1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#/*##########################################################################
#
# The fisx library for X-Ray Fluorescence
#
# Copyright (c) 2014-2020 European Synchrotron Radiation Facility
#
# This file is part of the fisx X-ray developed by V.A. Sole
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
import unittest
import sys
import os
ElementList= ['H', 'He',
'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne',
'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar',
'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe',
'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se',
'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo',
'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn',
'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce',
'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy',
'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W',
'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb',
'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th',
'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf',
'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg',
'Bh', 'Hs', 'Mt']
def getSymbol(z):
return ElementList[z-1]
def getZ(ele):
return ElementList.index(ele) + 1
class testXRF(unittest.TestCase):
def setUp(self):
"""
import the module
"""
try:
from fisx import XRF
self._module = XRF
except:
self._module = None
def tearDown(self):
self._module = None
def testXRFImport(self):
self.assertTrue(self._module is not None,
'Unsuccessful fisx.XRF import')
def testXRFInstantiation(self):
try:
instance = self._module()
except:
instance = None
print("Instantiation error: ",
sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])
self.assertTrue(instance is not None,
'Unsuccesful XRF() instantiation')
def testXRFResults(self):
from fisx import Elements
from fisx import Material
from fisx import Detector
from fisx import XRF
elementsInstance = Elements()
elementsInstance.initializeAsPyMca()
# After the slow initialization (to be made once), the rest is fairly fast.
xrf = XRF()
xrf.setBeam(16.0) # set incident beam as a single photon energy of 16 keV
xrf.setBeamFilters([["Al1", 2.72, 0.11, 1.0]]) # Incident beam filters
# Steel composition of Schoonjans et al, 2012 used to generate table I
steel = {"C": 0.0445,
"N": 0.04,
"Si": 0.5093,
"P": 0.02,
"S": 0.0175,
"V": 0.05,
"Cr":18.37,
"Mn": 1.619,
"Fe":64.314, # calculated by subtracting the sum of all other elements
"Co": 0.109,
"Ni":12.35,
"Cu": 0.175,
"As": 0.010670,
"Mo": 2.26,
"W": 0.11,
"Pb": 0.001}
SRM_1155 = Material("SRM_1155", 1.0, 1.0)
SRM_1155.setComposition(steel)
elementsInstance.addMaterial(SRM_1155)
xrf.setSample([["SRM_1155", 1.0, 1.0]]) # Sample, density and thickness
xrf.setGeometry(45., 45.) # Incident and fluorescent beam angles
detector = Detector("Si1", 2.33, 0.035) # Detector Material, density, thickness
detector.setActiveArea(0.50) # Area and distance in consistent units
detector.setDistance(2.1) # expected cm2 and cm.
xrf.setDetector(detector)
Air = Material("Air", 0.0012048, 1.0)
Air.setCompositionFromLists(["C1", "N1", "O1", "Ar1", "Kr1"],
[0.0012048, 0.75527, 0.23178, 0.012827, 3.2e-06])
elementsInstance.addMaterial(Air)
xrf.setAttenuators([["Air", 0.0012048, 5.0, 1.0],
["Be1", 1.848, 0.002, 1.0]]) # Attenuators
fluo = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
elementsInstance,
secondary=2,
useMassFractions=1)
print("\nElement Peak Energy Rate Secondary Tertiary")
for key in fluo:
for layer in fluo[key]:
peakList = list(fluo[key][layer].keys())
peakList.sort()
for peak in peakList:
# energy of the peak
energy = fluo[key][layer][peak]["energy"]
# expected measured rate
rate = fluo[key][layer][peak]["rate"]
# primary photons (no attenuation and no detector considered)
primary = fluo[key][layer][peak]["primary"]
# secondary photons (no attenuation and no detector considered)
secondary = fluo[key][layer][peak]["secondary"]
# tertiary photons (no attenuation and no detector considered)
tertiary = fluo[key][layer][peak].get("tertiary", 0.0)
# correction due to secondary excitation
enhancement2 = (primary + secondary) / primary
enhancement3 = (primary + secondary + tertiary) / primary
print("%s %s %.4f %.3g %.5g %.5g" % \
(key, peak + (13 - len(peak)) * " ", energy,
rate, enhancement2, enhancement3))
# compare against expected values from Schoonjans et al.
testXMI = True
if (key == "Cr K") and peak.startswith("KL3"):
second = 1.626
third = 1.671
elif (key == "Cr K") and peak.startswith("KM3"):
second = 1.646
third = 1.694
elif (key == "Fe K") and peak.startswith("KL3"):
second = 1.063
third = 1.064
elif (key == "Fe K") and peak.startswith("KL3"):
second = 1.065
third = 1.066
else:
testXMI = False
if testXMI:
discrepancy = 100 * (abs(second-enhancement2)/second)
self.assertTrue(discrepancy < 1.5,
"%s %s secondary discrepancy = %.1f %%" % \
(key, peak, discrepancy))
discrepancy = 100 * (abs(third-enhancement3)/third)
self.assertTrue(discrepancy < 1.5,
"%s %s tertiary discrepancy = %.1f %%" % \
(key, peak, discrepancy))
# check user beamfilters
xrf.setUserBeamFilters([[[0.0, 100.], [0.5, 0.5], "half", "half intensity expected"]])
fluo2 = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
elementsInstance,
secondary=2,
useMassFractions=1)
for key in ["rate", "primary", "secondary"]:
before = fluo["Cr K"][0]["KL3"][key]
after = fluo2["Cr K"][0]["KL3"][key]
self.assertTrue(abs( before - 2.0 * after) < 1.0e-8,
"Expected to measure half %s and not %f" % \
(key, after / before))
# check removal of user beam filters
xrf.setUserBeamFilters([])
fluo2 = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
elementsInstance,
secondary=2,
useMassFractions=1)
for key in ["rate", "primary", "secondary"]:
before = fluo["Cr K"][0]["KL3"][key]
after = fluo2["Cr K"][0]["KL3"][key]
self.assertTrue(abs( before - after) < 1.0e-8,
"Expected to measure a 1 ratio and not %f" % \
(after / before))
# check user attenuators
xrf.setUserAttenuators([[{0.0:0.25, 100.:0.25},
"quarter",
"quarter intensity expected"]])
fluo2 = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
elementsInstance,
secondary=2,
useMassFractions=1)
for key in ["rate"]:
before = fluo["Cr K"][0]["KL3"][key]
after = fluo2["Cr K"][0]["KL3"][key]
self.assertTrue(abs( before - 4.0 * after) < 1.0e-8,
"Expected to measure 1/4 intensity and not %f" % \
(after / before))
# check removal of user attenuators
xrf.setUserAttenuators([])
fluo2 = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
elementsInstance,
secondary=2,
useMassFractions=1)
for key in ["rate"]:
before = fluo["Cr K"][0]["KL3"][key]
after = fluo2["Cr K"][0]["KL3"][key]
self.assertTrue(abs( before - after) < 1.0e-8,
"Expected to measure a 1 ratio and not %f" % \
(after / before))
def getSuite(auto=True):
testSuite = unittest.TestSuite()
if auto:
testSuite.addTest(\
unittest.TestLoader().loadTestsFromTestCase(testXRF))
else:
# use a predefined order
testSuite.addTest(testXRF("testXRFImport"))
testSuite.addTest(testXRF("testXRFInstantiation"))
testSuite.addTest(testXRF("testXRFResults"))
return testSuite
def test(auto=False):
unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto))
if __name__ == '__main__':
test()
|