File: PyElements.pyx

package info (click to toggle)
python-fisx 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 21,888 kB
  • sloc: cpp: 9,333; python: 1,339; sh: 144; makefile: 41
file content (499 lines) | stat: -rw-r--r-- 22,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#/*##########################################################################
#
# The fisx library for X-Ray Fluorescence
#
# Copyright (c) 2014-2023 European Synchrotron Radiation Facility
#
# This file is part of the fisx X-ray developed by V.A. Sole
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
import sys
cimport cython

from operator import itemgetter
from libcpp.string cimport string as std_string
from libcpp.vector cimport vector as std_vector
from libcpp.map cimport map as std_map

from Elements cimport *
from Material cimport *

__doc__ = """

Initialization with XCOM mass attenuation cross sections:

import os
from fisx import DataDir
dataDir = DataDir.FISX_DATA_DIR
bindingEnergies = os.path.join(dataDir, "BindingEnergies.dat")
xcomFile = os.path.join(dataDir, "XCOM_CrossSections.dat")
xcom = Elements(dataDir, bindingEnergies, xcomFile)

"""
cdef class PyElements:
    cdef Elements *thisptr

    def __cinit__(self, directoryName="",
                        bindingEnergiesFile="",
                        crossSectionsFile="",
                        pymca=0):
        if len(directoryName) == 0:
            from fisx import DataDir
            directoryName = DataDir.FISX_DATA_DIR
        directoryName = toBytes(directoryName)
        if pymca:
            pymca = 1
            self.thisptr = new Elements(directoryName, pymca)
        else:
            bindingEnergiesFile = toBytes(bindingEnergiesFile)
            crossSectionsFile = toBytes(crossSectionsFile)
            if len(bindingEnergiesFile):
                self.thisptr = new Elements(directoryName, bindingEnergiesFile, crossSectionsFile)
            else:
                self.thisptr = new Elements(directoryName)
                if len(crossSectionsFile):
                    self.thisptr.setMassAttenuationCoefficientsFile(crossSectionsFile)

    def initializeAsPyMca(self):
        """
        Configure the instance to use the same set of data as PyMca.
        """
        import os
        try:
            from PyMca5 import getDataFile
        except ImportError:
            # old fashion way with duplicated data in PyMca and in fisx
            return self.__initializeAsPyMcaOld()

        from fisx import DataDir
        directoryName = DataDir.FISX_DATA_DIR
        bindingEnergies = getDataFile("BindingEnergies.dat")
        xcomFile = getDataFile("XCOM_CrossSections.dat")
        del self.thisptr
        self.thisptr = new Elements(toBytes(directoryName), toBytes(bindingEnergies), toBytes(xcomFile))
        for shell in ["K", "L", "M"]:
            shellConstantsFile = getDataFile(shell+"ShellConstants.dat")
            self.thisptr.setShellConstantsFile(toBytes(shell),
                                               toBytes(shellConstantsFile))
        for shell in ["K", "L", "M"]:
            radiativeRatesFile = getDataFile(shell+"ShellRates.dat")
            self.thisptr.setShellRadiativeTransitionsFile(toBytes(shell), toBytes(radiativeRatesFile))

    def __initializeAsPyMcaOld(self):
        """
        Configure the instance to use the same set of data as PyMca.
        """
        import os
        try:
            from fisx import DataDir
            directoryName = DataDir.FISX_DATA_DIR
            from PyMca5 import PyMcaDataDir
            dataDir = PyMcaDataDir.PYMCA_DATA_DIR
        except ImportError:
            from fisx import DataDir
            directoryName = DataDir.FISX_DATA_DIR
            dataDir = directoryName
        bindingEnergies = os.path.join(dataDir, "BindingEnergies.dat")
        xcomFile = os.path.join(dataDir, "XCOM_CrossSections.dat")
        del self.thisptr
        self.thisptr = new Elements(toBytes(directoryName), toBytes(bindingEnergies), toBytes(xcomFile))
        for shell in ["K", "L", "M"]:
            shellConstantsFile = os.path.join(dataDir, shell+"ShellConstants.dat")
            self.thisptr.setShellConstantsFile(toBytes(shell), toBytes(shellConstantsFile))

        for shell in ["K", "L", "M"]:
            radiativeRatesFile = os.path.join(dataDir, shell+"ShellRates.dat")
            self.thisptr.setShellRadiativeTransitionsFile(toBytes(shell), toBytes(radiativeRatesFile))

    def getElementNames(self):
        return toStringList(self.thisptr.getElementNames())

    def getAtomicMass(self, element):
        return self.thisptr.getAtomicMass(toBytes(element))

    def getAtomicNumber(self, element):
        return self.thisptr.getAtomicNumber(toBytes(element))

    def getDensity(self, element):
        return self.thisptr.getDensity(toBytes(element))

    def getLongName(self, element):
        return toString(self.thisptr.getLongName(toBytes(element)))

    def getColumn(self, element):
        return self.thisptr.getColumn(toBytes(element))

    def getRow(self, std_string element):
        return self.thisptr.getRow(toBytes(element))

    def getMaterialNames(self):
        return toStringList(self.thisptr.getMaterialNames())

    def getComposition(self, materialOrFormula):
        if sys.version < "3.0":
            return self.thisptr.getComposition(toBytes(materialOrFormula))
        else:
            return toStringKeys(self.thisptr.getComposition(toBytes(materialOrFormula)))

    def __dealloc__(self):
        del self.thisptr

    def addMaterial(self, PyMaterial material, int errorOnReplace=1):
        self.thisptr.addMaterial(deref(material.thisptr), errorOnReplace)

    def setShellConstantsFile(self, mainShellName, fileName):
        """
        Load main shell (K, L or M) constants from file (fluorescence and Coster-Kronig yields)
        """
        self.thisptr.setShellConstantsFile(toBytes(mainShellName), toBytes(fileName))

    def getShellConstantsFile(self, mainShellName):
        if sys.version < "3.0":
            return self.thisptr.getShellConstantsFile(mainShellName)
        else:
            return toString(self.thisptr.getShellConstantsFile(toBytes(mainShellName)))

    def setShellRadiativeTransitionsFile(self, mainShellName, fileName):
        """
        Load main shell (K, L or M) X-ray emission rates from file.
        The library normalizes internally.
        """
        self.thisptr.setShellRadiativeTransitionsFile(toBytes(mainShellName), toBytes(fileName))

    def getShellRadiativeTransitionsFile(self, mainShellName):
        if sys.version < "3.0":
            return self.thisptr.getShellRadiativeTransitionsFile(mainShellName)
        else:
            return toString(self.thisptr.getShellRadiativeTransitionsFile(toBytes(mainShellName)))

    def getShellNonradiativeTransitionsFile(self, mainShellName):
        if sys.version < "3.0":
            return self.thisptr.getShellNonradiativeTransitionsFile(mainShellName)
        else:
            return toString(self.thisptr.getShellNonradiativeTransitionsFile(toBytes(mainShellName)))

    def setMassAttenuationCoefficients(self,
                                       std_string element,
                                       std_vector[double] energies,
                                       std_vector[double] photo,
                                       std_vector[double] coherent,
                                       std_vector[double] compton,
                                       std_vector[double] pair):
        self.thisptr.setMassAttenuationCoefficients(element,
                                                    energies,
                                                    photo,
                                                    coherent,
                                                    compton,
                                                    pair)
    def setMassAttenuationCoefficientsFile(self, crossSectionsFile):
        self.thisptr.setMassAttenuationCoefficientsFile(toBytes(crossSectionsFile))

    def _getSingleMassAttenuationCoefficients(self, std_string element,
                                                     double energy):
        if sys.version < "3.0":
            return self.thisptr.getMassAttenuationCoefficients(element, energy)
        else:
            return toStringKeys(self.thisptr.getMassAttenuationCoefficients(element, energy))

    def _getElementDefaultMassAttenuationCoefficients(self, std_string element):
        if sys.version < "3.0":
            return self.thisptr.getMassAttenuationCoefficients(element)
        else:
            return toStringKeys(self.thisptr.getMassAttenuationCoefficients(element))

    def getElementMassAttenuationCoefficients(self, element, energy=None):
        if energy is None:
            return self._getElementDefaultMassAttenuationCoefficients(toBytes(element))
        elif hasattr(energy, "__len__"):
            return self._getMultipleMassAttenuationCoefficients(toBytes(element),
                                                                       energy)
        else:
            return self._getMultipleMassAttenuationCoefficients(toBytes(element),
                                                                       [energy])

    def _getMultipleMassAttenuationCoefficients(self, std_string element,
                                                       std_vector[double] energy):
        if sys.version < "3.0":
            return self.thisptr.getMassAttenuationCoefficients(element, energy)
        else:
            return toStringKeys(self.thisptr.getMassAttenuationCoefficients(element, energy))

    def getMassAttenuationCoefficients(self, name, energy=None):
        """
        name can be an element, a formula or a material composition given as a dictionary:
            key is the element name
            fraction is the mass fraction of the element.

        WARNING: The library renormalizes in order to make sure the sum of mass
                 fractions is 1.

        It gives back the mass attenuation coefficients at the given energies as a map where
        the keys are the different physical processes and the values are lists of the
        calculated values via log-log interpolation in the internal table.
        """
        if hasattr(name, "keys"):
            return self._getMaterialMassAttenuationCoefficients(toBytes(name), energy)
        elif energy is None:
            return self._getElementDefaultMassAttenuationCoefficients(toBytes(name))
        elif hasattr(energy, "__len__"):
            return self._getMultipleMassAttenuationCoefficients(toBytes(name), energy)
        else:
            # do not use the "single" version to have always the same signature
            return self._getMultipleMassAttenuationCoefficients(toBytes(name), [energy])

    def getExcitationFactors(self, name, energy, weight=None):
        """
        getExcitationFactors(name, energy, weight=None)
        Given energy(s) and (optional) weight(s), for the specfified element, this method returns
        the emitted X-ray already corrected for cascade and fluorescence yield.
        It is the equivalent of the excitation factor in D.K.G. de Boer's paper.
        """
        if hasattr(energy, "__len__"):
            if weight is None:
                weight = [1.0] * len(energy)
            return self._getExcitationFactors(toBytes(name), energy, weight)[0]
        else:
            energy = [energy]
            if weight is None:
                weight = [1.0]
            else:
                weight = [weight]
            return self._getExcitationFactors(toBytes(name), energy, weight)

    def _getMaterialMassAttenuationCoefficients(self, elementDict, energy):
        """
        elementDict is a dictionary of the form:
        elmentDict[key] = fraction where:
            key is the element name
            fraction is the mass fraction of the element.

        WARNING: The library renormalizes in order to make sure the sum of mass
                 fractions is 1.
        """

        if hasattr(energy, "__len__"):
            return self._getMassAttenuationCoefficients(elementDict, energy)
        else:
            return self._getMassAttenuationCoefficients(elementDict, [energy])

    def _getMassAttenuationCoefficients(self, std_map[std_string, double] elementDict,
                                              std_vector[double] energy):
        return self.thisptr.getMassAttenuationCoefficients(elementDict, energy, 0)

    def _getExcitationFactors(self, std_string element,
                                   std_vector[double] energies,
                                   std_vector[double] weights):
        if sys.version < "3.0":
            return self.thisptr.getExcitationFactors(element, energies, weights)
        else:
            return [toStringKeysAndValues(x) for x in self.thisptr.getExcitationFactors(element, energies, weights)]

    def getPeakFamilies(self, nameOrVector, energy):
        """
        getPeakFamilies(nameOrVector, energy)

        Given an energy and a reference to an elements library return dictionarys.
        The key is the peak family ("Si K", "Pb L1", ...) and the value the binding energy.
        """
        if type(nameOrVector) in [type([]), type(())]:
            if sys.version < "3.0":
                return sorted(self._getPeakFamiliesFromVectorOfElements(nameOrVector, energy), key=itemgetter(1))
            else:
                nameOrVector = [toBytes(x) for x in nameOrVector]
                return [(toString(x[0]), x[1]) for x in \
                        sorted(self._getPeakFamiliesFromVectorOfElements(nameOrVector, energy), key=itemgetter(1))]
        else:
            if sys.version < "3.0":
                return sorted(self._getPeakFamilies(toBytes(nameOrVector), energy), key=itemgetter(1))
            else:
                return [(toString(x[0]), x[1]) for x in \
                        sorted(self._getPeakFamilies(toBytes(nameOrVector), energy), key=itemgetter(1))]

    def _getPeakFamilies(self, std_string name, double energy):
        return self.thisptr.getPeakFamilies(name, energy)

    def _getPeakFamiliesFromVectorOfElements(self, std_vector[std_string] elementList, double energy):
        return self.thisptr.getPeakFamilies(elementList, energy)

    def getBindingEnergies(self, elementName):
        if sys.version < "3.0":
            return self.thisptr.getBindingEnergies(elementName)
        else:
            return toStringKeys(self.thisptr.getBindingEnergies(toBytes(elementName)))

    def getEscape(self, composition, double energy, double energyThreshold=0.010,
                                        double intensityThreshold=1.0e-7,
                                        int nThreshold=4 ,
                                        double alphaIn=90.,
                                        double thickness=0.0):
        if sys.version_info < (3, ):
            return self.thisptr.getEscape(toBytesKeys(composition), energy, energyThreshold, intensityThreshold, nThreshold,
                                         alphaIn, thickness)
        else:
            result = toStringKeys(self.thisptr.getEscape(toBytesKeys(composition), energy, energyThreshold,
                                intensityThreshold, nThreshold, alphaIn, thickness))
            keyList =list(result.keys())
            for key in keyList:
                result[key] = toStringKeys(result[key])
            return result

    def updateEscapeCache(self, composition, std_vector[double] energyList, double energyThreshold=0.010,
                                        double intensityThreshold=1.0e-7,
                                        int nThreshold=4 ,
                                        double alphaIn=90.,
                                        double thickness=0.0):
        self.thisptr.updateEscapeCache(toBytesKeys(composition), energyList, energyThreshold, intensityThreshold, nThreshold,
                                      alphaIn, thickness)

    def getShellConstants(self, elementName, subshell):
        if sys.version < "3.0":
            return self.thisptr.getShellConstants(elementName, subshell)
        else:
            return toStringKeys(self.thisptr.getShellConstants(toBytes(elementName), toBytes(subshell)))

    def getEmittedXRayLines(self, elementName, double energy=1000.):
        if sys.version < "3.0":
            return self.thisptr.getEmittedXRayLines(elementName, energy)
        else:
            return toStringKeys(self.thisptr.getEmittedXRayLines(toBytes(elementName), energy))

    def getRadiativeTransitions(self, elementName, subshell):
        if sys.version < "3.0":
            return self.thisptr.getRadiativeTransitions(elementName, subshell)
        else:
            return toStringKeys(self.thisptr.getRadiativeTransitions(toBytes(elementName), toBytes(subshell)))

    def getNonradiativeTransitions(self, elementName, subshell):
        if sys.version < "3.0":
            return self.thisptr.getNonradiativeTransitions(elementName, subshell)
        else:
            return toStringKeys(self.thisptr.getNonradiativeTransitions(toBytes(elementName), toBytes(subshell)))

    def setElementCascadeCacheEnabled(self, elementName, int flag = 1):
        self.thisptr.setElementCascadeCacheEnabled(toBytes(elementName), flag)

    def emptyElementCascadeCache(self, elementName):
        self.thisptr.emptyElementCascadeCache(toBytes(elementName))

    def fillCache(self, elementName, std_vector[double] energy):
        """
        Optimization methods to keep the calculations at a set of energies
        in cache.
        Clear the calculation cache of given element and fill it at the
        selected energies
        """
        self.thisptr.fillCache(toBytes(elementName), energy)

    def updateCache(self, elementName, std_vector[double] energy):
        """
        Update the element cache with those energy values not already present.
        The existing values will be kept.
        """
        self.thisptr.updateCache(toBytes(elementName), energy)

    def setCacheEnabled(self, elementName, int flag = 1):
        """
        Enable or disable the use of the stored calculations (if any).
        It does not clear the cache when disabling.
        """
        self.thisptr.setCacheEnabled(toBytes(elementName), flag)

    def setEscapeCacheEnabled(self, int flag = 1):
        """
        Enable or disable the use of the stored calculations (if any).
        It does not clear the cache when disabling.
        """
        self.thisptr.setEscapeCacheEnabled(flag)

    def clearCache(self, elementName):
        """
        Clear the calculation cache
        """
        self.thisptr.clearCache(toBytes(elementName))

    def isCacheEnabled(self, elementName):
        """
        Return 1 or 0 if the calculation cache is enabled or not
        """
        return self.thisptr.isCacheEnabled(toBytes(elementName))

    def isEscapeCacheEnabled(self):
        """
        Return 1 or 0 if the calculation cache is enabled or not
        """
        return self.thisptr.isEscapeCacheEnabled()

    def getCacheSize(self, elementName):
        """
        Return the number of energies for which the calculations are stored
        """
        return self.thisptr.getCacheSize(toBytes(elementName))

    def removeMaterials(self):
        self.thisptr.removeMaterials()

    def getInitialPhotoelectricVacancyDistribution(self, elementName, energy):
        """
        Given one energy, give the initial distribution of vacancies (before cascade) due to
        photoelectric effect.
        The output map keys correspond to the different subshells and the values are just
        mu_photoelectric(shell, E)/mu_photoelectric(total, E).
        """
        return toStringKeys(self.thisptr.getInitialPhotoelectricVacancyDistribution( \
                                    toBytes(elementName), energy))
    
    def getCascadeModifiedVacancyDistribution(self, elementName, distribution):
        return self._getCascadeModifiedVacancyDistribution(toBytes(elementName),
                                                    toBytesKeys(distribution))

    def _getCascadeModifiedVacancyDistribution(self, std_string elementName,
                                                    std_map[std_string, double] distribution):
        return toStringKeysAndValues(self.thisptr.getCascadeModifiedVacancyDistribution( \
                                    elementName, distribution))

    def getXRayLinesFromVacancyDistribution(self, elementName, distribution,
                                            cascade=1, useFluorescenceYield=1):
        """ 
        Given an initial vacancy distribution, returns the emitted X-rays.

        Input:
        distribution - Map[key, double] of the form [(sub)shell][amount of vacancies]
        cascade - Consider de-excitation cascade (default is 1 = true)
        useFluorescenceYield - Correct by fluorescence yield (default is 1 = true)

        Output:
        map[key]["rate"] - emission rate where key is the transition line (ex. KL3)
        map[key]["energy"] - emission energy where key is the transition line (ex. KL3)
        """
        return self._getXRayLinesFromVacancyDistribution(toBytes(elementName),
                                                         toBytesKeysAndValues(distribution),
                                                         cascade,
                                                         useFluorescenceYield)

    def _getXRayLinesFromVacancyDistribution(self, std_string elementName,
                                             std_map[std_string, double] distribution,
                                             int cascade=1, int useFluorescenceYield=1):
        return toStringKeysAndValues(self.thisptr.getXRayLinesFromVacancyDistribution( \
                                            elementName,
                                            distribution,
                                            cascade,
                                            useFluorescenceYield))