1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
# Copyright (c) 2018 Yubico AB
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or
# without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Mapping, Sequence, TypeVar
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec, ed448, ed25519, padding, rsa
from .utils import bytes2int, int2bytes
if TYPE_CHECKING:
# This type isn't available on cryptography <40.
from cryptography.hazmat.primitives.asymmetric.types import PublicKeyTypes
class CoseKey(dict):
"""A COSE formatted public key.
:param _: The COSE key paramters.
:cvar ALGORITHM: COSE algorithm identifier.
"""
ALGORITHM: int = None # type: ignore
def verify(self, message: bytes, signature: bytes) -> None:
"""Validates a digital signature over a given message.
:param message: The message which was signed.
:param signature: The signature to check.
"""
raise NotImplementedError("Signature verification not supported.")
@classmethod
def from_cryptography_key(
cls: type[T_CoseKey], public_key: PublicKeyTypes
) -> T_CoseKey:
"""Converts a PublicKey object from Cryptography into a COSE key.
:param public_key: Either an EC or RSA public key.
:return: A CoseKey.
"""
raise NotImplementedError("Creation from cryptography not supported.")
@staticmethod
def for_alg(alg: int) -> type[CoseKey]:
"""Get a subclass of CoseKey corresponding to an algorithm identifier.
:param alg: The COSE identifier of the algorithm.
:return: A CoseKey.
"""
def find_subclass(base_cls: type[CoseKey]) -> type[CoseKey] | None:
for cls in base_cls.__subclasses__():
if cls.ALGORITHM == alg:
return cls
subresult = find_subclass(cls)
if subresult:
return subresult
return None
return find_subclass(CoseKey) or UnsupportedKey
@staticmethod
def for_name(name: str) -> type[CoseKey]:
"""Get a subclass of CoseKey corresponding to an algorithm identifier.
:param alg: The COSE identifier of the algorithm.
:return: A CoseKey.
"""
def find_subclass(base_cls: type[CoseKey]) -> type[CoseKey] | None:
for cls in base_cls.__subclasses__():
if cls.__name__ == name:
return cls
subresult = find_subclass(cls)
if subresult:
return subresult
return None
return find_subclass(CoseKey) or UnsupportedKey
@staticmethod
def parse(cose: Mapping[int, Any]) -> CoseKey:
"""Create a CoseKey from a dict"""
alg = cose.get(3)
if not alg:
raise ValueError("COSE alg identifier must be provided.")
return CoseKey.for_alg(alg)(cose)
@staticmethod
def supported_algorithms() -> Sequence[int]:
"""Get a list of all supported algorithm identifiers"""
algs: Sequence[type[CoseKey]] = [
ES256,
EdDSA,
ES384,
ES512,
PS256,
RS256,
ES256K,
]
return [cls.ALGORITHM for cls in algs]
T_CoseKey = TypeVar("T_CoseKey", bound=CoseKey)
class UnsupportedKey(CoseKey):
"""A COSE key with an unsupported algorithm."""
class ES256(CoseKey):
ALGORITHM = -7
_HASH_ALG = hashes.SHA256()
def verify(self, message, signature):
if self[-1] != 1:
raise ValueError("Unsupported elliptic curve")
ec.EllipticCurvePublicNumbers(
bytes2int(self[-2]), bytes2int(self[-3]), ec.SECP256R1()
).public_key(default_backend()).verify(
signature, message, ec.ECDSA(self._HASH_ALG)
)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, ec.EllipticCurvePublicKey) # nosec
pn = public_key.public_numbers()
return cls(
{
1: 2,
3: cls.ALGORITHM,
-1: 1,
-2: int2bytes(pn.x, 32),
-3: int2bytes(pn.y, 32),
}
)
@classmethod
def from_ctap1(cls, data):
"""Creates an ES256 key from a CTAP1 formatted public key byte string.
:param data: A 65 byte SECP256R1 public key.
:return: A ES256 key.
"""
return cls({1: 2, 3: cls.ALGORITHM, -1: 1, -2: data[1:33], -3: data[33:65]})
class ESP256(ES256):
# See: https://www.ietf.org/archive/id/draft-ietf-jose-fully-specified-algorithms-10.html#name-elliptic-curve-digital-sign # noqa:E501
ALGORITHM = -9
class ES384(CoseKey):
ALGORITHM = -35
_HASH_ALG = hashes.SHA384()
def verify(self, message, signature):
if self[-1] != 2:
raise ValueError("Unsupported elliptic curve")
ec.EllipticCurvePublicNumbers(
bytes2int(self[-2]), bytes2int(self[-3]), ec.SECP384R1()
).public_key(default_backend()).verify(
signature, message, ec.ECDSA(self._HASH_ALG)
)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, ec.EllipticCurvePublicKey) # nosec
pn = public_key.public_numbers()
return cls(
{
1: 2,
3: cls.ALGORITHM,
-1: 2,
-2: int2bytes(pn.x, 48),
-3: int2bytes(pn.y, 48),
}
)
class ESP384(ES384):
# See: https://www.ietf.org/archive/id/draft-ietf-jose-fully-specified-algorithms-12.html#name-elliptic-curve-digital-sign # noqa:E501
ALGORITHM = -51
class ES512(CoseKey):
ALGORITHM = -36
_HASH_ALG = hashes.SHA512()
def verify(self, message, signature):
if self[-1] != 3:
raise ValueError("Unsupported elliptic curve")
ec.EllipticCurvePublicNumbers(
bytes2int(self[-2]), bytes2int(self[-3]), ec.SECP521R1()
).public_key(default_backend()).verify(
signature, message, ec.ECDSA(self._HASH_ALG)
)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, ec.EllipticCurvePublicKey) # nosec
pn = public_key.public_numbers()
return cls(
{
1: 2,
3: cls.ALGORITHM,
-1: 3,
-2: int2bytes(pn.x, 66),
-3: int2bytes(pn.y, 66),
}
)
class ESP512(ES512):
# See: https://www.ietf.org/archive/id/draft-ietf-jose-fully-specified-algorithms-12.html#name-elliptic-curve-digital-sign # noqa:E501
ALGORITHM = -52
class RS256(CoseKey):
ALGORITHM = -257
_HASH_ALG = hashes.SHA256()
def verify(self, message, signature):
rsa.RSAPublicNumbers(bytes2int(self[-2]), bytes2int(self[-1])).public_key(
default_backend()
).verify(signature, message, padding.PKCS1v15(), self._HASH_ALG)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, rsa.RSAPublicKey) # nosec
pn = public_key.public_numbers()
return cls({1: 3, 3: cls.ALGORITHM, -1: int2bytes(pn.n), -2: int2bytes(pn.e)})
class PS256(CoseKey):
ALGORITHM = -37
_HASH_ALG = hashes.SHA256()
def verify(self, message, signature):
rsa.RSAPublicNumbers(bytes2int(self[-2]), bytes2int(self[-1])).public_key(
default_backend()
).verify(
signature,
message,
padding.PSS(
mgf=padding.MGF1(self._HASH_ALG), salt_length=padding.PSS.MAX_LENGTH
),
self._HASH_ALG,
)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, rsa.RSAPublicKey) # nosec
pn = public_key.public_numbers()
return cls({1: 3, 3: cls.ALGORITHM, -1: int2bytes(pn.n), -2: int2bytes(pn.e)})
class EdDSA(CoseKey):
ALGORITHM = -8
def verify(self, message, signature):
if self[-1] != 6:
raise ValueError("Unsupported elliptic curve")
ed25519.Ed25519PublicKey.from_public_bytes(self[-2]).verify(signature, message)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, ed25519.Ed25519PublicKey) # nosec
return cls(
{
1: 1,
3: cls.ALGORITHM,
-1: 6,
-2: public_key.public_bytes(
serialization.Encoding.Raw, serialization.PublicFormat.Raw
),
}
)
class Ed25519(EdDSA):
# See: https://www.ietf.org/archive/id/draft-ietf-jose-fully-specified-algorithms-12.html#name-edwards-curve-digital-signa # noqa:E501
ALGORITHM = -19
class Ed448(CoseKey):
# See: https://www.ietf.org/archive/id/draft-ietf-jose-fully-specified-algorithms-12.html#name-edwards-curve-digital-signa # noqa:E501
ALGORITHM = -53
def verify(self, message, signature):
if self[-1] != 7:
raise ValueError("Unsupported elliptic curve")
ed448.Ed448PublicKey.from_public_bytes(self[-2]).verify(signature, message)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, ed448.Ed448PublicKey) # nosec
return cls(
{
1: 1,
3: cls.ALGORITHM,
-1: 7,
-2: public_key.public_bytes(
serialization.Encoding.Raw, serialization.PublicFormat.Raw
),
}
)
class RS1(CoseKey):
ALGORITHM = -65535
_HASH_ALG = hashes.SHA1() # nosec
def verify(self, message, signature):
rsa.RSAPublicNumbers(bytes2int(self[-2]), bytes2int(self[-1])).public_key(
default_backend()
).verify(signature, message, padding.PKCS1v15(), self._HASH_ALG)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, rsa.RSAPublicKey) # nosec
pn = public_key.public_numbers()
return cls({1: 3, 3: cls.ALGORITHM, -1: int2bytes(pn.n), -2: int2bytes(pn.e)})
class ES256K(CoseKey):
ALGORITHM = -47
_HASH_ALG = hashes.SHA256()
def verify(self, message, signature):
if self[-1] != 8:
raise ValueError("Unsupported elliptic curve")
ec.EllipticCurvePublicNumbers(
bytes2int(self[-2]), bytes2int(self[-3]), ec.SECP256K1()
).public_key(default_backend()).verify(
signature, message, ec.ECDSA(self._HASH_ALG)
)
@classmethod
def from_cryptography_key(cls, public_key):
assert isinstance(public_key, ec.EllipticCurvePublicKey) # nosec
pn = public_key.public_numbers()
return cls(
{
1: 2,
3: cls.ALGORITHM,
-1: 8,
-2: int2bytes(pn.x, 32),
-3: int2bytes(pn.y, 32),
}
)
|