File: PyXRF.pyx

package info (click to toggle)
python-fisx 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 21,888 kB
  • sloc: cpp: 9,333; python: 1,339; sh: 144; makefile: 41
file content (450 lines) | stat: -rw-r--r-- 22,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#/*##########################################################################
#
# The fisx library for X-Ray Fluorescence
#
# Copyright (c) 2014-2023 European Synchrotron Radiation Facility
#
# This file is part of the fisx X-ray developed by V.A. Sole
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
#import numpy as np
#cimport numpy as np
cimport cython

from cython.operator cimport dereference as deref
from libcpp.string cimport string as std_string
from libcpp.vector cimport vector as std_vector
from libcpp.map cimport map as std_map

from XRF cimport *
from Layer cimport *
from TransmissionTable cimport *
from Beam cimport *

cdef class PyXRF:
    cdef XRF *thisptr

    def __cinit__(self, std_string configurationFile=""):
        if len(configurationFile):
            self.thisptr = new XRF(configurationFile)
        else:
            self.thisptr = new XRF()

    def __dealloc__(self):
        del self.thisptr

    def readConfigurationFromFile(self, fileName):
        """
        Read the configuration from a PyMca .cfg ot .fit file
        """
        self.thisptr.readConfigurationFromFile(toBytes(fileName))

    def setBeam(self, energies, weights=None, characteristic=None, divergency=None):
        if not hasattr(energies, "__len__"):
            if divergency is None:
                divergency = 0.0
            self._setSingleEnergyBeam(energies, divergency)
        else:
            if weights is None:
                weights = [1.0] * len(energies)
            elif not hasattr(weights, "__len__"):
                weights = [weights]
            if characteristic is None:
                characteristic = [1] * len(energies)
            if divergency is None:
                divergency = [0.0] * len(energies)

            self._setBeam(energies, weights, characteristic, divergency)

    def _setSingleEnergyBeam(self, double energy, double divergency):
        self.thisptr.setSingleEnergyBeam(energy, divergency)

    def _setBeam(self, std_vector[double] energies, std_vector[double] weights, \
                       std_vector[int] characteristic, std_vector[double] divergency):
        self.thisptr.setBeam(energies, weights, characteristic, divergency)

    def setBeamFilters(self, layerList):
        """
        Due to wrapping constraints, the filter list must have the form:
        [[Material name or formula0, density0, thickness0, funny factor0],
         [Material name or formula1, density1, thickness1, funny factor1],
         ...
         [Material name or formulan, densityn, thicknessn, funny factorn]]

        Unless you know what you are doing, the funny factors must be 1.0
        """
        cdef std_vector[Layer] container
        if len(layerList):
            if isinstance(layerList[0], PyLayer):
                for layer in layerList:
                    self._addLayerToLayerVector(layer, container)
            elif len(layerList[0]) == 4:
                for name, density, thickness, funny in layerList:
                    container.push_back(Layer(toBytes(name), density, thickness, funny))
            else:
                for name, density, thickness in layerList:
                    container.push_back(Layer(toBytes(name), density, thickness, 1.0))
        self.thisptr.setBeamFilters(container)

    def setUserBeamFilters(self, pyTransmissionTableList):
        """
        Provide a list of already instantiated transmision tables to be used
        as filters between beam and sample
        """
        self._fillTransmissionTable(pyTransmissionTableList, "filter")

    def _fillTransmissionTable(self, pyTransmissionTableList, function):
        if function not in ["filter", "attenuator"]:
            raise ValueError("Please specify usage as filter or as attenuator")
        if len(pyTransmissionTableList):
            if hasattr(pyTransmissionTableList[0], "getTransmissionTable"):
                instantiated = True
            else:
                instantiated = False
        else:
            instantiated = True
        cdef std_vector[TransmissionTable] container
        cdef TransmissionTable t
        if instantiated:
            for item in pyTransmissionTableList:
                name = item.getName()
                comment = item.getComment()
                table = item.getTransmissionTable()
                t = TransmissionTable()
                t.setTransmissionTable(table, name, comment)
                container.push_back(t)
        else:
            for item in pyTransmissionTableList:
                t = TransmissionTable()
                if len(item) == 4:
                    t.setTransmissionTable(item[0],
                                           item[1],
                                           toBytes(item[2]),
                                           toBytes(item[3]))
                elif hasattr(item[0], "keys"):
                    t.setTransmissionTable(item[0],
                                           toBytes(item[1]),
                                           toBytes(item[2]))
                else:
                    raise ValueError("Not appropriate input type or length")
                container.push_back(t)
        if function == "filter":
            self.thisptr.setUserBeamFilters(container)
        else:
            self.thisptr.setUserAttenuators(container)

    def setSample(self, layerList, referenceLayer=0):
        """
        Due to wrapping constraints, the list must have the form:
        [[Material name or formula0, density0, thickness0, funny factor0],
         [Material name or formula1, density1, thickness1, funny factor1],
         ...
         [Material name or formulan, densityn, thicknessn, funny factorn]]

        Unless you know what you are doing, the funny factors must be 1.0
        """
        cdef std_vector[Layer] container
        if len(layerList):
            if isinstance(layerList[0], PyLayer):
                for layer in layerList:
                    self._addLayerToLayerVector(layer, container)
            elif len(layerList[0]) == 4:
                for name, density, thickness, funny in layerList:
                    container.push_back(Layer(toBytes(name), density, thickness, funny))
            else:
                for name, density, thickness in layerList:
                    container.push_back(Layer(toBytes(name), density, thickness, 1.0))
        self.thisptr.setSample(container, referenceLayer)


    def setAttenuators(self, layerList):
        """
        Due to wrapping constraints, the filter list must have the form:
        [[Material name or formula0, density0, thickness0, funny factor0],
         [Material name or formula1, density1, thickness1, funny factor1],
         ...
         [Material name or formulan, densityn, thicknessn, funny factorn]]

        Unless you know what you are doing, the funny factors must be 1.0
        """
        cdef std_vector[Layer] container
        if len(layerList):
            if isinstance(layerList[0], PyLayer):
                for layer in layerList:
                    self._addLayerToLayerVector(layer, container)
            elif len(layerList[0]) == 4:
                for name, density, thickness, funny in layerList:
                    container.push_back(Layer(toBytes(name), density, thickness, funny))
            else:
                for name, density, thickness in layerList:
                    container.push_back(Layer(toBytes(name), density, thickness, 1.0))
        return self.thisptr.setAttenuators(container)

    cdef void _addLayerToLayerVector(self, PyLayer layer, std_vector[Layer]& container):
        container.push_back(deref(layer.thisptr))

    def setUserAttenuators(self, pyTransmissionTableList):
        """
        Provide a list of in which each item is either an already instantiated
        PyTransmissionTable or each item is a list of the arguments of the
        PyTransmissionTable method setTransmissionTable.
        This transmission tables will be used as filters between sample and
        detector
        """
        self._fillTransmissionTable(pyTransmissionTableList, "attenuator")

    def setDetector(self, PyDetector detector):
        self.thisptr.setDetector(deref(detector.thisptr))

    def setGeometry(self, double alphaIn, double alphaOut, double scatteringAngle = -90.0):
        if scatteringAngle < 0.0:
            self.thisptr.setGeometry(alphaIn, alphaOut, alphaIn + alphaOut)
        else:
            self.thisptr.setGeometry(alphaIn, alphaOut, scatteringAngle)

    def getLayerComposition(self, PyLayer layerInstance, PyElements elementsLibrary):
        return toStringKeys(self.thisptr.getLayerComposition(deref(layerInstance.thisptr),
                                                deref(elementsLibrary.thisptr)))

    def getLayerMassAttenuationCoefficients(self, PyLayer layerInstance, energies, \
                                            PyElements elementsLibrary):
        if not hasattr(energies, "__len__"):
            return toStringKeys(self._getLayerMassAttenuationCoefficientsSingle( \
                                    layerInstance, \
                                    energies, elementsLibrary))
        else:
            return toStringKeys(self._getLayerMassAttenuationCoefficientsMultiple( \
                                    layerInstance,
                                    energies,
                                    elementsLibrary))

    def _getLayerMassAttenuationCoefficientsSingle(self, PyLayer layerInstance, \
                                            double energy, \
                                            PyElements elementsLibrary):
        cdef std_map[std_string, double] composition
        composition.clear()
        return self.thisptr.getLayerMassAttenuationCoefficients( \
                                    deref(layerInstance.thisptr), \
                                    energy, deref(elementsLibrary.thisptr), \
                                    composition)

    def _getLayerMassAttenuationCoefficientsMultiple(self, PyLayer layerInstance, \
                                            std_vector[double] energies, \
                                            PyElements elementsLibrary):
        cdef std_map[std_string, double] composition
        composition.clear()
        return self.thisptr.getLayerMassAttenuationCoefficients( \
                                    deref(layerInstance.thisptr), \
                                    energies, deref(elementsLibrary.thisptr), \
                                    composition)

    def getLayerTransmission(self, PyLayer layerInstance, energies, \
                             PyElements elementsLibrary, angle=90.):
        if not hasattr(energies, "__len__"):
            return self._getLayerTransmissionSingle( \
                                    layerInstance, \
                                    energies, \
                                    elementsLibrary, \
                                    angle)
        else:
            return self._getLayerTransmissionMultiple( \
                                    layerInstance, \
                                    energies, \
                                    elementsLibrary, \
                                    angle)

    def _getLayerTransmissionSingle(self, PyLayer layerInstance, double energy, \
                             PyElements elementsLibrary, double angle):
        cdef std_map[std_string, double] composition
        composition.clear()
        return self.thisptr.getLayerTransmission( \
                                    deref(layerInstance.thisptr), \
                                    energy, \
                                    deref(elementsLibrary.thisptr), \
                                    angle, \
                                    composition)

    def _getLayerTransmissionMultiple(self, PyLayer layerInstance, \
                             std_vector[double] energies, \
                             PyElements elementsLibrary, double angle):
        cdef std_map[std_string, double] composition
        composition.clear()
        return self.thisptr.getLayerTransmission( \
                                    deref(layerInstance.thisptr), \
                                    energies, \
                                    deref(elementsLibrary.thisptr), \
                                    angle, \
                                    composition)

    def getLayerPeakFamilies(self, PyLayer layerInstance, double energy, \
                             PyElements elementsLibrary):
        cdef std_map[std_string, double] composition
        composition.clear()
        return toStringKeys(self.thisptr.getLayerPeakFamilies( \
                                    deref(layerInstance.thisptr), \
                                    energy, deref(elementsLibrary.thisptr), \
                                    composition))

    def getMultilayerFluorescence(self, elementFamilyLayer, PyElements elementsLibrary, \
                            int secondary = 0, int useGeometricEfficiency = 1, int useMassFractions = 0, \
                            double secondaryCalculationLimit = 0.0, PyBeam overwritingBeam=PyBeam()):
        """
        Input
        elementFamilyLayer - Vector of strings. Each string represents the information we are interested on.
        "Cr"     - We want the information for Cr, for all line families and sample layers
        "Cr K"   - We want the information for Cr, for the family of K-shell emission lines, in all layers.
        "Cr K 0" - We want the information for Cr, for the family of K-shell emission lines, in layer 0.
        elementsLibrary - Instance of library to be used for all the Physical constants
        secondary - Flag to indicate different levels of secondary excitation to be considered.
                    0 Means not considered
                    1 Consider only intralayer secondary excitation
                    2 Consider intralayer and interlayer secondary excitation
        useGeometricEfficiency - Take into account solid angle or not. Default is 1 (yes)

        useMassFractions - If 0 (default) the output corresponds to the requested information if the mass
        fraction of the element would be one on each calculated sample layer. To get the actual signal, one
        has to multiply bthe rates by the actual mass fraction of the element on each sample layer.
                           If set to 1 the rate will be already corrected by the actual mass fraction.

        Return a complete output of the form
        [Element Family][Layer][line]["energy"] - Energy in keV of the emission line
        [Element Family][Layer][line]["primary"] - Primary rate prior to correct for detection efficiency
        [Element Family][Layer][line]["secondary"] - Secondary rate prior to correct for detection efficiency
        [Element Family][Layer][line]["rate"] - Overall rate
        [Element Family][Layer][line]["efficiency"] - Detection efficiency
        [Element Family][Layer][line][element line layer] - Secondary rate (prior to correct for detection efficiency)
        due to the fluorescence from the given element, line and layer index composing the map key.
        """
        cdef std_vector[std_string] elementFamilyLayerVector
        cdef std_map[std_string, std_map[int, std_map[std_string, std_map[std_string, double]]]] result
        if sys.version > "3.0":
            for x in elementFamilyLayer:
                elementFamilyLayerVector.push_back(toBytes(x))
            with nogil:
                result = self.thisptr.getMultilayerFluorescence( \
                            elementFamilyLayerVector, \
                            deref(elementsLibrary.thisptr), \
                            secondary, useGeometricEfficiency, \
                            useMassFractions, secondaryCalculationLimit, \
                            deref(overwritingBeam.thisptr))
            return toStringKeysAndValues(result)
        else:
            return self.thisptr.getMultilayerFluorescence(elementFamilyLayer, \
                            deref(elementsLibrary.thisptr), \
                            secondary, useGeometricEfficiency, \
                            useMassFractions, secondaryCalculationLimit, deref(overwritingBeam.thisptr))

    def getFluorescence(self, elementNames, PyElements elementsLibrary, \
                            sampleLayer = 0, lineFamily="K", int secondary = 0, \
                            int useGeometricEfficiency = 1, int useMassFractions = 0, \
                            double secondaryCalculationLimit = 0.0,
                            PyBeam overwritingBeam=PyBeam()):

        """
        Input
        elementNames - Single string or Vector of strings. Each string represents the information we are interested on.
        "Cr"         - We want the information for Cr
        ["Cr", "Fe"] - We want the information for Cr and Fe.
        elementsLibrary - Instance of library to be used for all the Physical constants
        sampleLayer - Single integer or vector of integers representing the layers where the calculation has to take place.
                      A negative value implies the calculation will take places in all layers
                      0 Means calculation on top layer, 1 the second, and so on
                      The program expects either a single index or as many indices as element names provided.
        lineFamily - Single string or Vector of strings representing the peak families to calculate.
                     The program expects as many peak families as element names provided.
        secondary  - Flag to indicate different levels of secondary excitation to be considered.
                     0 Means not considered
                     1 Consider only intralayer secondary excitation
                     2 Consider intralayer and interlayer secondary excitation
        useGeometricEfficiency - Take into account solid angle or not. Default is 1 (yes)

        useMassFractions - If 0 (default) the output corresponds to the requested information if the mass
        fraction of the element would be one on each calculated sample layer. To get the actual signal, one
        has to multiply bthe rates by the actual mass fraction of the element on each sample layer.
                           If set to 1 the rate will be already corrected by the actual mass fraction.

        Return a complete output of the form
        [Element Family][Layer][line]["energy"] - Energy in keV of the emission line
        [Element Family][Layer][line]["primary"] - Primary rate prior to correct for detection efficiency
        [Element Family][Layer][line]["secondary"] - Secondary rate prior to correct for detection efficiency
        [Element Family][Layer][line]["rate"] - Overall rate
        [Element Family][Layer][line]["efficiency"] - Detection efficiency
        [Element Family][Layer][line][element line layer] - Secondary rate (prior to correct for detection efficiency)
        due to the fluorescence from the given element, line and layer index composing the map key.
        """
        cdef std_vector[std_string] elementNamesVector
        cdef std_vector[int] sampleLayerIndicesVector
        cdef std_vector[std_string] lineFamiliesVector
        cdef std_map[std_string, std_map[int, std_map[std_string, std_map[std_string, double]]]] result
        cdef Beam beamInstance = Beam();
        cdef std_vector[double] beamEnergies
        cdef std_vector[double] beamWeights
        cdef std_vector[int] dummyIntVec
        cdef std_vector[double] dummyDoubleVec

        if hasattr(elementNames[0], "__len__"):
            # we have received a list of elements
            pass
        else:
            # we have a single element, convert to list
            elementNames = [elementNames]

        if hasattr(sampleLayer, "__len__"):
            # we have received a list of layer indices
            pass
        else:
            # we should have received an integer, convert to list
            sampleLayer = [sampleLayer]

        if len(lineFamily) and hasattr(lineFamily, "__len__"):
            # we have received a list of peak families
            pass
        else:
            # we should have a peak family, convert to list
            lineFamily = [lineFamily]

        # check the sizes match
        if len(lineFamily) != len(elementNames):
            raise IndexError("Number of elements should match the number of requested peak families")

        if len(sampleLayer) > 1:
            if len(sampleLayer) != len(elementNames):
                raise IndexError("Provide a single layer index or as many indices as elements")

        # fill the vectors
        for x in elementNames:
            elementNamesVector.push_back(toBytes(x))

        for x in sampleLayer:
            sampleLayerIndicesVector.push_back(x)

        for x in lineFamily:
            lineFamiliesVector.push_back(toBytes(x))

        with nogil:
            result = self.thisptr.getMultilayerFluorescence(elementNamesVector, deref(elementsLibrary.thisptr), \
                            sampleLayerIndicesVector, lineFamiliesVector, secondary, useGeometricEfficiency, useMassFractions, \
                            secondaryCalculationLimit, deref(overwritingBeam.thisptr))

        return toStringKeysAndValues(result)

    def getGeometricEfficiency(self, int layerIndex = 0):
        return self.thisptr.getGeometricEfficiency(layerIndex)