiler.
#ifndef nullptr_t
const class nullptr_t {
public:
template<class T> inline operator T*() const { return 0; }
private:
void operator&() const;
} nullptr = {};
#endif
#ifndef constexpr
#define constexpr const
#endif
#endif
// The wire format uses a little endian encoding (since that's efficient for
// the common platforms).
#if !defined(FLATBUFFERS_LITTLEENDIAN)
#if defined(__GNUC__) || defined(__clang__)
#ifdef __BIG_ENDIAN__
#define FLATBUFFERS_LITTLEENDIAN 0
#else
#define FLATBUFFERS_LITTLEENDIAN 1
#endif // __BIG_ENDIAN__
#elif defined(_MSC_VER)
#if defined(_M_PPC)
#define FLATBUFFERS_LITTLEENDIAN 0
#else
#define FLATBUFFERS_LITTLEENDIAN 1
#endif
#else
#error Unable to determine endianness, define FLATBUFFERS_LITTLEENDIAN.
#endif
#endif // !defined(FLATBUFFERS_LITTLEENDIAN)
#define FLATBUFFERS_VERSION_MAJOR 1
#define FLATBUFFERS_VERSION_MINOR 0
#define FLATBUFFERS_VERSION_REVISION 0
#define FLATBUFFERS_STRING_EXPAND(X) #X
#define FLATBUFFERS_STRING(X) FLATBUFFERS_STRING_EXPAND(X)
#if (!defined(_MSC_VER) || _MSC_VER > 1600) && \
(!defined(__GNUC__) || (__GNUC__ * 100 + __GNUC_MINOR__ >= 407))
#define FLATBUFFERS_FINAL_CLASS final
#else
#define FLATBUFFERS_FINAL_CLASS
#endif
/// @endcond
/// @file
namespace flatbuffers {
/// @cond FLATBUFFERS_INTERNAL
// Our default offset / size type, 32bit on purpose on 64bit systems.
// Also, using a consistent offset type maintains compatibility of serialized
// offset values between 32bit and 64bit systems.
typedef uint32_t uoffset_t;
// Signed offsets for references that can go in both directions.
typedef int32_t soffset_t;
// Offset/index used in v-tables, can be changed to uint8_t in
// format forks to save a bit of space if desired.
typedef uint16_t voffset_t;
typedef uintmax_t largest_scalar_t;
// Pointer to relinquished memory.
typedef std::unique_ptr<uint8_t, std::function<void(uint8_t * /* unused */)>>
unique_ptr_t;
// Wrapper for uoffset_t to allow safe template specialization.
template<typename T> struct Offset {
uoffset_t o;
Offset() : o(0) {}
Offset(uoffset_t _o) : o(_o) {}
Offset<void> Union() const { return Offset<void>(o); }
};
inline void EndianCheck() {
int endiantest = 1;
// If this fails, see FLATBUFFERS_LITTLEENDIAN above.
assert(*reinterpret_cast<char *>(&endiantest) == FLATBUFFERS_LITTLEENDIAN);
(void)endiantest;
}
template<typename T> T EndianScalar(T t) {
#if FLATBUFFERS_LITTLEENDIAN
return t;
#else
#if defined(_MSC_VER)
#pragma push_macro("__builtin_bswap16")
#pragma push_macro("__builtin_bswap32")
#pragma push_macro("__builtin_bswap64")
#define __builtin_bswap16 _byteswap_ushort
#define __builtin_bswap32 _byteswap_ulong
#define __builtin_bswap64 _byteswap_uint64
#endif
// If you're on the few remaining big endian platforms, we make the bold
// assumption you're also on gcc/clang, and thus have bswap intrinsics:
if (sizeof(T) == 1) { // Compile-time if-then's.
return t;
} else if (sizeof(T) == 2) {
auto r = __builtin_bswap16(*reinterpret_cast<uint16_t *>(&t));
return *reinterpret_cast<T *>(&r);
} else if (sizeof(T) == 4) {
auto r = __builtin_bswap32(*reinterpret_cast<uint32_t *>(&t));
return *reinterpret_cast<T *>(&r);
} else if (sizeof(T) == 8) {
auto r = __builtin_bswap64(*reinterpret_cast<uint64_t *>(&t));
return *reinterpret_cast<T *>(&r);
} else {
assert(0);
}
#if defined(_MSC_VER)
#pragma pop_macro("__builtin_bswap16")
#pragma pop_macro("__builtin_bswap32")
#pragma pop_macro("__builtin_bswap64")
#endif
#endif
}
template<typename T> T ReadScalar(const void *p) {
return EndianScalar(*reinterpret_cast<const T *>(p));
}
template<typename T> void WriteScalar(void *p, T t) {
*reinterpret_cast<T *>(p) = EndianScalar(t);
}
template<typename T> size_t AlignOf() {
#ifdef _MSC_VER
return __alignof(T);
#else
#ifndef alignof
return __alignof__(T);
#else
return alignof(T);
#endif
#endif
}
// When we read serialized data from memory, in the case of most scalars,
// we want to just read T, but in the case of Offset, we want to actually
// perform the indirection and return a pointer.
// The template specialization below does just that.
// It is wrapped in a struct since function templates can't overload on the
// return type like this.
// The typedef is for the convenience of callers of this function
// (avoiding the need for a trailing return decltype)
template<typename T> struct IndirectHelper {
typedef T return_type;
static const size_t element_stride = sizeof(T);
static return_type Read(const uint8_t *p, uoffset_t i) {
return EndianScalar((reinterpret_cast<const T *>(p))[i]);
}
};
template<typename T> struct IndirectHelper<Offset<T>> {
typedef const T *return_type;
static const size_t element_stride = sizeof(uoffset_t);
static return_type Read(const uint8_t *p, uoffset_t i) {
p += i * sizeof(uoffset_t);
return reinterpret_cast<return_type>(p + ReadScalar<uoffset_t>(p));
}
};
template<typename T> struct IndirectHelper<const T *> {
typedef const T *return_type;
static const size_t element_stride = sizeof(T);
static return_type Read(const uint8_t *p, uoffset_t i) {
return reinterpret_cast<const T *>(p + i * sizeof(T));
}
};
// An STL compatible iterator implementation for Vector below, effectively
// calling Get() for every element.
template<typename T, bool bConst>
struct VectorIterator : public
std::iterator < std::input_iterator_tag,
typename std::conditional < bConst,
const typename IndirectHelper<T>::return_type,
typename IndirectHelper<T>::return_type > ::type, uoffset_t > {
typedef std::iterator<std::input_iterator_tag,
typename std::conditional<bConst,
const typename IndirectHelper<T>::return_type,
typename IndirectHelper<T>::return_type>::type, uoffset_t> super_type;
public:
VectorIterator(const uint8_t *data, uoffset_t i) :
data_(data + IndirectHelper<T>::element_stride * i) {};
VectorIterator(const VectorIterator &other) : data_(other.data_) {}
VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {}
VectorIterator &operator=(const VectorIterator &other) {
data_ = other.data_;
return *this;
}
VectorIterator &operator=(VectorIterator &&other) {
data_ = other.data_;
return *this;
}
bool operator==(const VectorIterator& other) const {
return data_ == other.data_;
}
bool operator!=(const VectorIterator& other) const {
return data_ != other.data_;
}
ptrdiff_t operator-(const VectorIterator& other) const {
return (data_ - other.data_) / IndirectHelper<T>::element_stride;
}
typename super_type::value_type operator *() const {
return IndirectHelper<T>::Read(data_, 0);
}
typename super_type::value_type operator->() const {
return IndirectHelper<T>::Read(data_, 0);
}
VectorIterator &operator++() {
data_ += IndirectHelper<T>::element_stride;
return *this;
}
VectorIterator operator++(int) {
VectorIterator temp(data_);
data_ += IndirectHelper<T>::element_stride;
return temp;
}
private:
const uint8_t *data_;
};
// This is used as a helper type for accessing vectors.
// Vector::data() assumes the vector elements start after the length field.
template<typename T> class Vector {
public:
typedef VectorIterator<T, false> iterator;
typedef VectorIterator<T, true> const_iterator;
uoffset_t size() const { return EndianScalar(length_); }
// Deprecated: use size(). Here for backwards compatibility.
uoffset_t Length() const { return size(); }
typedef typename IndirectHelper<T>::return_type return_type;
return_type Get(uoffset_t i) const {
assert(i < size());
return IndirectHelper<T>::Read(Data(), i);
}
return_type operator[](uoffset_t i) const { return Get(i); }
// If this is a Vector of enums, T will be its storage type, not the enum
// type. This function makes it convenient to retrieve value with enum
// type E.
template<typename E> E GetEnum(uoffset_t i) const {
return static_cast<E>(Get(i));
}
const void *GetStructFromOffset(size_t o) const {
return reinterpret_cast<const void *>(Data() + o);
}
iterator begin() { return iterator(Data(), 0); }
const_iterator begin() const { return const_iterator(Data(), 0); }
iterator end() { return iterator(Data(), size()); }
const_iterator end() const { return const_iterator(Data(), size()); }
// Change elements if you have a non-const pointer to this object.
// Scalars only. See reflection.h, and the documentation.
void Mutate(uoffset_t i, T val) {
assert(i < size());
WriteScalar(data() + i, val);
}
// Change an element of a vector of tables (or strings).
// "val" points to the new table/string, as you can obtain from
// e.g. reflection::AddFlatBuffer().
void MutateOffset(uoffset_t i, const uint8_t *val) {
assert(i < size());
assert(sizeof(T) == sizeof(uoffset_t));
WriteScalar(data() + i, val - (Data() + i * sizeof(uoffset_t)));
}
// The raw data in little endian format. Use with care.
const uint8_t *Data() const {
return reinterpret_cast<const uint8_t *>(&length_ + 1);
}
uint8_t *Data() {
return reinterpret_cast<uint8_t *>(&length_ + 1);
}
// Similarly, but typed, much like std::vector::data
const T *data() const { return reinterpret_cast<const T *>(Data()); }
T *data() { return reinterpret_cast<T *>(Data()); }
template<typename K> return_type LookupByKey(K key) const {
void *search_result = std::bsearch(&key, Data(), size(),
IndirectHelper<T>::element_stride, KeyCompare<K>);
if (!search_result) {
return nullptr; // Key not found.
}
const uint8_t *element = reinterpret_cast<const uint8_t *>(search_result);
return IndirectHelper<T>::Read(element, 0);
}
protected:
// This class is only used to access pre-existing data. Don't ever
// try to construct these manually.
Vector();
uoffset_t length_;
private:
template<typename K> static int KeyCompare(const void *ap, const void *bp) {
const K *key = reinterpret_cast<const K *>(ap);
const uint8_t *data = reinterpret_cast<const uint8_t *>(bp);
auto table = IndirectHelper<T>::Read(data, 0);
// std::bsearch compares with the operands transposed, so we negate the
// result here.
return -table->KeyCompareWithValue(*key);
}
};
// Represent a vector much like the template above, but in this case we
// don't know what the element types are (used with reflection.h).
class VectorOfAny {
public:
uoffset_t size() const { return EndianScalar(length_); }
const uint8_t *Data() const {
return reinterpret_cast<const uint8_t *>(&length_ + 1);
}
uint8_t *Data() {
return reinterpret_cast<uint8_t *>(&length_ + 1);
}
protected:
VectorOfAny();
uoffset_t length_;
};
// Convenient helper function to get the length of any vector, regardless
// of wether it is null or not (the field is not set).
template<typename T> static inline size_t VectorLength(const Vector<T> *v) {
return v ? v->Length() : 0;
}
struct String : public Vector<char> {
const char *c_str() const { return reinterpret_cast<const char *>(Data()); }
std::string str() const { return std::string(c_str(), Length()); }
bool operator <(const String &o) const {
return strcmp(c_str(), o.c_str()) < 0;
}
};
// Simple indirection for buffer allocation, to allow this to be overridden
// with custom allocation (see the FlatBufferBuilder constructor).
class simple_allocator {
public:
virtual ~simple_allocator() {}
virtual uint8_t *allocate(size_t size) const { return new uint8_t[size]; }
virtual void deallocate(uint8_t *p) const { delete[] p; }
};
// This is a minimal replication of std::vector<uint8_t> functionality,
// except growing from higher to lower addresses. i.e push_back() inserts data
// in the lowest address in the vector.
class vector_downward {
public:
explicit vector_downward(size_t initial_size,
const simple_allocator &allocator)
: reserved_(initial_size),
buf_(allocator.allocate(reserved_)),
cur_(buf_ + reserved_),
allocator_(allocator) {
assert((initial_size & (sizeof(largest_scalar_t) - 1)) == 0);
}
~vector_downward() {
if (buf_)
allocator_.deallocate(buf_);
}
void clear() {
if (buf_ == nullptr)
buf_ = allocator_.allocate(reserved_);
cur_ = buf_ + reserved_;
}
// Relinquish the pointer to the caller.
unique_ptr_t release() {
// Actually deallocate from the start of the allocated memory.
std::function<void(uint8_t *)> deleter(
std::bind(&simple_allocator::deallocate, allocator_, buf_));
// Point to the desired offset.
unique_ptr_t retval(data(), deleter);
// Don't deallocate when this instance is destroyed.
buf_ = nullptr;
cur_ = nullptr;
return retval;
}
size_t growth_policy(size_t bytes) {
return (bytes / 2) & ~(sizeof(largest_scalar_t) - 1);
}
uint8_t *make_space(size_t len) {
if (len > static_cast<size_t>(cur_ - buf_)) {
auto old_size = size();
auto largest_align = AlignOf<largest_scalar_t>();
reserved_ += (std::max)(len, growth_policy(reserved_));
// Round up to avoid undefined behavior from unaligned loads and stores.
reserved_ = (reserved_ + (largest_align - 1)) & ~(largest_align - 1);
auto new_buf = allocator_.allocate(reserved_);
auto new_cur = new_buf + reserved_ - old_size;
memcpy(new_cur, cur_, old_size);
cur_ = new_cur;
allocator_.deallocate(buf_);
buf_ = new_buf;
}
cur_ -= len;
// Beyond this, signed offsets may not have enough range:
// (FlatBuffers > 2GB not supported).
assert(size() < (1UL << (sizeof(soffset_t) * 8 - 1)) - 1);
return cur_;
}
uoffset_t size() const {
assert(cur_ != nullptr && buf_ != nullptr);
return static_cast<uoffset_t>(reserved_ - (cur_ - buf_));
}
uint8_t *data() const {
assert(cur_ != nullptr);
return cur_;
}
uint8_t *data_at(size_t offset) { return buf_ + reserved_ - offset; }
// push() & fill() are most frequently called with small byte counts (<= 4),
// which is why we're using loops rather than calling memcpy/memset.
void push(const uint8_t *bytes, size_t num) {
auto dest = make_space(num);
for (size_t i = 0; i < num; i++) dest[i] = bytes[i];
}
void fill(size_t zero_pad_bytes) {
auto dest = make_space(zero_pad_bytes);
for (size_t i = 0; i < zero_pad_bytes; i++) dest[i] = 0;
}
void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; }
private:
// You shouldn't really be copying instances of this class.
vector_downward(const vector_downward &);
vector_downward &operator=(const vector_downward &);
size_t reserved_;
uint8_t *buf_;
uint8_t *cur_; // Points at location between empty (below) and used (above).
const simple_allocator &allocator_;
};
// Converts a Field ID to a virtual table offset.
inline voffset_t FieldIndexToOffset(voffset_t field_id) {
// Should correspond to what EndTable() below builds up.
const int fixed_fields = 2; // Vtable size and Object Size.
return (field_id + fixed_fields) * sizeof(voffset_t);
}
// Computes how many bytes you'd have to pad to be able to write an
// "scalar_size" scalar if the buffer had grown to "buf_size" (downwards in
// memory).
inline size_t PaddingBytes(size_t buf_size, size_t scalar_size) {
return ((~buf_size) + 1) & (scalar_size - 1);
}
/// @endcond
/// @addtogroup flatbuffers_cpp_api
/// @{
/// @class FlatBufferBuilder
/// @brief Helper class to hold data needed in creation of a FlatBuffer.
/// To serialize data, you typically call one of the `Create*()` functions in
/// the generated code, which in turn call a sequence of `StartTable`/
/// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/
/// `CreateVector` functions. Do this is depth-first order to build up a tree to
/// the root. `Finish()` wraps up the buffer ready for transport.
class FlatBufferBuilder
/// @cond FLATBUFFERS_INTERNAL
FLATBUFFERS_FINAL_CLASS
/// @endcond
{
public:
/// @brief Default constructor for FlatBufferBuilder.
/// @param[in] initial_size The initial size of the buffer, in bytes. Defaults
/// to`1024`.
/// @param[in] allocator A pointer to the `simple_allocator` that should be
/// used. Defaults to `nullptr`, which means the `default_allocator` will be
/// be used.
explicit FlatBufferBuilder(uoffset_t initial_size = 1024,
const simple_allocator *allocator = nullptr)
: buf_(initial_size, allocator ? *allocator : default_allocator),
nested(false), finished(false), minalign_(1), force_defaults_(false) {
offsetbuf_.reserve(16); // Avoid first few reallocs.
vtables_.reserve(16);
EndianCheck();
}
/// @brief Reset all the state in this FlatBufferBuilder so it can be reused
/// to construct another buffer.
void Clear() {
buf_.clear();
offsetbuf_.clear();
nested = false;
finished = false;
vtables_.clear();
minalign_ = 1;
}
/// @brief The current size of the serialized buffer, counting from the end.
/// @return Returns an `uoffset_t` with the current size of the buffer.
uoffset_t GetSize() const { return buf_.size(); }
/// @brief Get the serialized buffer (after you call `Finish()`).
/// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the
/// buffer.
uint8_t *GetBufferPointer() const {
Finished();
return buf_.data();
}
/// @brief Get a pointer to an unfinished buffer.
/// @return Returns a `uint8_t` pointer to the unfinished buffer.
uint8_t *GetCurrentBufferPointer() const { return buf_.data(); }
/// @brief Get the released pointer to the serialized buffer.
/// @warning Do NOT attempt to use this FlatBufferBuilder afterwards!
/// @return The `unique_ptr` returned has a special allocator that knows how
/// to deallocate this pointer (since it points to the middle of an
/// allocation). Thus, do not mix this pointer with other `unique_ptr`'s, or
/// call `release()`/`reset()` on it.
unique_ptr_t ReleaseBufferPointer() {
Finished();
return buf_.release();
}
/// @cond FLATBUFFERS_INTERNAL
void Finished() const {
// If you get this assert, you're attempting to get access a buffer
// which hasn't been finished yet. Be sure to call
// FlatBufferBuilder::Finish with your root table.
// If you really need to access an unfinished buffer, call
// GetCurrentBufferPointer instead.
assert(finished);
}
/// @endcond
/// @brief In order to save space, fields that are set to their default value
/// don't get serialized into the buffer.
/// @param[in] bool fd When set to `true`, always serializes default values.
void ForceDefaults(bool fd) { force_defaults_ = fd; }
/// @cond FLATBUFFERS_INTERNAL
void Pad(size_t num_bytes) { buf_.fill(num_bytes); }
void Align(size_t elem_size) {
if (elem_size > minalign_) minalign_ = elem_size;
buf_.fill(PaddingBytes(buf_.size(), elem_size));
}
void PushFlatBuffer(const uint8_t *bytes, size_t size) {
PushBytes(bytes, size);
finished = true;
}
void PushBytes(const uint8_t *bytes, size_t size) {
buf_.push(bytes, size);
}
void PopBytes(size_t amount) { buf_.pop(amount); }
template<typename T> void AssertScalarT() {
// The code assumes power of 2 sizes and endian-swap-ability.
static_assert(std::is_scalar<T>::value
// The Offset<T> type is essentially a scalar but fails is_scalar.
|| sizeof(T) == sizeof(Offset<void>),
"T must be a scalar type");
}
// Write a single aligned scalar to the buffer
template<typename T> uoffset_t PushElement(T element) {
AssertScalarT<T>();
T litle_endian_element = EndianScalar(element);
Align(sizeof(T));
PushBytes(reinterpret_cast<uint8_t *>(&litle_endian_element), sizeof(T));
return GetSize();
}
template<typename T> uoffset_t PushElement(Offset<T> off) {
// Special case for offsets: see ReferTo below.
return PushElement(ReferTo(off.o));
}
// When writing fields, we track where they are, so we can create correct
// vtables later.
void TrackField(voffset_t field, uoffset_t off) {
FieldLoc fl = { off, field };
offsetbuf_.push_back(fl);
}
// Like PushElement, but additionally tracks the field this represents.
template<typename T> void AddElement(voffset_t field, T e, T def) {
// We don't serialize values equal to the default.
if (e == def && !force_defaults_) return;
auto off = PushElement(e);
TrackField(field, off);
}
template<typename T> void AddOffset(voffset_t field, Offset<T> off) {
if (!off.o) return; // An offset of 0 means NULL, don't store.
AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
}
template<typename T> void AddStruct(voffset_t field, const T *structptr) {
if (!structptr) return; // Default, don't store.
Align(AlignOf<T>());
PushBytes(reinterpret_cast<const uint8_t *>(structptr), sizeof(T));
TrackField(field, GetSize());
}
void AddStructOffset(voffset_t field, uoffset_t off) {
TrackField(field, off);
}
// Offsets initially are relative to the end of the buffer (downwards).
// This function converts them to be relative to the current location
// in the buffer (when stored here), pointing upwards.
uoffset_t ReferTo(uoffset_t off) {
// Align to ensure GetSize() below is correct.
Align(sizeof(uoffset_t));
// Offset must refer to something already in buffer.
assert(off && off <= GetSize());
return GetSize() - off + sizeof(uoffset_t);
}
void NotNested() {
// If you hit this, you're trying to construct a Table/Vector/String
// during the construction of its parent table (between the MyTableBuilder
// and table.Finish().
// Move the creation of these sub-objects to above the MyTableBuilder to
// not get this assert.
// Ignoring this assert may appear to work in simple cases, but the reason
// it is here is that storing objects in-line may cause vtable offsets
// to not fit anymore. It also leads to vtable duplication.
assert(!nested);
}
// From generated code (or from the parser), we call StartTable/EndTable
// with a sequence of AddElement calls in between.
uoffset_t StartTable() {
NotNested();
nested = true;
return GetSize();
}
// This finishes one serialized object by generating the vtable if it's a
// table, comparing it against existing vtables, and writing the
// resulting vtable offset.
uoffset_t EndTable(uoffset_t start, voffset_t numfields) {
// If you get this assert, a corresponding StartTable wasn't called.
assert(nested);
// Write the vtable offset, which is the start of any Table.
// We fill it's value later.
auto vtableoffsetloc = PushElement<soffset_t>(0);
// Write a vtable, which consists entirely of voffset_t elements.
// It starts with the number of offsets, followed by a type id, followed
// by the offsets themselves. In reverse:
buf_.fill(numfields * sizeof(voffset_t));
auto table_object_size = vtableoffsetloc - start;
assert(table_object_size < 0x10000); // Vtable use 16bit offsets.
PushElement<voffset_t>(static_cast<voffset_t>(table_object_size));
PushElement<voffset_t>(FieldIndexToOffset(numfields));
// Write the offsets into the table
for (auto field_location = offsetbuf_.begin();
field_location != offsetbuf_.end();
++field_location) {
auto pos = static_cast<voffset_t>(vtableoffsetloc - field_location->off);
// If this asserts, it means you've set a field twice.
assert(!ReadScalar<voffset_t>(buf_.data() + field_location->id));
WriteScalar<voffset_t>(buf_.data() + field_location->id, pos);
}
offsetbuf_.clear();
auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
auto vt1_size = ReadScalar<voffset_t>(vt1);
auto vt_use = GetSize();
// See if we already have generated a vtable with this exact same
// layout before. If so, make it point to the old one, remove this one.
for (auto it = vtables_.begin(); it != vtables_.end(); ++it) {
auto vt2 = reinterpret_cast<voffset_t *>(buf_.data_at(*it));
auto vt2_size = *vt2;
if (vt1_size != vt2_size || memcmp(vt2, vt1, vt1_size)) continue;
vt_use = *it;
buf_.pop(GetSize() - vtableoffsetloc);
break;
}
// If this is a new vtable, remember it.
if (vt_use == GetSize()) {
vtables_.push_back(vt_use);
}
// Fill the vtable offset we created above.
// The offset points from the beginning of the object to where the
// vtable is stored.
// Offsets default direction is downward in memory for future format
// flexibility (storing all vtables at the start of the file).
WriteScalar(buf_.data_at(vtableoffsetloc),
static_cast<soffset_t>(vt_use) -
static_cast<soffset_t>(vtableoffsetloc));
nested = false;
return vtableoffsetloc;
}
// This checks a required field has been set in a given table that has
// just been constructed.
template<typename T> void Required(Offset<T> table, voffset_t field) {
auto table_ptr = buf_.data_at(table.o);
auto vtable_ptr = table_ptr - ReadScalar<soffset_t>(table_ptr);
bool ok = ReadScalar<voffset_t>(vtable_ptr + field) != 0;
// If this fails, the caller will show what field needs to be set.
assert(ok);
(void)ok;
}
uoffset_t StartStruct(size_t alignment) {
Align(alignment);
return GetSize();
}
uoffset_t EndStruct() { return GetSize(); }
void ClearOffsets() { offsetbuf_.clear(); }
// Aligns such that when "len" bytes are written, an object can be written
// after it with "alignment" without padding.
void PreAlign(size_t len, size_t alignment) {
buf_.fill(PaddingBytes(GetSize() + len, alignment));
}
template<typename T> void PreAlign(size_t len) {
AssertScalarT<T>();
PreAlign(len, sizeof(T));
}
/// @endcond
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const char pointer to the data to be stored as a string.
/// @param[in] len The number of bytes that should be stored from `str`.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(const char *str, size_t len) {
NotNested();
PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
buf_.fill(1);
PushBytes(reinterpret_cast<const uint8_t *>(str), len);
PushElement(static_cast<uoffset_t>(len));
return Offset<String>(GetSize());
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const char pointer to a C-string to add to the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(const char *str) {
return CreateString(str, strlen(str));
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const reference to a std::string to store in the buffer.
/// @return Returns the offset in the buffer where the string starts.
Offset<String> CreateString(const std::string &str) {
return CreateString(str.c_str(), str.length());
}
/// @brief Store a string in the buffer, which can contain any binary data.
/// @param[in] str A const pointer to a `String` struct to add to the buffer.
/// @return Returns the offset in the buffer where the string starts
Offset<String> CreateString(const String *str) {
return CreateString(str->c_str(), str->Length());
}
/// @cond FLATBUFFERS_INTERNAL
uoffset_t EndVector(size_t len) {
assert(nested); // Hit if no corresponding StartVector.
nested = false;
return PushElement(static_cast<uoffset_t>(len));
}
void StartVector(size_t len, size_t elemsize) {
NotNested();
nested = true;
PreAlign<uoffset_t>(len * elemsize);
PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t.
}
// Call this right before StartVector/CreateVector if you want to force the
// alignment to be something different than what the element size would
// normally dictate.
// This is useful when storing a nested_flatbuffer in a vector of bytes,
// or when storing SIMD floats, etc.
void ForceVectorAlignment(size_t len, size_t elemsize, size_t alignment) {
PreAlign(len * elemsize, alignment);
}
uint8_t *ReserveElements(size_t len, size_t elemsize) {
return buf_.make_space(len * elemsize);
}
/// @endcond
/// @brief Serialize an array into a FlatBuffer `vector`.
/// @tparam T The data type of the array elements.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T> Offset<Vector<T>> CreateVector(const T *v, size_t len) {
StartVector(len, sizeof(T));
for (auto i = len; i > 0; ) {
PushElement(v[--i]);
}
return Offset<Vector<T>>(EndVector(len));
}
/// @brief Serialize a `std::vector` into a FlatBuffer `vector`.
/// @tparam T The data type of the `std::vector` elements.
/// @param v A const reference to the `std::vector` to serialize into the
/// buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T> Offset<Vector<T>> CreateVector(const std::vector<T> &v) {
return CreateVector(v.data(), v.size());
}
/// @brief Serialize an array of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the struct array elements.
/// @param[in] v A pointer to the array of type `T` to serialize into the
/// buffer as a `vector`.
/// @param[in] len The number of elements to serialize.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
const T *v, size_t len) {
StartVector(len * sizeof(T) / AlignOf<T>(), AlignOf<T>());
PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
return Offset<Vector<const T *>>(EndVector(len));
}
/// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`.
/// @tparam T The data type of the `std::vector` struct elements.
/// @param[in]] v A const reference to the `std::vector` of structs to
/// serialize into the buffer as a `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
const std::vector<T> &v) {
return CreateVectorOfStructs(v.data(), v.size());
}
/// @cond FLATBUFFERS_INTERNAL
template<typename T>
struct TableKeyComparator {
TableKeyComparator(vector_downward& buf) : buf_(buf) {}
bool operator()(const Offset<T> &a, const Offset<T> &b) const {
auto table_a = reinterpret_cast<T *>(buf_.data_at(a.o));
auto table_b = reinterpret_cast<T *>(buf_.data_at(b.o));
return table_a->KeyCompareLessThan(table_b);
}
vector_downward& buf_;
private:
TableKeyComparator& operator= (const TableKeyComparator&);
};
/// @endcond
/// @brief Serialize an array of `table` offsets as a `vector` in the buffer
/// in sorted order.
/// @tparam T The data type that the offset refers to.
/// @param[in] v An array of type `Offset<T>` that contains the `table`
/// offsets to store in the buffer in sorted order.
/// @param[in] len The number of elements to store in the `vector`.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T> Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(
Offset<T> *v, size_t len) {
std::sort(v, v + len, TableKeyComparator<T>(buf_));
return CreateVector(v, len);
}
/// @brief Serialize an array of `table` offsets as a `vector` in the buffer
/// in sorted order.
/// @tparam T The data type that the offset refers to.
/// @param[in] v An array of type `Offset<T>` that contains the `table`
/// offsets to store in the buffer in sorted order.
/// @return Returns a typed `Offset` into the serialized data indicating
/// where the vector is stored.
template<typename T> Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(
std::vector<Offset<T>> *v) {
return CreateVectorOfSortedTables(v->data(), v->size());
}
/// @brief Specialized version of `CreateVector` for non-copying use cases.
/// Write the data any time later to the returned buffer pointer `buf`.
/// @param[in] len The number of elements to store in the `vector`.
/// @param[in] elemsize The size of each element in the `vector`.
/// @param[out] buf A pointer to a `uint8_t` pointer that can be
/// written to at a later time to serialize the data into a `vector`
/// in the buffer.
uoffset_t CreateUninitializedVector(size_t len, size_t elemsize,
uint8_t **buf) {
NotNested();
StartVector(len, elemsize);
*buf = buf_.make_space(len * elemsize);
return EndVector(len);
}
/// @brief Specialized version of `CreateVector` for non-copying use cases.
/// Write the data any time later to the returned buffer pointer `buf`.
/// @tparam T The data type of the data that will be stored in the buffer
/// as a `vector`.
/// @param[in] len The number of elements to store in the `vector`.
/// @param[out] buf A pointer to a pointer of type `T` that can be
/// written to at a later time to serialize the data into a `vector`
/// in the buffer.
template<typename T> Offset<Vector<T>> CreateUninitializedVector(
size_t len, T **buf) {
return CreateUninitializedVector(len, sizeof(T),
reinterpret_cast<uint8_t **>(buf));
}
/// @brief The length of a FlatBuffer file header.
static const size_t kFileIdentifierLength = 4;
/// @brief Finish serializing a buffer by writing the root offset.
/// @param[in] file_identifier If a `file_identifier` is given, the buffer
/// will be prefixed with a standard FlatBuffers file header.
template<typename T> void Finish(Offset<T> root,
const char *file_identifier = nullptr) {
NotNested();
// This will cause the whole buffer to be aligned.
PreAlign(sizeof(uoffset_t) + (file_identifier ? kFileIdentifierLength : 0),
minalign_);
if (file_identifier) {
assert(strlen(file_identifier) == kFileIdentifierLength);
buf_.push(reinterpret_cast<const uint8_t *>(file_identifier),
kFileIdentifierLength);
}
PushElement(ReferTo(root.o)); // Location of root.
finished = true;
}
private:
// You shouldn't really be copying instances of this class.
FlatBufferBuilder(const FlatBufferBuilder &);
FlatBufferBuilder &operator=(const FlatBufferBuilder &);
struct FieldLoc {
uoffset_t off;
voffset_t id;
};
simple_allocator default_allocator;
vector_downward buf_;
// Accumulating offsets of table members while it is being built.
std::vector<FieldLoc> offsetbuf_;
// Ensure objects are not nested.
bool nested;
// Ensure the buffer is finished before it is being accessed.
bool finished;
std::vector<uoffset_t> vtables_; // todo: Could make this into a map?
size_t minalign_;
bool force_defaults_; // Serialize values equal to their defaults anyway.
};
/// @}
/// @cond FLATBUFFERS_INTERNAL
// Helpers to get a typed pointer to the root object contained in the buffer.
template<typename T> T *GetMutableRoot(void *buf) {
EndianCheck();
return reinterpret_cast<T *>(reinterpret_cast<uint8_t *>(buf) +
EndianScalar(*reinterpret_cast<uoffset_t *>(buf)));
}
template<typename T> const T *GetRoot(const void *buf) {
return GetMutableRoot<T>(const_cast<void *>(buf));
}
// Helper to see if the identifier in a buffer has the expected value.
inline bool BufferHasIdentifier(const void *buf, const char *identifier) {
return strncmp(reinterpret_cast<const char *>(buf) + sizeof(uoffset_t),
identifier, FlatBufferBuilder::kFileIdentifierLength) == 0;
}
// Helper class to verify the integrity of a FlatBuffer
class Verifier FLATBUFFERS_FINAL_CLASS {
public:
Verifier(const uint8_t *buf, size_t buf_len, size_t _max_depth = 64,
size_t _max_tables = 1000000)
: buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth),
num_tables_(0), max_tables_(_max_tables)
{}
// Central location where any verification failures register.
bool Check(bool ok) const {
#ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
assert(ok);
#endif
return ok;
}
// Verify any range within the buffer.
bool Verify(const void *elem, size_t elem_len) const {
return Check(elem_len <= (size_t) (end_ - buf_) && elem >= buf_ && elem <= end_ - elem_len);
}
// Verify a range indicated by sizeof(T).
template<typename T> bool Verify(const void *elem) const {
return Verify(elem, sizeof(T));
}
// Verify a pointer (may be NULL) of a table type.
template<typename T> bool VerifyTable(const T *table) {
return !table || table->Verify(*this);
}
// Verify a pointer (may be NULL) of any vector type.
template<typename T> bool Verify(const Vector<T> *vec) const {
const uint8_t *end;
return !vec ||
VerifyVector(reinterpret_cast<const uint8_t *>(vec), sizeof(T),
&end);
}
// Verify a pointer (may be NULL) of a vector to struct.
template<typename T> bool Verify(const Vector<const T *> *vec) const {
return Verify(reinterpret_cast<const Vector<T> *>(vec));
}
// Verify a pointer (may be NULL) to string.
bool Verify(const String *str) const {
const uint8_t *end;
return !str ||
(VerifyVector(reinterpret_cast<const uint8_t *>(str), 1, &end) &&
Verify(end, 1) && // Must have terminator
Check(*end == '\0')); // Terminating byte must be 0.
}
// Common code between vectors and strings.
bool VerifyVector(const uint8_t *vec, size_t elem_size,
const uint8_t **end) const {
// Check we can read the size field.
if (!Verify<uoffset_t>(vec)) return false;
// Check the whole array. If this is a string, the byte past the array
// must be 0.
auto size = ReadScalar<uoffset_t>(vec);
auto byte_size = sizeof(size) + elem_size * size;
*end = vec + byte_size;
return Verify(vec, byte_size);
}
// Special case for string contents, after the above has been called.
bool VerifyVectorOfStrings(const Vector<Offset<String>> *vec) const {
if (vec) {
for (uoffset_t i = 0; i < vec->size(); i++) {
if (!Verify(vec->Get(i))) return false;
}
}
return true;
}
// Special case for table contents, after the above has been called.
template<typename T> bool VerifyVectorOfTables(const Vector<Offset<T>> *vec) {
if (vec) {
for (uoffset_t i = 0; i < vec->size(); i++) {
if (!vec->Get(i)->Verify(*this)) return false;
}
}
return true;
}
// Verify this whole buffer, starting with root type T.
template<typename T> bool VerifyBuffer() {
// Call T::Verify, which must be in the generated code for this type.
return Verify<uoffset_t>(buf_) &&
reinterpret_cast<const T *>(buf_ + ReadScalar<uoffset_t>(buf_))->
Verify(*this);
}
// Called at the start of a table to increase counters measuring data
// structure depth and amount, and possibly bails out with false if
// limits set by the constructor have been hit. Needs to be balanced
// with EndTable().
bool VerifyComplexity() {
depth_++;
num_tables_++;
return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_);
}
// Called at the end of a table to pop the depth count.
bool EndTable() {
depth_--;
return true;
}
private:
const uint8_t *buf_;
const uint8_t *end_;
size_t depth_;
size_t max_depth_;
size_t num_tables_;
size_t max_tables_;
};
// "structs" are flat structures that do not have an offset table, thus
// always have all members present and do not support forwards/backwards
// compatible extensions.
class Struct FLATBUFFERS_FINAL_CLASS {
public:
template<typename T> T GetField(uoffset_t o) const {
return ReadScalar<T>(&data_[o]);
}
template<typename T> T GetPointer(uoffset_t o) const {
auto p = &data_[o];
return reinterpret_cast<T>(p + ReadScalar<uoffset_t>(p));
}
template<typename T> T GetStruct(uoffset_t o) const {
return reinterpret_cast<T>(&data_[o]);
}
const uint8_t *GetAddressOf(uoffset_t o) const { return &data_[o]; }
uint8_t *GetAddressOf(uoffset_t o) { return &data_[o]; }
private:
uint8_t data_[1];
};
// "tables" use an offset table (possibly shared) that allows fields to be
// omitted and added at will, but uses an extra indirection to read.
class Table {
public:
// This gets the field offset for any of the functions below it, or 0
// if the field was not present.
voffset_t GetOptionalFieldOffset(voffset_t field) const {
// The vtable offset is always at the start.
auto vtable = data_ - ReadScalar<soffset_t>(data_);
// The first element is the size of the vtable (fields + type id + itself).
auto vtsize = ReadScalar<voffset_t>(vtable);
// If the field we're accessing is outside the vtable, we're reading older
// data, so it's the same as if the offset was 0 (not present).
return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0;
}
template<typename T> T GetField(voffset_t field, T defaultval) const {
auto field_offset = GetOptionalFieldOffset(field);
return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
}
template<typename P> P GetPointer(voffset_t field) {
auto field_offset = GetOptionalFieldOffset(field);
auto p = data_ + field_offset;
return field_offset
? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p))
: nullptr;
}
template<typename P> P GetPointer(voffset_t field) const {
return const_cast<Table *>(this)->GetPointer<P>(field);
}
template<typename P> P GetStruct(voffset_t field) const {
auto field_offset = GetOptionalFieldOffset(field);
auto p = const_cast<uint8_t *>(data_ + field_offset);
return field_offset ? reinterpret_cast<P>(p) : nullptr;
}
template<typename T> bool SetField(voffset_t field, T val) {
auto field_offset = GetOptionalFieldOffset(field);
if (!field_offset) return false;
WriteScalar(data_ + field_offset, val);
return true;
}
bool SetPointer(voffset_t field, const uint8_t *val) {
auto field_offset = GetOptionalFieldOffset(field);
if (!field_offset) return false;
WriteScalar(data_ + field_offset, val - (data_ + field_offset));
return true;
}
uint8_t *GetAddressOf(voffset_t field) {
auto field_offset = GetOptionalFieldOffset(field);
return field_offset ? data_ + field_offset : nullptr;
}
const uint8_t *GetAddressOf(voffset_t field) const {
return const_cast<Table *>(this)->GetAddressOf(field);
}
uint8_t *GetVTable() { return data_ - ReadScalar<soffset_t>(data_); }
bool CheckField(voffset_t field) const {
return GetOptionalFieldOffset(field) != 0;
}
// Verify the vtable of this table.
// Call this once per table, followed by VerifyField once per field.
bool VerifyTableStart(Verifier &verifier) const {
// Check the vtable offset.
if (!verifier.Verify<soffset_t>(data_)) return false;
auto vtable = data_ - ReadScalar<soffset_t>(data_);
// Check the vtable size field, then check vtable fits in its entirety.
return verifier.VerifyComplexity() &&
verifier.Verify<voffset_t>(vtable) &&
verifier.Verify(vtable, ReadScalar<voffset_t>(vtable));
}
// Verify a particular field.
template<typename T> bool VerifyField(const Verifier &verifier,
voffset_t field) const {
// Calling GetOptionalFieldOffset should be safe now thanks to
// VerifyTable().
auto field_offset = GetOptionalFieldOffset(field);
// Check the actual field.
return !field_offset || verifier.Verify<T>(data_ + field_offset);
}
// VerifyField for required fields.
template<typename T> bool VerifyFieldRequired(const Verifier &verifier,
voffset_t field) const {
auto field_offset = GetOptionalFieldOffset(field);
return verifier.Check(field_offset != 0) &&
verifier.Verify<T>(data_ + field_offset);
}
private:
// private constructor & copy constructor: you obtain instances of this
// class by pointing to existing data only
Table();
Table(const Table &other);
uint8_t data_[1];
};
// Helper function to test if a field is present, using any of the field
// enums in the generated code.
// `table` must be a generated table type. Since this is a template parameter,
// this is not typechecked to be a subclass of Table, so beware!
// Note: this function will return false for fields equal to the default
// value, since they're not stored in the buffer (unless force_defaults was
// used).
template<typename T> bool IsFieldPresent(const T *table, voffset_t field) {
// Cast, since Table is a private baseclass of any table types.
return reinterpret_cast<const Table *>(table)->CheckField(field);
}
// Utility function for reverse lookups on the EnumNames*() functions
// (in the generated C++ code)
// names must be NULL terminated.
inline int LookupEnum(const char **names, const char *name) {
for (const char **p = names; *p; p++)
if (!strcmp(*p, name))
return static_cast<int>(p - names);
return -1;
}
// These macros allow us to layout a struct with a guarantee that they'll end
// up looking the same on different compilers and platforms.
// It does this by disallowing the compiler to do any padding, and then
// does padding itself by inserting extra padding fields that make every
// element aligned to its own size.
// Additionally, it manually sets the alignment of the struct as a whole,
// which is typically its largest element, or a custom size set in the schema
// by the force_align attribute.
// These are used in the generated code only.
#if defined(_MSC_VER)
#define MANUALLY_ALIGNED_STRUCT(alignment) \
__pragma(pack(1)); \
struct __declspec(align(alignment))
#define STRUCT_END(name, size) \
__pragma(pack()); \
static_assert(sizeof(name) == size, "compiler breaks packing rules")
#elif defined(__GNUC__) || defined(__clang__)
#define MANUALLY_ALIGNED_STRUCT(alignment) \
_Pragma("pack(1)") \
struct __attribute__((aligned(alignment)))
#define STRUCT_END(name, size) \
_Pragma("pack()") \
static_assert(sizeof(name) == size, "compiler breaks packing rules")
#else
#error Unknown compiler, please define structure alignment macros
#endif
// String which identifies the current version of FlatBuffers.
// flatbuffer_version_string is used by Google developers to identify which
// applications uploaded to Google Play are using this library. This allows
// the development team at Google to determine the popularity of the library.
// How it works: Applications that are uploaded to the Google Play Store are
// scanned for this version string. We track which applications are using it
// to measure popularity. You are free to remove it (of course) but we would
// appreciate if you left it in.
// Weak linkage is culled by VS & doesn't work on cygwin.
#if !defined(_WIN32) && !defined(__CYGWIN__)
extern volatile __attribute__((weak)) const char *flatbuffer_version_string;
volatile __attribute__((weak)) const char *flatbuffer_version_string =
"FlatBuffers "
FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "."
FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "."
FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION);
#endif // !defined(_WIN32) && !defined(__CYGWIN__)
/// @endcond
} // namespace flatbuffers
#endif // FLATBUFFERS_H_
|