1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
#/*##########################################################################
#
# The fisx library for X-Ray Fluorescence
#
# Copyright (c) 2014-2023 European Synchrotron Radiation Facility
#
# This file is part of the fisx X-ray developed by V.A. Sole
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
import sys
cimport cython
from operator import itemgetter
from libcpp.string cimport string as std_string
from libcpp.vector cimport vector as std_vector
from libcpp.map cimport map as std_map
from Elements cimport *
from Material cimport *
__doc__ = """
Initialization with XCOM mass attenuation cross sections:
import os
from fisx import DataDir
dataDir = DataDir.FISX_DATA_DIR
bindingEnergies = os.path.join(dataDir, "BindingEnergies.dat")
xcomFile = os.path.join(dataDir, "XCOM_CrossSections.dat")
xcom = Elements(dataDir, bindingEnergies, xcomFile)
"""
cdef class PyElements:
cdef Elements *thisptr
def __cinit__(self, directoryName="",
bindingEnergiesFile="",
crossSectionsFile="",
pymca=0):
if len(directoryName) == 0:
from fisx import DataDir
directoryName = DataDir.FISX_DATA_DIR
directoryName = toBytes(directoryName)
if pymca:
pymca = 1
self.thisptr = new Elements(directoryName, pymca)
else:
bindingEnergiesFile = toBytes(bindingEnergiesFile)
crossSectionsFile = toBytes(crossSectionsFile)
if len(bindingEnergiesFile):
self.thisptr = new Elements(directoryName, bindingEnergiesFile, crossSectionsFile)
else:
self.thisptr = new Elements(directoryName)
if len(crossSectionsFile):
self.thisptr.setMassAttenuationCoefficientsFile(crossSectionsFile)
def initializeAsPyMca(self):
"""
Configure the instance to use the same set of data as PyMca.
"""
import os
try:
from PyMca5 import getDataFile
except ImportError:
# old fashion way with duplicated data in PyMca and in fisx
return self.__initializeAsPyMcaOld()
from fisx import DataDir
directoryName = DataDir.FISX_DATA_DIR
bindingEnergies = getDataFile("BindingEnergies.dat")
xcomFile = getDataFile("XCOM_CrossSections.dat")
del self.thisptr
self.thisptr = new Elements(toBytes(directoryName), toBytes(bindingEnergies), toBytes(xcomFile))
for shell in ["K", "L", "M"]:
shellConstantsFile = getDataFile(shell+"ShellConstants.dat")
self.thisptr.setShellConstantsFile(toBytes(shell),
toBytes(shellConstantsFile))
for shell in ["K", "L", "M"]:
radiativeRatesFile = getDataFile(shell+"ShellRates.dat")
self.thisptr.setShellRadiativeTransitionsFile(toBytes(shell), toBytes(radiativeRatesFile))
def __initializeAsPyMcaOld(self):
"""
Configure the instance to use the same set of data as PyMca.
"""
import os
try:
from fisx import DataDir
directoryName = DataDir.FISX_DATA_DIR
from PyMca5 import PyMcaDataDir
dataDir = PyMcaDataDir.PYMCA_DATA_DIR
except ImportError:
from fisx import DataDir
directoryName = DataDir.FISX_DATA_DIR
dataDir = directoryName
bindingEnergies = os.path.join(dataDir, "BindingEnergies.dat")
xcomFile = os.path.join(dataDir, "XCOM_CrossSections.dat")
del self.thisptr
self.thisptr = new Elements(toBytes(directoryName), toBytes(bindingEnergies), toBytes(xcomFile))
for shell in ["K", "L", "M"]:
shellConstantsFile = os.path.join(dataDir, shell+"ShellConstants.dat")
self.thisptr.setShellConstantsFile(toBytes(shell), toBytes(shellConstantsFile))
for shell in ["K", "L", "M"]:
radiativeRatesFile = os.path.join(dataDir, shell+"ShellRates.dat")
self.thisptr.setShellRadiativeTransitionsFile(toBytes(shell), toBytes(radiativeRatesFile))
def getElementNames(self):
return toStringList(self.thisptr.getElementNames())
def getAtomicMass(self, element):
return self.thisptr.getAtomicMass(toBytes(element))
def getAtomicNumber(self, element):
return self.thisptr.getAtomicNumber(toBytes(element))
def getDensity(self, element):
return self.thisptr.getDensity(toBytes(element))
def getLongName(self, element):
return toString(self.thisptr.getLongName(toBytes(element)))
def getColumn(self, element):
return self.thisptr.getColumn(toBytes(element))
def getRow(self, std_string element):
return self.thisptr.getRow(toBytes(element))
def getMaterialNames(self):
return toStringList(self.thisptr.getMaterialNames())
def getComposition(self, materialOrFormula):
if sys.version < "3.0":
return self.thisptr.getComposition(toBytes(materialOrFormula))
else:
return toStringKeys(self.thisptr.getComposition(toBytes(materialOrFormula)))
def __dealloc__(self):
del self.thisptr
def addMaterial(self, PyMaterial material, int errorOnReplace=1):
self.thisptr.addMaterial(deref(material.thisptr), errorOnReplace)
def setShellConstantsFile(self, mainShellName, fileName):
"""
Load main shell (K, L or M) constants from file (fluorescence and Coster-Kronig yields)
"""
self.thisptr.setShellConstantsFile(toBytes(mainShellName), toBytes(fileName))
def getShellConstantsFile(self, mainShellName):
if sys.version < "3.0":
return self.thisptr.getShellConstantsFile(mainShellName)
else:
return toString(self.thisptr.getShellConstantsFile(toBytes(mainShellName)))
def setShellRadiativeTransitionsFile(self, mainShellName, fileName):
"""
Load main shell (K, L or M) X-ray emission rates from file.
The library normalizes internally.
"""
self.thisptr.setShellRadiativeTransitionsFile(toBytes(mainShellName), toBytes(fileName))
def getShellRadiativeTransitionsFile(self, mainShellName):
if sys.version < "3.0":
return self.thisptr.getShellRadiativeTransitionsFile(mainShellName)
else:
return toString(self.thisptr.getShellRadiativeTransitionsFile(toBytes(mainShellName)))
def getShellNonradiativeTransitionsFile(self, mainShellName):
if sys.version < "3.0":
return self.thisptr.getShellNonradiativeTransitionsFile(mainShellName)
else:
return toString(self.thisptr.getShellNonradiativeTransitionsFile(toBytes(mainShellName)))
def setMassAttenuationCoefficients(self,
std_string element,
std_vector[double] energies,
std_vector[double] photo,
std_vector[double] coherent,
std_vector[double] compton,
std_vector[double] pair):
self.thisptr.setMassAttenuationCoefficients(element,
energies,
photo,
coherent,
compton,
pair)
def setMassAttenuationCoefficientsFile(self, crossSectionsFile):
self.thisptr.setMassAttenuationCoefficientsFile(toBytes(crossSectionsFile))
def _getSingleMassAttenuationCoefficients(self, std_string element,
double energy):
if sys.version < "3.0":
return self.thisptr.getMassAttenuationCoefficients(element, energy)
else:
return toStringKeys(self.thisptr.getMassAttenuationCoefficients(element, energy))
def _getElementDefaultMassAttenuationCoefficients(self, std_string element):
if sys.version < "3.0":
return self.thisptr.getMassAttenuationCoefficients(element)
else:
return toStringKeys(self.thisptr.getMassAttenuationCoefficients(element))
def getElementMassAttenuationCoefficients(self, element, energy=None):
if energy is None:
return self._getElementDefaultMassAttenuationCoefficients(toBytes(element))
elif hasattr(energy, "__len__"):
return self._getMultipleMassAttenuationCoefficients(toBytes(element),
energy)
else:
return self._getMultipleMassAttenuationCoefficients(toBytes(element),
[energy])
def _getMultipleMassAttenuationCoefficients(self, std_string element,
std_vector[double] energy):
if sys.version < "3.0":
return self.thisptr.getMassAttenuationCoefficients(element, energy)
else:
return toStringKeys(self.thisptr.getMassAttenuationCoefficients(element, energy))
def getMassAttenuationCoefficients(self, name, energy=None):
"""
name can be an element, a formula or a material composition given as a dictionary:
key is the element name
fraction is the mass fraction of the element.
WARNING: The library renormalizes in order to make sure the sum of mass
fractions is 1.
It gives back the mass attenuation coefficients at the given energies as a map where
the keys are the different physical processes and the values are lists of the
calculated values via log-log interpolation in the internal table.
"""
if hasattr(name, "keys"):
return self._getMaterialMassAttenuationCoefficients(toBytes(name), energy)
elif energy is None:
return self._getElementDefaultMassAttenuationCoefficients(toBytes(name))
elif hasattr(energy, "__len__"):
return self._getMultipleMassAttenuationCoefficients(toBytes(name), energy)
else:
# do not use the "single" version to have always the same signature
return self._getMultipleMassAttenuationCoefficients(toBytes(name), [energy])
def getExcitationFactors(self, name, energy, weight=None):
"""
getExcitationFactors(name, energy, weight=None)
Given energy(s) and (optional) weight(s), for the specfified element, this method returns
the emitted X-ray already corrected for cascade and fluorescence yield.
It is the equivalent of the excitation factor in D.K.G. de Boer's paper.
"""
if hasattr(energy, "__len__"):
if weight is None:
weight = [1.0] * len(energy)
return self._getExcitationFactors(toBytes(name), energy, weight)[0]
else:
energy = [energy]
if weight is None:
weight = [1.0]
else:
weight = [weight]
return self._getExcitationFactors(toBytes(name), energy, weight)
def _getMaterialMassAttenuationCoefficients(self, elementDict, energy):
"""
elementDict is a dictionary of the form:
elmentDict[key] = fraction where:
key is the element name
fraction is the mass fraction of the element.
WARNING: The library renormalizes in order to make sure the sum of mass
fractions is 1.
"""
if hasattr(energy, "__len__"):
return self._getMassAttenuationCoefficients(elementDict, energy)
else:
return self._getMassAttenuationCoefficients(elementDict, [energy])
def _getMassAttenuationCoefficients(self, std_map[std_string, double] elementDict,
std_vector[double] energy):
return self.thisptr.getMassAttenuationCoefficients(elementDict, energy, 0)
def _getExcitationFactors(self, std_string element,
std_vector[double] energies,
std_vector[double] weights):
if sys.version < "3.0":
return self.thisptr.getExcitationFactors(element, energies, weights)
else:
return [toStringKeysAndValues(x) for x in self.thisptr.getExcitationFactors(element, energies, weights)]
def getPeakFamilies(self, nameOrVector, energy):
"""
getPeakFamilies(nameOrVector, energy)
Given an energy and a reference to an elements library return dictionarys.
The key is the peak family ("Si K", "Pb L1", ...) and the value the binding energy.
"""
if type(nameOrVector) in [type([]), type(())]:
if sys.version < "3.0":
return sorted(self._getPeakFamiliesFromVectorOfElements(nameOrVector, energy), key=itemgetter(1))
else:
nameOrVector = [toBytes(x) for x in nameOrVector]
return [(toString(x[0]), x[1]) for x in \
sorted(self._getPeakFamiliesFromVectorOfElements(nameOrVector, energy), key=itemgetter(1))]
else:
if sys.version < "3.0":
return sorted(self._getPeakFamilies(toBytes(nameOrVector), energy), key=itemgetter(1))
else:
return [(toString(x[0]), x[1]) for x in \
sorted(self._getPeakFamilies(toBytes(nameOrVector), energy), key=itemgetter(1))]
def _getPeakFamilies(self, std_string name, double energy):
return self.thisptr.getPeakFamilies(name, energy)
def _getPeakFamiliesFromVectorOfElements(self, std_vector[std_string] elementList, double energy):
return self.thisptr.getPeakFamilies(elementList, energy)
def getBindingEnergies(self, elementName):
if sys.version < "3.0":
return self.thisptr.getBindingEnergies(elementName)
else:
return toStringKeys(self.thisptr.getBindingEnergies(toBytes(elementName)))
def getEscape(self, composition, double energy, double energyThreshold=0.010,
double intensityThreshold=1.0e-7,
int nThreshold=4 ,
double alphaIn=90.,
double thickness=0.0):
if sys.version_info < (3, ):
return self.thisptr.getEscape(toBytesKeys(composition), energy, energyThreshold, intensityThreshold, nThreshold,
alphaIn, thickness)
else:
result = toStringKeys(self.thisptr.getEscape(toBytesKeys(composition), energy, energyThreshold,
intensityThreshold, nThreshold, alphaIn, thickness))
keyList =list(result.keys())
for key in keyList:
result[key] = toStringKeys(result[key])
return result
def updateEscapeCache(self, composition, std_vector[double] energyList, double energyThreshold=0.010,
double intensityThreshold=1.0e-7,
int nThreshold=4 ,
double alphaIn=90.,
double thickness=0.0):
self.thisptr.updateEscapeCache(toBytesKeys(composition), energyList, energyThreshold, intensityThreshold, nThreshold,
alphaIn, thickness)
def getShellConstants(self, elementName, subshell):
if sys.version < "3.0":
return self.thisptr.getShellConstants(elementName, subshell)
else:
return toStringKeys(self.thisptr.getShellConstants(toBytes(elementName), toBytes(subshell)))
def getEmittedXRayLines(self, elementName, double energy=1000.):
if sys.version < "3.0":
return self.thisptr.getEmittedXRayLines(elementName, energy)
else:
return toStringKeys(self.thisptr.getEmittedXRayLines(toBytes(elementName), energy))
def getRadiativeTransitions(self, elementName, subshell):
if sys.version < "3.0":
return self.thisptr.getRadiativeTransitions(elementName, subshell)
else:
return toStringKeys(self.thisptr.getRadiativeTransitions(toBytes(elementName), toBytes(subshell)))
def getNonradiativeTransitions(self, elementName, subshell):
if sys.version < "3.0":
return self.thisptr.getNonradiativeTransitions(elementName, subshell)
else:
return toStringKeys(self.thisptr.getNonradiativeTransitions(toBytes(elementName), toBytes(subshell)))
def setElementCascadeCacheEnabled(self, elementName, int flag = 1):
self.thisptr.setElementCascadeCacheEnabled(toBytes(elementName), flag)
def emptyElementCascadeCache(self, elementName):
self.thisptr.emptyElementCascadeCache(toBytes(elementName))
def fillCache(self, elementName, std_vector[double] energy):
"""
Optimization methods to keep the calculations at a set of energies
in cache.
Clear the calculation cache of given element and fill it at the
selected energies
"""
self.thisptr.fillCache(toBytes(elementName), energy)
def updateCache(self, elementName, std_vector[double] energy):
"""
Update the element cache with those energy values not already present.
The existing values will be kept.
"""
self.thisptr.updateCache(toBytes(elementName), energy)
def setCacheEnabled(self, elementName, int flag = 1):
"""
Enable or disable the use of the stored calculations (if any).
It does not clear the cache when disabling.
"""
self.thisptr.setCacheEnabled(toBytes(elementName), flag)
def setEscapeCacheEnabled(self, int flag = 1):
"""
Enable or disable the use of the stored calculations (if any).
It does not clear the cache when disabling.
"""
self.thisptr.setEscapeCacheEnabled(flag)
def clearCache(self, elementName):
"""
Clear the calculation cache
"""
self.thisptr.clearCache(toBytes(elementName))
def isCacheEnabled(self, elementName):
"""
Return 1 or 0 if the calculation cache is enabled or not
"""
return self.thisptr.isCacheEnabled(toBytes(elementName))
def isEscapeCacheEnabled(self):
"""
Return 1 or 0 if the calculation cache is enabled or not
"""
return self.thisptr.isEscapeCacheEnabled()
def getCacheSize(self, elementName):
"""
Return the number of energies for which the calculations are stored
"""
return self.thisptr.getCacheSize(toBytes(elementName))
def removeMaterials(self):
self.thisptr.removeMaterials()
def getInitialPhotoelectricVacancyDistribution(self, elementName, energy):
"""
Given one energy, give the initial distribution of vacancies (before cascade) due to
photoelectric effect.
The output map keys correspond to the different subshells and the values are just
mu_photoelectric(shell, E)/mu_photoelectric(total, E).
"""
return toStringKeys(self.thisptr.getInitialPhotoelectricVacancyDistribution( \
toBytes(elementName), energy))
def getCascadeModifiedVacancyDistribution(self, elementName, distribution):
return self._getCascadeModifiedVacancyDistribution(toBytes(elementName),
toBytesKeys(distribution))
def _getCascadeModifiedVacancyDistribution(self, std_string elementName,
std_map[std_string, double] distribution):
return toStringKeysAndValues(self.thisptr.getCascadeModifiedVacancyDistribution( \
elementName, distribution))
def getXRayLinesFromVacancyDistribution(self, elementName, distribution,
cascade=1, useFluorescenceYield=1):
"""
Given an initial vacancy distribution, returns the emitted X-rays.
Input:
distribution - Map[key, double] of the form [(sub)shell][amount of vacancies]
cascade - Consider de-excitation cascade (default is 1 = true)
useFluorescenceYield - Correct by fluorescence yield (default is 1 = true)
Output:
map[key]["rate"] - emission rate where key is the transition line (ex. KL3)
map[key]["energy"] - emission energy where key is the transition line (ex. KL3)
"""
return self._getXRayLinesFromVacancyDistribution(toBytes(elementName),
toBytesKeysAndValues(distribution),
cascade,
useFluorescenceYield)
def _getXRayLinesFromVacancyDistribution(self, std_string elementName,
std_map[std_string, double] distribution,
int cascade=1, int useFluorescenceYield=1):
return toStringKeysAndValues(self.thisptr.getXRayLinesFromVacancyDistribution( \
elementName,
distribution,
cascade,
useFluorescenceYield))
|