1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
|
"""
fitslib, part of the fitsio package.
See the main docs at https://github.com/esheldon/fitsio
Copyright (C) 2011 Erin Sheldon, BNL. erin dot sheldon at gmail dot com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
"""
from __future__ import with_statement, print_function
import sys, os
import numpy
import copy
import warnings
from . import _fitsio_wrap
from .util import FITSRuntimeWarning, cfitsio_version
# for python3 compat
try:
xrange=xrange
except:
xrange=range
from functools import reduce
def read(filename, ext=None, extver=None, **keys):
"""
Convenience function to read data from the specified FITS HDU
By default, all data are read. For tables, send columns= and rows= to
select subsets of the data. Table data are read into a recarray; use a
FITS object and read_column() to get a single column as an ordinary array.
For images, create a FITS object and use slice notation to read subsets.
Under the hood, a FITS object is constructed and data are read using
an associated FITSHDU object.
parameters
----------
filename: string
A filename.
ext: number or string, optional
The extension. Either the numerical extension from zero
or a string extension name. If not sent, data is read from
the first HDU that has data.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname). These
extensions can optionally specify an EXTVER version number in the
header. Send extver= to select a particular version. If extver is not
sent, the first one will be selected. If ext is an integer, the extver
is ignored.
columns: list or array, optional
An optional set of columns to read from table HDUs. Default is to
read all. Can be string or number.
rows: optional
An optional list of rows to read from table HDUS. Default is to
read all.
header: bool, optional
If True, read the FITS header and return a tuple (data,header)
Default is False.
case_sensitive: bool, optional
Match column names and extension names with case-sensitivity. Default
is False.
lower: bool, optional
If True, force all columns names to lower case in output
upper: bool, optional
If True, force all columns names to upper case in output
vstorage: string, optional
Set the default method to store variable length columns. Can be
'fixed' or 'object'. See docs on fitsio.FITS for details.
"""
with FITS(filename, **keys) as fits:
header=keys.pop('header',False)
if ext is None:
for i in xrange(len(fits)):
if fits[i].has_data():
ext=i
break
if ext is None:
raise IOError("No extensions have data")
item=_make_item(ext, extver=extver)
data = fits[item].read(**keys)
if header:
h = fits[item].read_header()
return data, h
else:
return data
def read_header(filename, ext=0, extver=None, case_sensitive=False, **keys):
"""
Convenience function to read the header from the specified FITS HDU
The FITSHDR allows access to the values and comments by name and
number.
Under the hood, a FITS object is constructed and data are read using
an associated FITSHDU object.
parameters
----------
filename: string
A filename.
ext: number or string, optional
The extension. Either the numerical extension from zero
or a string extension name. Default read primary header.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname). These
extensions can optionally specify an EXTVER version number in the
header. Send extver= to select a particular version. If extver is not
sent, the first one will be selected. If ext is an integer, the extver
is ignored.
case_sensitive: bool, optional
Match extension names with case-sensitivity. Default is False.
"""
item=_make_item(ext,extver=extver)
with FITS(filename, case_sensitive=case_sensitive) as fits:
return fits[item].read_header()
def read_scamp_head(fname, header=None):
"""
read a SCAMP .head file as a fits header FITSHDR object
parameters
----------
fname: string
The path to the SCAMP .head file
header: FITSHDR, optional
Optionally combine the header with the input one. The input can
be any object convertable to a FITSHDR object
returns
-------
header: FITSHDR
A fits header object of type FITSHDR
"""
with open(fname) as fobj:
lines=fobj.readlines()
lines=[l.strip() for l in lines if l[0:3] != 'END']
# if header is None an empty FITSHDR is created
hdr=FITSHDR(header)
for l in lines:
hdr.add_record(l)
return hdr
def _make_item(ext, extver=None):
if extver is not None:
# e
item=(ext,extver)
else:
item=ext
return item
def write(filename, data, extname=None, extver=None, units=None,
compress=None, table_type='binary', header=None,
clobber=False, **keys):
"""
Convenience function to create a new HDU and write the data.
Under the hood, a FITS object is constructed. If you want to append rows
to an existing HDU, or modify data in an HDU, please construct a FITS
object.
parameters
----------
filename: string
A filename.
data:
Either a normal n-dimensional array or a recarray. Images are written
to a new IMAGE_HDU and recarrays are written to BINARY_TBl or
ASCII_TBL hdus.
extname: string, optional
An optional name for the new header unit.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname).
These extensions can optionally specify an EXTVER version number in
the header. Send extver= to set a particular version, which will
be represented in the header with keyname EXTVER. The extver must
be an integer > 0. If extver is not sent, the first one will be
selected. If ext is an integer, the extver is ignored.
compress: string, optional
A string representing the compression algorithm for images, default None.
Can be one of
'RICE'
'GZIP'
'PLIO' (no unsigned or negative integers)
'HCOMPRESS'
(case-insensitive) See the cfitsio manual for details.
header: FITSHDR, list, dict, optional
A set of header keys to write. The keys are written before the data
is written to the table, preventing a resizing of the table area.
Can be one of these:
- FITSHDR object
- list of dictionaries containing 'name','value' and optionally
a 'comment' field.
- a dictionary of keyword-value pairs; no comments are written
in this case, and the order is arbitrary
Note required keywords such as NAXIS, XTENSION, etc are cleaed out.
clobber: bool, optional
If True, overwrite any existing file. Default is to append
a new extension on existing files.
table keywords
--------------
These keywords are only active when writing tables.
units: list
A list of strings representing units for each column.
table_type: string, optional
Either 'binary' or 'ascii', default 'binary'
Matching is case-insensitive
"""
with FITS(filename, 'rw', clobber=clobber, **keys) as fits:
fits.write(data,
table_type=table_type,
units=units,
extname=extname,
extver=extver,
compress=compress,
header=header,
**keys)
ANY_HDU=-1
READONLY=0
READWRITE=1
IMAGE_HDU=0
ASCII_TBL=1
BINARY_TBL=2
NOCOMPRESS=0
RICE_1 = 11
GZIP_1 = 21
PLIO_1 = 31
HCOMPRESS_1 = 41
class FITS(object):
"""
A class to read and write FITS images and tables.
This class uses the cfitsio library for almost all relevant work.
parameters
----------
filename: string
The filename to open.
mode: int/string, optional
The mode, either a string or integer.
For reading only
'r' or 0
For reading and writing
'rw' or 1
You can also use fitsio.READONLY and fitsio.READWRITE.
Default is 'r'
clobber: bool, optional
If the mode is READWRITE, and clobber=True, then remove any existing
file before opening.
case_sensitive: bool, optional
Match column names and extension names with case-sensitivity. Default
is False.
lower: bool, optional
If True, force all columns names to lower case in output
upper: bool, optional
If True, force all columns names to upper case in output
vstorage: string, optional
A string describing how, by default, to store variable length columns
in the output array. This can be over-ridden when reading by using the
using vstorage keyword to the individual read methods. The options are
'fixed': Use a fixed length field in the array, with
dimensions equal to the max possible size for column.
Arrays are padded with zeros.
'object': Use an object for the field in the array.
Each element will then be an array of the right type,
but only using the memory needed to hold that element.
Default is 'fixed'. The rationale is that this is the option
of 'least surprise'
iter_row_buffer: integer
Number of rows to buffer when iterating over table HDUs.
Default is 1.
See the docs at https://github.com/esheldon/fitsio
"""
def __init__(self, filename, mode='r', **keys):
self.keys=keys
filename = extract_filename(filename)
self._filename = filename
#self.mode=keys.get('mode','r')
self.mode=mode
self.case_sensitive=keys.get('case_sensitive',False)
self.verbose = keys.get('verbose',False)
clobber = keys.get('clobber',False)
if self.mode not in _int_modemap:
raise IOError("mode should be one of 'r','rw',"
"READONLY,READWRITE")
self.charmode = _char_modemap[self.mode]
self.intmode = _int_modemap[self.mode]
create=0
if self.mode in [READWRITE,'rw']:
if clobber:
create=1
if os.path.exists(filename):
os.remove(filename)
else:
if os.path.exists(filename):
create=0
else:
create=1
else:
if not os.path.exists(filename):
raise IOError("File not found: '%s'" % filename)
self._FITS = _fitsio_wrap.FITS(filename, self.intmode, create)
def close(self):
"""
Close the fits file and set relevant metadata to None
"""
if hasattr(self,'_FITS'):
if self._FITS is not None:
self._FITS.close()
self._FITS=None
self._filename=None
self.mode=None
self.charmode=None
self.intmode=None
self.hdu_list=None
self.hdu_map=None
def movabs_ext(self, ext):
"""
Move to the indicated zero-offset extension.
In general, it is not necessary to use this method explicitly.
"""
return self._FITS.movabs_hdu(ext+1)
def movabs_hdu(self, hdunum):
"""
Move to the indicated one-offset hdu number.
In general, it is not necessary to use this method explicitly.
"""
return self._FITS.movabs_hdu(hdunum)
def movnam_ext(self, extname, hdutype=ANY_HDU, extver=0):
"""
Move to the indicated extension by name
In general, it is not necessary to use this method explicitly.
returns the zero-offset extension number
"""
hdu = self._FITS.movnam_hdu(hdutype, extname, extver)
return hdu-1
def movnam_hdu(self, extname, hdutype=ANY_HDU, extver=0):
"""
Move to the indicated HDU by name
In general, it is not necessary to use this method explicitly.
returns the one-offset extension number
"""
hdu = self._FITS.movnam_hdu(hdutype, extname, extver)
return hdu
def reopen(self):
"""
close and reopen the fits file with the same mode
"""
self._FITS.close()
del self._FITS
self._FITS = _fitsio_wrap.FITS(self._filename, self.intmode, 0)
self.update_hdu_list()
def write(self, data, units=None, extname=None, extver=None,
compress=None, tile_dims=None,
header=None,
names=None,
table_type='binary', **keys):
"""
Write the data to a new HDU.
This method is a wrapper. If this is an IMAGE_HDU, write_image is
called, otherwise write_table is called.
parameters
----------
data: ndarray
An n-dimensional image or an array with fields.
extname: string, optional
An optional extension name.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname).
These extensions can optionally specify an EXTVER version number in
the header. Send extver= to set a particular version, which will
be represented in the header with keyname EXTVER. The extver must
be an integer > 0. If extver is not sent, the first one will be
selected. If ext is an integer, the extver is ignored.
header: FITSHDR, list, dict, optional
A set of header keys to write. Can be one of these:
- FITSHDR object
- list of dictionaries containing 'name','value' and optionally
a 'comment' field.
- a dictionary of keyword-value pairs; no comments are written
in this case, and the order is arbitrary
Note required keywords such as NAXIS, XTENSION, etc are cleaed out.
Image-only keywords:
compress: string, optional
A string representing the compression algorithm for images, default None.
Can be one of
'RICE'
'GZIP'
'PLIO' (no unsigned or negative integers)
'HCOMPRESS'
(case-insensitive) See the cfitsio manual for details.
Table-only keywords:
units: list/dec, optional:
A list of strings with units for each column.
table_type: string, optional
Either 'binary' or 'ascii', default 'binary'
Matching is case-insensitive
restrictions
------------
The File must be opened READWRITE
"""
isimage=False
if data is None:
isimage=True
elif isinstance(data,numpy.ndarray):
if data.dtype.fields == None:
isimage=True
if isimage:
self.write_image(data, extname=extname, extver=extver,
compress=compress, tile_dims=tile_dims,
header=header)
else:
self.write_table(data, units=units,
extname=extname, extver=extver, header=header,
names=names,
table_type=table_type)
def write_image(self, img, extname=None, extver=None,
compress=None, tile_dims=None, header=None):
"""
Create a new image extension and write the data.
parameters
----------
img: ndarray
An n-dimensional image.
extname: string, optional
An optional extension name.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname).
These extensions can optionally specify an EXTVER version number in
the header. Send extver= to set a particular version, which will
be represented in the header with keyname EXTVER. The extver must
be an integer > 0. If extver is not sent, the first one will be
selected. If ext is an integer, the extver is ignored.
compress: string, optional
A string representing the compression algorithm for images, default None.
Can be one of
'RICE'
'GZIP'
'PLIO' (no unsigned or negative integers)
'HCOMPRESS'
(case-insensitive) See the cfitsio manual for details.
header: FITSHDR, list, dict, optional
A set of header keys to write. Can be one of these:
- FITSHDR object
- list of dictionaries containing 'name','value' and optionally
a 'comment' field.
- a dictionary of keyword-value pairs; no comments are written
in this case, and the order is arbitrary
Note required keywords such as NAXIS, XTENSION, etc are cleaed out.
restrictions
------------
The File must be opened READWRITE
"""
self.create_image_hdu(img,
header=header,
extname=extname, extver=extver,
compress=compress, tile_dims=tile_dims)
if header is not None:
self[-1].write_keys(header)
self[-1]._update_info()
#if img is not None:
# self[-1].write(img)
def create_image_hdu(self,
img=None,
dims=None,
dtype=None,
extname=None,
extver=None,
compress=None,
tile_dims=None,
header=None):
"""
Create a new, empty image HDU and reload the hdu list. Either
create from an input image or from input dims and dtype
fits.create_image_hdu(image, ...)
fits.create_image_hdu(dims=dims, dtype=dtype)
If an image is sent, the data are also written.
You can write data into the new extension using
fits[extension].write(image)
Alternatively you can skip calling this function and instead just use
fits.write(image)
or
fits.write_image(image)
which will create the new image extension for you with the appropriate
structure, and write the data.
parameters
----------
img: ndarray, optional
An image with which to determine the properties of the HDU. The
data will be written.
dims: sequence, optional
A sequence describing the dimensions of the image to be created
on disk. You must also send a dtype=
dtype: numpy data type
When sending dims= also send the data type. Can be of the
various numpy data type declaration styles, e.g. 'f8',
numpy.float64.
extname: string, optional
An optional extension name.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname).
These extensions can optionally specify an EXTVER version number in
the header. Send extver= to set a particular version, which will
be represented in the header with keyname EXTVER. The extver must
be an integer > 0. If extver is not sent, the first one will be
selected. If ext is an integer, the extver is ignored.
compress: string, optional
A string representing the compression algorithm for images, default None.
Can be one of
'RICE'
'GZIP'
'PLIO' (no unsigned or negative integers)
'HCOMPRESS'
(case-insensitive) See the cfitsio manual for details.
header: FITSHDR, list, dict, optional
This is only used to determine how many slots to reserve for
header keywords
restrictions
------------
The File must be opened READWRITE
"""
if (img is not None) or (img is None and dims is None):
from_image=True
elif dims is not None:
from_image=False
if from_image:
img2send=img
if img is not None:
dims=img.shape
dtstr = img.dtype.descr[0][1][1:]
if img.size == 0:
raise ValueError("data must have at least 1 row")
# data must be c-contiguous and native byte order
if not img.flags['C_CONTIGUOUS']:
# this always makes a copy
img2send = numpy.ascontiguousarray(img)
array_to_native(img2send, inplace=True)
else:
img2send = array_to_native(img, inplace=False)
else:
self._ensure_empty_image_ok()
compress=None
tile_dims=None
# we get dims from the input image
dims2send=None
else:
# img was None and dims was sent
if dtype is None:
raise ValueError("send dtype= with dims=")
# this must work!
dtype=numpy.dtype(dtype)
dtstr = dtype.descr[0][1][1:]
# use the example image to build the type in C
img2send=numpy.zeros(1, dtype=dtype)
# sending an array simplifies access
dims2send = numpy.array(dims,dtype='i8',ndmin=1)
if img2send is not None:
if img2send.dtype.fields is not None:
raise ValueError("got record data type, expected regular ndarray")
if extname is not None and extver is not None:
extver = check_extver(extver)
if extver is None:
# will be ignored
extver = 0
if extname is None:
# will be ignored
extname=""
comptype = get_compress_type(compress)
tile_dims = get_tile_dims(tile_dims, dims)
if img2send is not None:
check_comptype_img(comptype, dtstr)
if header is not None:
nkeys=len(header)
else:
nkeys=0
self._FITS.create_image_hdu(img2send,
nkeys,
dims=dims2send,
comptype=comptype,
tile_dims=tile_dims,
extname=extname,
extver=extver)
# don't rebuild the whole list unless this is the first hdu
# to be created
self.update_hdu_list(rebuild=False)
def _ensure_empty_image_ok(self):
"""
Only allow empty HDU for first HDU and if there is no
data there already
"""
if len(self) > 1:
raise RuntimeError("Cannot write None image at extension %d" % len(self))
if 'ndims' in self[0]._info:
raise RuntimeError("Can only write None images to extension zero, "
"which already exists")
def write_table(self, data, table_type='binary',
names=None, formats=None, units=None,
extname=None, extver=None, header=None):
"""
Create a new table extension and write the data.
The table definition is taken from the fields in the input array. If
you want to append new rows to the table, access the HDU directly and
use the write() function, e.g.
fits[extension].append(data)
parameters
----------
data: recarray
A numpy array with fields. The table definition will be
determined from this array.
table_type: string, optional
Either 'binary' or 'ascii', default 'binary'
Matching is case-insensitive
extname: string, optional
An optional string for the extension name.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname).
These extensions can optionally specify an EXTVER version number in
the header. Send extver= to set a particular version, which will
be represented in the header with keyname EXTVER. The extver must
be an integer > 0. If extver is not sent, the first one will be
selected. If ext is an integer, the extver is ignored.
units: list/dec, optional:
A list of strings with units for each column.
header: FITSHDR, list, dict, optional
A set of header keys to write. The keys are written before the data
is written to the table, preventing a resizing of the table area.
Can be one of these:
- FITSHDR object
- list of dictionaries containing 'name','value' and optionally
a 'comment' field.
- a dictionary of keyword-value pairs; no comments are written
in this case, and the order is arbitrary
Note required keywords such as NAXIS, XTENSION, etc are cleaed out.
restrictions
------------
The File must be opened READWRITE
"""
"""
if data.dtype.fields == None:
raise ValueError("data must have fields")
if data.size == 0:
raise ValueError("data must have at least 1 row")
"""
self.create_table_hdu(data=data,
header=header,
names=names,
units=units,
extname=extname,
extver=extver,
table_type=table_type)
if header is not None:
self[-1].write_keys(header)
self[-1]._update_info()
self[-1].write(data,names=names)
def create_table_hdu(self, data=None, dtype=None,
header=None,
names=None, formats=None,
units=None, dims=None, extname=None, extver=None,
table_type='binary'):
"""
Create a new, empty table extension and reload the hdu list.
There are three ways to do it:
1) send a numpy dtype, from which the formats in the fits file will
be determined.
2) Send an array in data= keyword. this is required if you have
object fields for writing to variable length columns.
3) send the names,formats and dims yourself
You can then write data into the new extension using
fits[extension].write(array)
If you want to write to a single column
fits[extension].write_column(array)
But be careful as the other columns will be left zeroed.
Often you will instead just use write_table to do this all
atomically.
fits.write_table(recarray)
write_table will create the new table extension for you with the
appropriate fields.
parameters
----------
dtype: numpy dtype or descriptor, optional
If you have an array with fields, you can just send arr.dtype. You
can also use a list of tuples, e.g. [('x','f8'),('index','i4')] or
a dictionary representation.
data: a numpy array with fields, optional
or a dictionary
An array or dict from which to determine the table definition. You
must use this instead of sending a descriptor if you have object
array fields, as this is the only way to determine the type and max
size.
names: list of strings, optional
The list of field names
formats: list of strings, optional
The TFORM format strings for each field.
dims: list of strings, optional
An optional list of dimension strings for each field. Should
match the repeat count for the formats fields. Be careful of
the order since FITS is more like fortran. See the descr2tabledef
function.
table_type: string, optional
Either 'binary' or 'ascii', default 'binary'
Matching is case-insensitive
units: list of strings, optional
An optional list of unit strings for each field.
extname: string, optional
An optional extension name.
extver: integer, optional
FITS allows multiple extensions to have the same name (extname).
These extensions can optionally specify an EXTVER version number in
the header. Send extver= to set a particular version, which will
be represented in the header with keyname EXTVER. The extver must
be an integer > 0. If extver is not sent, the first one will be
selected. If ext is an integer, the extver is ignored.
header: FITSHDR, list, dict, optional
This is only used to determine how many slots to reserve for
header keywords
restrictions
------------
The File must be opened READWRITE
"""
table_type_int=_extract_table_type(table_type)
if data is not None:
if isinstance(data,numpy.ndarray):
names, formats, dims = array2tabledef(data, table_type=table_type)
elif isinstance(data, (list,dict)):
names, formats, dims = collection2tabledef(data, names=names,
table_type=table_type)
else:
raise ValueError("data must be an ndarray with fields or a dict")
elif dtype is not None:
dtype=numpy.dtype(dtype)
names, formats, dims = descr2tabledef(dtype.descr)
else:
if names is None or formats is None:
raise ValueError("send either dtype=, data=, or names= and formats=")
if not isinstance(names,list) or not isinstance(formats,list):
raise ValueError("names and formats should be lists")
if len(names) != len(formats):
raise ValueError("names and formats must be same length")
if dims is not None:
if not isinstance(dims,list):
raise ValueError("dims should be a list")
if len(dims) != len(names):
raise ValueError("names and dims must be same length")
if units is not None:
if not isinstance(units,list):
raise ValueError("units should be a list")
if len(units) != len(names):
raise ValueError("names and units must be same length")
if extname is not None:
if not isinstance(extname,str):
raise ValueError("extension name must be a string")
if extname is not None and extver is not None:
extver = check_extver(extver)
if extver is None:
# will be ignored
extver = 0
if extname is None:
# will be ignored
extname=""
if header is not None:
nkeys=len(header)
else:
nkeys=0
# note we can create extname in the c code for tables, but not images
self._FITS.create_table_hdu(table_type_int, nkeys,
names, formats, tunit=units, tdim=dims,
extname=extname, extver=extver)
# don't rebuild the whole list unless this is the first hdu
# to be created
self.update_hdu_list(rebuild=False)
def update_hdu_list(self, rebuild=True):
"""
Force an update of the entire HDU list
Normally you don't need to call this method directly
if rebuild is false or the hdu_list is not yet set, the list is
rebuilt from scratch
"""
if not hasattr(self,'hdu_list'):
rebuild=True
if rebuild:
self.hdu_list = []
self.hdu_map={}
# we don't know how many hdus there are, so iterate
# until we can't open any more
ext_start=0
else:
# start from last
ext_start=len(self)
ext=ext_start
while True:
try:
self._append_hdu_info(ext)
except IOError:
break
except RuntimeError:
break
ext = ext + 1
def _append_hdu_info(self, ext):
"""
internal routine
append info for indiciated extension
"""
# raised IOError if not found
hdu_type=self._FITS.movabs_hdu(ext+1)
if hdu_type==IMAGE_HDU:
hdu=ImageHDU(self._FITS, ext, **self.keys)
elif hdu_type==BINARY_TBL:
hdu=TableHDU(self._FITS, ext, **self.keys)
elif hdu_type==ASCII_TBL:
hdu=AsciiTableHDU(self._FITS, ext, **self.keys)
else:
mess=("extension %s is of unknown type %s "
"this is probably a bug")
mess=mess % (ext,hdu_type)
raise IOError(mess)
self.hdu_list.append(hdu)
self.hdu_map[ext] = hdu
extname=hdu.get_extname()
if not self.case_sensitive:
extname=extname.lower()
if extname != '':
# this will guarantee we default to *first* version,
# if version is not requested, using __getitem__
if extname not in self.hdu_map:
self.hdu_map[extname] = hdu
ver=hdu.get_extver()
if ver > 0:
key='%s-%s' % (extname,ver)
self.hdu_map[key] = hdu
def __iter__(self):
"""
begin iteration over HDUs
"""
if not hasattr(self,'hdu_list'):
self.update_hdu_list()
self._iter_index=0
return self
def next(self):
"""
Move to the next iteration
"""
if self._iter_index == len(self.hdu_list):
raise StopIteration
hdu=self.hdu_list[self._iter_index]
self._iter_index += 1
return hdu
__next__=next
def __len__(self):
"""
get the number of extensions
"""
if not hasattr(self,'hdu_list'):
self.update_hdu_list()
return len(self.hdu_list)
def _extract_item(self,item):
"""
utility function to extract an "item", meaning
a extension number,name plus version.
"""
ver=0
if isinstance(item,tuple):
ver_sent=True
nitem=len(item)
if nitem == 1:
ext=item[0]
elif nitem == 2:
ext,ver=item
else:
ver_sent=False
ext=item
return ext,ver,ver_sent
def __getitem__(self, item):
"""
Get an hdu by number, name, and possibly version
"""
if not hasattr(self, 'hdu_list'):
self.update_hdu_list()
ext,ver,ver_sent = self._extract_item(item)
try:
# if it is an int
hdu = self.hdu_list[ext]
except:
# might be a string
ext='%s' % ext
if not self.case_sensitive:
mess='(case insensitive)'
ext=ext.lower()
else:
mess='(case sensitive)'
if ver > 0:
key = '%s-%s' % (ext,ver)
if key not in self.hdu_map:
raise IOError("extension not found: %s, "
"version %s %s" % (ext,ver,mess))
hdu = self.hdu_map[key]
else:
if ext not in self.hdu_map:
raise IOError("extension not found: %s %s" % (ext,mess))
hdu = self.hdu_map[ext]
return hdu
def __contains__(self, item):
"""
tell whether specified extension exists, possibly
with version sent as well
"""
try:
hdu=self[item]
return True
except:
return False
def __repr__(self):
"""
Text representation of some fits file metadata
"""
spacing = ' '*2
if not hasattr(self, 'hdu_list'):
self.update_hdu_list()
rep = ['']
rep.append("%sfile: %s" % (spacing,self._filename))
rep.append("%smode: %s" % (spacing,_modeprint_map[self.intmode]))
rep.append('%sextnum %-15s %s' % (spacing,"hdutype","hduname[v]"))
for i,hdu in enumerate(self.hdu_list):
t = hdu._info['hdutype']
name = hdu.get_extname()
if name != '':
ver=hdu.get_extver()
if ver != 0:
name = '%s[%s]' % (name,ver)
rep.append("%s%-6d %-15s %s" % (spacing, i, _hdu_type_map[t], name))
rep = '\n'.join(rep)
return rep
#def __del__(self):
# self.close()
def __enter__(self):
return self
def __exit__(self, exception_type, exception_value, traceback):
self.close()
class HDUBase(object):
"""
A representation of a FITS HDU
construction parameters
-----------------------
fits: FITS object
An instance of a _fistio_wrap.FITS object. This is the low-level
python object, not the FITS object defined above.
ext: integer
The extension number.
case_sensitive: bool, optional
Match column names and extension names with case-sensitivity. Default
is False.
lower: bool, optional
If True, force all columns names to lower case in output
upper: bool, optional
If True, force all columns names to upper case in output
vstorage: string, optional
Set the default method to store variable length columns. Can be
'fixed' or 'object'. See docs on fitsio.FITS for details.
iter_row_buffer: integer
Number of rows to buffer when iterating over table HDUs.
Default is 1.
"""
def __init__(self, fits, ext, **keys):
self._FITS = fits
self._ext = ext
self._update_info()
self._filename = self._FITS.filename()
def get_extnum(self):
"""
Get the extension number
"""
return self._ext
def get_extname(self):
"""
Get the name for this extension, can be an empty string
"""
name = self._info['extname']
if name.strip() == '':
name = self._info['hduname']
return name.strip()
def get_extver(self):
"""
Get the version for this extension.
Used when a name is given to multiple extensions
"""
ver=self._info['extver']
if ver == 0:
ver=self._info['hduver']
return ver
def get_exttype(self, num=False):
"""
Get the extension type
By default the result is a string that mirrors
the enumerated type names in cfitsio
'IMAGE_HDU', 'ASCII_TBL', 'BINARY_TBL'
which have numeric values
0 1 2
send num=True to get the numbers. The values
fitsio.IMAGE_HDU .ASCII_TBL, and .BINARY_TBL
are available for comparison
parameters
----------
num: bool, optional
Return the numeric values.
"""
if num:
return self._info['hdutype']
else:
name=_hdu_type_map[self._info['hdutype']]
return name
def get_offsets(self):
"""
returns
-------
a dictionary with these entries
header_start:
byte offset from beginning of the file to the start
of the header
data_start:
byte offset from beginning of the file to the start
of the data section
data_end:
byte offset from beginning of the file to the end
of the data section
Note these are also in the information dictionary, which
you can access with get_info()
"""
return dict(
header_start=self._info['header_start'],
data_start=self._info['data_start'],
data_end=self._info['data_end'],
)
def get_info(self):
"""
Get a copy of the internal dictionary holding extension information
"""
return copy.deepcopy(self._info)
def get_filename(self):
"""
Get a copy of the filename for this fits file
"""
return copy.copy(self._filename)
def write_checksum(self):
"""
Write the checksum into the header for this HDU.
Computes the checksum for the HDU, both the data portion alone (DATASUM
keyword) and the checksum complement for the entire HDU (CHECKSUM).
returns
-------
A dict with keys 'datasum' and 'hdusum'
"""
return self._FITS.write_checksum(self._ext+1)
def verify_checksum(self):
"""
Verify the checksum in the header for this HDU.
"""
res = self._FITS.verify_checksum(self._ext+1)
if res['dataok'] != 1:
raise ValueError("data checksum failed")
if res['hduok'] != 1:
raise ValueError("hdu checksum failed")
def write_comment(self, comment):
"""
Write a comment into the header
"""
self._FITS.write_comment(self._ext+1, str(comment))
def write_history(self, history):
"""
Write history text into the header
"""
self._FITS.write_history(self._ext+1, str(history))
def write_key(self, keyname, value, comment=""):
"""
Write the input value to the header
parameters
----------
keyname: string
Name of keyword to write/update
value: scalar
Value to write, can be string float or integer type,
including numpy scalar types.
comment: string, optional
An optional comment to write for this key
Notes
-----
Write COMMENT and HISTORY using the write_comment and write_history
methods
"""
if value is None:
value=''
if isinstance(value,bool):
if value:
v=1
else:
v=0
self._FITS.write_logical_key(self._ext+1,
str(keyname),
v,
str(comment))
elif isinstance(value, _stypes):
self._FITS.write_string_key(self._ext+1,
str(keyname),
str(value),
str(comment))
elif isinstance(value, _ftypes):
self._FITS.write_double_key(self._ext+1,
str(keyname),
float(value),
str(comment))
elif isinstance(value, _itypes):
self._FITS.write_long_key(self._ext+1,
str(keyname),
int(value),
str(comment))
elif isinstance(value,(tuple,list)):
vl=[str(el) for el in value]
sval=','.join(vl)
self._FITS.write_string_key(self._ext+1,
str(keyname),
sval,
str(comment))
else:
sval=str(value)
mess=("warning, keyword '%s' has non-standard "
"value type %s, "
"Converting to string: '%s'")
warnings.warn(mess % (keyname,type(value),sval), FITSRuntimeWarning)
self._FITS.write_string_key(self._ext+1,
str(keyname),
sval,
str(comment))
def write_keys(self, records_in, clean=True):
"""
Write the keywords to the header.
parameters
----------
records: FITSHDR or list or dict
Can be one of these:
- FITSHDR object
- list of dictionaries containing 'name','value' and optionally
a 'comment' field.
- a dictionary of keyword-value pairs; no comments are written
in this case, and the order is arbitrary
clean: boolean
If True, trim out the standard fits header keywords that are
created on HDU creation, such as EXTEND, SIMPLE, STTYPE, TFORM,
TDIM, XTENSION, BITPIX, NAXIS, etc.
Notes
-----
Input keys named COMMENT and HISTORY are written using the
write_comment and write_history methods.
"""
if isinstance(records_in,FITSHDR):
hdr = records_in
else:
hdr = FITSHDR(records_in)
if clean:
is_table = isinstance(self, TableHDU)
hdr.clean(is_table=is_table)
for r in hdr.records():
name=r['name'].upper()
value=r['value']
if name=='COMMENT':
self.write_comment(value)
elif name=='HISTORY':
self.write_history(value)
else:
comment=r.get('comment','')
self.write_key(name,value,comment=comment)
def read_header(self):
"""
Read the header as a FITSHDR
The FITSHDR allows access to the values and comments by name and
number.
"""
# note converting strings
return FITSHDR(self.read_header_list(), convert=True)
def read_header_list(self):
"""
Read the header as a list of dictionaries.
You will usually use read_header instead, which just sends the output
of this functioin to the constructor of a FITSHDR, which allows access
to the values and comments by name and number.
Each dictionary is
'name': the keyword name
'value': the value field as a string
'comment': the comment field as a string.
"""
return self._FITS.read_header(self._ext+1)
def _update_info(self):
"""
Update metadata for this HDU
"""
try:
self._FITS.movabs_hdu(self._ext+1)
except IOError:
raise RuntimeError("no such hdu")
self._info = self._FITS.get_hdu_info(self._ext+1)
def _get_repr_list(self):
"""
Get some representation data common to all HDU types
"""
spacing = ' '*2
text = ['']
text.append("%sfile: %s" % (spacing,self._filename))
text.append("%sextension: %d" % (spacing,self._info['hdunum']-1))
text.append("%stype: %s" % (spacing,_hdu_type_map[self._info['hdutype']]))
extname=self.get_extname()
if extname != "":
text.append("%sextname: %s" % (spacing,extname))
extver=self.get_extver()
if extver != 0:
text.append("%sextver: %s" % (spacing,extver))
return text, spacing
class TableHDU(HDUBase):
"""
A class representing a table HDU
"""
def __init__(self, fits, ext, **keys):
super(TableHDU,self).__init__(fits, ext, **keys)
self.lower=keys.get('lower',False)
self.upper=keys.get('upper',False)
self._vstorage=keys.get('vstorage','fixed')
self.case_sensitive=keys.get('case_sensitive',False)
self._iter_row_buffer=keys.get('iter_row_buffer',1)
if self._info['hdutype'] == ASCII_TBL:
self._table_type_str='ascii'
else:
self._table_type_str='binary'
def get_nrows(self):
"""
Get number of rows in the table.
"""
nrows=self._info.get('nrows',None)
if nrows is None:
raise ValueError("nrows not in info table; this is a bug")
return nrows
def get_colnames(self):
"""
Get a copy of the column names for a table HDU
"""
return copy.copy(self._colnames)
def get_colname(self, colnum):
"""
Get the name associated with the given column number
parameters
----------
colnum: integer
The number for the column, zero offset
"""
if colnum < 0 or colnum > (len(self._colnames)-1):
raise ValueError("colnum out of range [0,%s-1]" % (0,len(self._colnames)))
return self._colnames[colnum]
def get_vstorage(self):
"""
Get a string representing the storage method for variable length
columns
"""
return copy.copy(self._vstorage)
def has_data(self):
"""
Determine if this HDU has any data
Check that the row count is not zero
"""
if self._info['nrows'] > 0:
return True
else:
return False
def where(self, expression):
"""
Return the indices where the expression evaluates to true.
parameters
----------
expression: string
A fits row selection expression. E.g.
"x > 3 && y < 5"
"""
return self._FITS.where(self._ext+1, expression)
def write(self, data, **keys):
"""
Write data into this HDU
parameters
----------
data: ndarray or list of ndarray
A numerical python array. Should be an ordinary array for image
HDUs, should have fields for tables. To write an ordinary array to
a column in a table HDU, use write_column. If data already exists
in this HDU, it will be overwritten. See the append(() method to
append new rows to a table HDU.
firstrow: integer, optional
At which row you should begin writing to tables. Be sure you know
what you are doing! For appending see the append() method.
Default 0.
columns: list, optional
If data is a list of arrays, you must send columns as a list
of names or column numbers
You can also send names=
names: list, optional
same as columns=
"""
slow = keys.get('slow',False)
isrec=False
if isinstance(data,(list,dict)):
if isinstance(data,list):
data_list=data
columns_all = keys.get('columns',None)
if columns_all is None:
columns_all=keys.get('names',None)
if columns_all is None:
raise ValueError("you must send columns with a list of arrays")
else:
columns_all=list(data.keys())
data_list=[data[n] for n in columns_all]
colnums_all = [self._extract_colnum(c) for c in columns_all]
names = [self.get_colname(c) for c in colnums_all]
isobj=numpy.zeros(len(data_list),dtype=numpy.bool)
for i in xrange(len(data_list)):
isobj[i] = is_object(data_list[i])
else:
if data.dtype.fields is None:
raise ValueError("You are writing to a table, so I expected "
"an array with fields as input. If you want "
"to write a simple array, you should use "
"write_column to write to a single column, "
"or instead write to an image hdu")
if data.shape is ():
raise ValueError("cannot write data with shape ()")
isrec=True
names=data.dtype.names
# only write object types (variable-length columns) after
# writing the main table
isobj = fields_are_object(data)
data_list = []
colnums_all=[]
for i,name in enumerate(names):
colnum = self._extract_colnum(name)
data_list.append(data[name])
colnums_all.append(colnum)
if slow:
for i,name in enumerate(names):
if not isobj[i]:
self.write_column(name, data_list[i], **keys)
else:
nonobj_colnums = []
nonobj_arrays = []
for i in xrange(len(data_list)):
if not isobj[i]:
nonobj_colnums.append(colnums_all[i])
if isrec:
# this still leaves possibility of f-order sub-arrays..
colref=array_to_native(data_list[i],inplace=False)
else:
colref=array_to_native_c(data_list[i],inplace=False)
nonobj_arrays.append(colref)
if len(nonobj_arrays) > 0:
firstrow=keys.get('firstrow',0)
self._FITS.write_columns(self._ext+1, nonobj_colnums, nonobj_arrays,
firstrow=firstrow+1)
# writing the object arrays always occurs the same way
# need to make sure this works for array fields
for i,name in enumerate(names):
if isobj[i]:
self.write_var_column(name, data_list[i], **keys)
self._update_info()
def write_column(self, column, data, **keys):
"""
Write data to a column in this HDU
This HDU must be a table HDU.
parameters
----------
column: scalar string/integer
The column in which to write. Can be the name or number (0 offset)
column: ndarray
Numerical python array to write. This should match the
shape of the column. You are probably better using fits.write_table()
to be sure.
firstrow: integer, optional
At which row you should begin writing. Be sure you know what you
are doing! For appending see the append() method. Default 0.
"""
firstrow=keys.get('firstrow',0)
colnum = self._extract_colnum(column)
# need it to be contiguous and native byte order. For now, make a
# copy. but we may be able to avoid this with some care.
if not data.flags['C_CONTIGUOUS']:
# this always makes a copy
data_send = numpy.ascontiguousarray(data)
# this is a copy, we can make sure it is native
# and modify in place if needed
array_to_native(data_send, inplace=True)
else:
# we can avoid the copy with a try-finally block and
# some logic
data_send = array_to_native(data, inplace=False)
self._FITS.write_column(self._ext+1, colnum+1, data_send,
firstrow=firstrow+1)
del data_send
self._update_info()
def write_var_column(self, column, data, firstrow=0, **keys):
"""
Write data to a variable-length column in this HDU
This HDU must be a table HDU.
parameters
----------
column: scalar string/integer
The column in which to write. Can be the name or number (0 offset)
column: ndarray
Numerical python array to write. This must be an object array.
firstrow: integer, optional
At which row you should begin writing. Be sure you know what you
are doing! For appending see the append() method. Default 0.
"""
if not is_object(data):
raise ValueError("Only object fields can be written to "
"variable-length arrays")
colnum = self._extract_colnum(column)
self._FITS.write_var_column(self._ext+1, colnum+1, data,
firstrow=firstrow+1)
self._update_info()
def insert_column(self, name, data, colnum=None):
"""
Insert a new column.
parameters
----------
name: string
The column name
data:
The data to write into the new column.
colnum: int, optional
The column number for the new column, zero-offset. Default
is to add the new column after the existing ones.
Notes
-----
This method is used un-modified by ascii tables as well.
"""
if name in self._colnames:
raise ValueError("column '%s' already exists" % name)
descr=data.dtype.descr
if len(descr) > 1:
raise ValueError("you can only insert a single column, "
"requested: %s" % descr)
this_descr = descr[0]
this_descr = [name, this_descr[1]]
if len(data.shape) > 1:
this_descr += [data.shape[1:]]
this_descr = tuple(this_descr)
name, fmt, dims = npy2fits(this_descr,
table_type=self._table_type_str)
if dims is not None:
dims=[dims]
if colnum is None:
new_colnum = len(self._info['colinfo']) + 1
else:
new_colnum = colnum+1
self._FITS.insert_col(self._ext+1, new_colnum, name, fmt, tdim=dims)
self._update_info()
self.write_column(name, data)
def append(self, data, **keys):
"""
Append new rows to a table HDU
parameters
----------
data: ndarray or list of arrays
A numerical python array with fields (recarray) or a list of
arrays. Should have the same fields as the existing table. If only
a subset of the table columns are present, the other columns are
filled with zeros.
columns: list, optional
if a list of arrays is sent, also send the columns
of names or column numbers
"""
firstrow=self._info['nrows']
#if data.dtype.fields is None:
# raise ValueError("got an ordinary array, can only append recarrays. "
# "using this method")
# make sure these columns exist
#for n in data.dtype.names:
# colnum = self._extract_colnum(n)
keys['firstrow'] = firstrow
self.write(data, **keys)
def read(self, **keys):
"""
read data from this HDU
By default, all data are read.
send columns= and rows= to select subsets of the data.
Table data are read into a recarray; use read_column() to get a single
column as an ordinary array. You can alternatively use slice notation
fits=fitsio.FITS(filename)
fits[ext][:]
fits[ext][2:5]
fits[ext][200:235:2]
fits[ext][rows]
fits[ext][cols][rows]
parameters
----------
columns: optional
An optional set of columns to read from table HDUs. Default is to
read all. Can be string or number. If a sequence, a recarray
is always returned. If a scalar, an ordinary array is returned.
rows: optional
An optional list of rows to read from table HDUS. Default is to
read all.
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
"""
columns = keys.get('columns',None)
rows = keys.get('rows',None)
if columns is not None:
if 'columns' in keys:
del keys['columns']
data = self.read_columns(columns, **keys)
elif rows is not None:
if 'rows' in keys:
del keys['rows']
data = self.read_rows(rows, **keys)
else:
data = self._read_all(**keys)
return data
def _read_all(self, **keys):
"""
Read all data in the HDU.
parameters
----------
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
lower: bool, optional
If True, force all columns names to lower case in output. Will over
ride the lower= keyword from construction.
upper: bool, optional
If True, force all columns names to upper case in output. Will over
ride the lower= keyword from construction.
"""
dtype, offsets, isvar = self.get_rec_dtype(**keys)
w,=numpy.where(isvar == True)
if w.size > 0:
vstorage = keys.get('vstorage',self._vstorage)
colnums = self._extract_colnums()
rows=None
array = self._read_rec_with_var(colnums, rows, dtype,
offsets, isvar, vstorage)
else:
firstrow=1
nrows = self._info['nrows']
array = numpy.zeros(nrows, dtype=dtype)
self._FITS.read_as_rec(self._ext+1, 1, nrows, array)
for colnum,name in enumerate(array.dtype.names):
self._rescale_and_convert_field_inplace(array,
name,
self._info['colinfo'][colnum]['tscale'],
self._info['colinfo'][colnum]['tzero'])
lower=keys.get('lower',False)
upper=keys.get('upper',False)
if self.lower or lower:
_names_to_lower_if_recarray(array)
elif self.upper or upper:
_names_to_upper_if_recarray(array)
return array
def read_column(self, col, **keys):
"""
Read the specified column
Alternatively, you can use slice notation
fits=fitsio.FITS(filename)
fits[ext][colname][:]
fits[ext][colname][2:5]
fits[ext][colname][200:235:2]
fits[ext][colname][rows]
Note, if reading multiple columns, it is more efficient to use
read(columns=) or slice notation with a list of column names.
parameters
----------
col: string/int, required
The column name or number.
rows: optional
An optional set of row numbers to read.
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
"""
res = self.read_columns([col], **keys)
colname = res.dtype.names[0]
return res[colname]
'''
# deprecated
rows=keys.get('rows',None)
colnum = self._extract_colnum(col)
# ensures unique, contiguous
rows = self._extract_rows(rows)
if self._info['colinfo'][colnum]['eqtype'] < 0:
vstorage=keys.get('vstorage',self._vstorage)
return self._read_var_column(colnum, rows, vstorage)
else:
npy_type, shape = self._get_simple_dtype_and_shape(colnum, rows=rows)
array = numpy.zeros(shape, dtype=npy_type)
self._FITS.read_column(self._ext+1,colnum+1, array, rows)
array=self._rescale_and_convert(array,
self._info['colinfo'][colnum]['tscale'],
self._info['colinfo'][colnum]['tzero'])
return array
'''
def read_rows(self, rows, **keys):
"""
Read the specified rows.
parameters
----------
rows: list,array
A list or array of row indices.
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
lower: bool, optional
If True, force all columns names to lower case in output. Will over
ride the lower= keyword from construction.
upper: bool, optional
If True, force all columns names to upper case in output. Will over
ride the lower= keyword from construction.
"""
if rows is None:
# we actually want all rows!
return self._read_all()
if self._info['hdutype'] == ASCII_TBL:
keys['rows'] = rows
return self.read(**keys)
rows = self._extract_rows(rows)
dtype, offsets, isvar = self.get_rec_dtype(**keys)
w,=numpy.where(isvar == True)
if w.size > 0:
vstorage = keys.get('vstorage',self._vstorage)
colnums=self._extract_colnums()
return self._read_rec_with_var(colnums, rows, dtype, offsets, isvar, vstorage)
else:
array = numpy.zeros(rows.size, dtype=dtype)
self._FITS.read_rows_as_rec(self._ext+1, array, rows)
for colnum,name in enumerate(array.dtype.names):
self._rescale_and_convert_field_inplace(array,
name,
self._info['colinfo'][colnum]['tscale'],
self._info['colinfo'][colnum]['tzero'])
lower=keys.get('lower',False)
upper=keys.get('upper',False)
if self.lower or lower:
_names_to_lower_if_recarray(array)
elif self.upper or upper:
_names_to_upper_if_recarray(array)
return array
def read_columns(self, columns, **keys):
"""
read a subset of columns from this binary table HDU
By default, all rows are read. Send rows= to select subsets of the
data. Table data are read into a recarray for multiple columns,
plain array for a single column.
parameters
----------
columns: list/array
An optional set of columns to read from table HDUs. Can be string
or number. If a sequence, a recarray is always returned. If a
scalar, an ordinary array is returned.
rows: list/array, optional
An optional list of rows to read from table HDUS. Default is to
read all.
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
lower: bool, optional
If True, force all columns names to lower case in output. Will over
ride the lower= keyword from construction.
upper: bool, optional
If True, force all columns names to upper case in output. Will over
ride the lower= keyword from construction.
"""
if self._info['hdutype'] == ASCII_TBL:
keys['columns'] = columns
return self.read(**keys)
rows = keys.get('rows',None)
# if columns is None, returns all. Guaranteed to be unique and sorted
colnums = self._extract_colnums(columns)
if isinstance(colnums,int):
# scalar sent, don't read as a recarray
return self.read_column(columns, **keys)
# if rows is None still returns None, and is correctly interpreted
# by the reader to mean all
rows = self._extract_rows(rows)
# this is the full dtype for all columns
dtype, offsets, isvar = self.get_rec_dtype(colnums=colnums, **keys)
w,=numpy.where(isvar == True)
if w.size > 0:
vstorage = keys.get('vstorage',self._vstorage)
array = self._read_rec_with_var(colnums, rows, dtype, offsets, isvar, vstorage)
else:
if rows is None:
nrows = self._info['nrows']
else:
nrows = rows.size
array = numpy.zeros(nrows, dtype=dtype)
colnumsp = colnums[:].copy()
colnumsp[:] += 1
self._FITS.read_columns_as_rec(self._ext+1, colnumsp, array, rows)
for i in xrange(colnums.size):
colnum = int(colnums[i])
name = array.dtype.names[i]
self._rescale_and_convert_field_inplace(array,
name,
self._info['colinfo'][colnum]['tscale'],
self._info['colinfo'][colnum]['tzero'])
lower=keys.get('lower',False)
upper=keys.get('upper',False)
if self.lower or lower:
_names_to_lower_if_recarray(array)
elif self.upper or upper:
_names_to_upper_if_recarray(array)
return array
def read_slice(self, firstrow, lastrow, step=1, **keys):
"""
Read the specified row slice from a table.
Read all rows between firstrow and lastrow (non-inclusive, as per
python slice notation). Note you must use slice notation for
images, e.g. f[ext][20:30, 40:50]
parameters
----------
firstrow: integer
The first row to read
lastrow: integer
The last row to read, non-inclusive. This follows the python list
slice convention that one does not include the last element.
step: integer, optional
Step between rows, default 1. e.g., if step is 2, skip every other row.
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
lower: bool, optional
If True, force all columns names to lower case in output. Will over
ride the lower= keyword from construction.
upper: bool, optional
If True, force all columns names to upper case in output. Will over
ride the lower= keyword from construction.
"""
if self._info['hdutype'] == ASCII_TBL:
rows = numpy.arange(firstrow, lastrow, step, dtype='i8')
keys['rows'] = rows
return self.read_ascii(**keys)
step=keys.get('step',1)
if self._info['hdutype'] == IMAGE_HDU:
raise ValueError("slices currently only supported for tables")
maxrow = self._info['nrows']
if firstrow < 0 or lastrow > maxrow:
raise ValueError("slice must specify a sub-range of [%d,%d]" % (0,maxrow))
dtype, offsets, isvar = self.get_rec_dtype(**keys)
w,=numpy.where(isvar == True)
if w.size > 0:
vstorage = keys.get('vstorage',self._vstorage)
rows=numpy.arange(firstrow,lastrow,step,dtype='i8')
colnums=self._extract_colnums()
array = self._read_rec_with_var(colnums, rows, dtype, offsets, isvar, vstorage)
else:
if step != 1:
rows = numpy.arange(firstrow, lastrow, step, dtype='i8')
array = self.read(rows=rows)
else:
# no +1 because lastrow is non-inclusive
nrows=lastrow-firstrow
array = numpy.zeros(nrows, dtype=dtype)
# only first needs to be +1. This is becuase the c code is inclusive
self._FITS.read_as_rec(self._ext+1, firstrow+1, lastrow, array)
for colnum,name in enumerate(array.dtype.names):
self._rescale_and_convert_field_inplace(array,
name,
self._info['colinfo'][colnum]['tscale'],
self._info['colinfo'][colnum]['tzero'])
lower=keys.get('lower',False)
upper=keys.get('upper',False)
if self.lower or lower:
_names_to_lower_if_recarray(array)
elif self.upper or upper:
_names_to_upper_if_recarray(array)
return array
def get_rec_dtype(self, **keys):
"""
Get the dtype for the specified columns
parameters
----------
colnums: integer array
The column numbers, 0 offset
vstorage: string, optional
See docs in read_columns
"""
colnums=keys.get('colnums',None)
vstorage = keys.get('vstorage',self._vstorage)
if colnums is None:
colnums = self._extract_colnums()
descr = []
isvararray = numpy.zeros(len(colnums),dtype=numpy.bool)
for i,colnum in enumerate(colnums):
dt,isvar = self.get_rec_column_descr(colnum, vstorage)
descr.append(dt)
isvararray[i] = isvar
dtype=numpy.dtype(descr)
offsets = numpy.zeros(len(colnums),dtype='i8')
for i,n in enumerate(dtype.names):
offsets[i] = dtype.fields[n][1]
return dtype, offsets, isvararray
def _get_simple_dtype_and_shape(self, colnum, rows=None):
"""
When reading a single column, we want the basic data
type and the shape of the array.
for scalar columns, shape is just nrows, otherwise
it is (nrows, dim1, dim2)
Note if rows= is sent and only a single row is requested,
the shape will be (dim2,dim2)
"""
# basic datatype
npy_type,isvar = self._get_tbl_numpy_dtype(colnum)
info = self._info['colinfo'][colnum]
name = info['name']
if rows is None:
nrows = self._info['nrows']
else:
nrows = rows.size
shape = None
tdim = info['tdim']
shape = tdim2shape(tdim, name, is_string=(npy_type[0] == 'S'))
if shape is not None:
if nrows > 1:
if not isinstance(shape,tuple):
# vector
shape = (nrows,shape)
else:
# multi-dimensional
shape = tuple( [nrows] + list(shape) )
else:
# scalar
shape = nrows
return npy_type, shape
def get_rec_column_descr(self, colnum, vstorage):
"""
Get a descriptor entry for the specified column.
parameters
----------
colnum: integer
The column number, 0 offset
vstorage: string
See docs in read_columns
"""
npy_type,isvar = self._get_tbl_numpy_dtype(colnum)
name = self._info['colinfo'][colnum]['name']
if isvar:
if vstorage == 'object':
descr=(name,'O')
else:
tform = self._info['colinfo'][colnum]['tform']
max_size = extract_vararray_max(tform)
if max_size <= 0:
name=self._info['colinfo'][colnum]['name']
mess='Will read as an object field'
if max_size < 0:
mess="Column '%s': No maximum size: '%s'. %s"
mess=mess % (name,tform,mess)
warnings.warn(mess, FITSRuntimeWarning)
else:
mess="Column '%s': Max size is zero: '%s'. %s"
mess=mess % (name,tform,mess)
warnings.warn(mess, FITSRuntimeWarning)
# we are forced to read this as an object array
return self.get_rec_column_descr(colnum, 'object')
if npy_type[0] == 'S':
# variable length string columns cannot
# themselves be arrays I don't think
npy_type = 'S%d' % max_size
descr=(name,npy_type)
else:
descr=(name,npy_type,max_size)
else:
tdim = self._info['colinfo'][colnum]['tdim']
shape = tdim2shape(tdim, name, is_string=(npy_type[0] == 'S'))
if shape is not None:
descr=(name,npy_type,shape)
else:
descr=(name,npy_type)
return descr,isvar
def _read_rec_with_var(self, colnums, rows, dtype, offsets, isvar, vstorage):
"""
Read columns from a table into a rec array, including variable length
columns. This is special because, for efficiency, it involves reading
from the main table as normal but skipping the columns in the array
that are variable. Then reading the variable length columns, with
accounting for strides appropriately.
row and column numbers should be checked before calling this function
"""
colnumsp=colnums+1
if rows is None:
nrows = self._info['nrows']
else:
nrows = rows.size
array = numpy.zeros(nrows, dtype=dtype)
# read from the main table first
wnotvar,=numpy.where(isvar == False)
if wnotvar.size > 0:
thesecol=colnumsp[wnotvar] # this will be contiguous (not true for slices)
theseoff=offsets[wnotvar]
self._FITS.read_columns_as_rec_byoffset(self._ext+1,
thesecol,
theseoff,
array,
rows)
for i in xrange(thesecol.size):
name = array.dtype.names[wnotvar[i]]
colnum = thesecol[i]-1
self._rescale_and_convert_field_inplace(array,
name,
self._info['colinfo'][colnum]['tscale'],
self._info['colinfo'][colnum]['tzero'])
# now read the variable length arrays we may be able to speed this up
# by storing directly instead of reading first into a list
wvar,=numpy.where(isvar == True)
if wvar.size > 0:
thesecol=colnumsp[wvar] # this will be contiguous (not true for slices)
for i in xrange(thesecol.size):
colnump = thesecol[i]
name = array.dtype.names[wvar[i]]
dlist = self._FITS.read_var_column_as_list(self._ext+1,colnump,rows)
if isinstance(dlist[0],str):
is_string=True
else:
is_string=False
if array[name].dtype.descr[0][1][1] == 'O':
# storing in object array
# get references to each, no copy made
for irow,item in enumerate(dlist):
array[name][irow] = item
else:
for irow,item in enumerate(dlist):
if is_string:
array[name][irow]= item
else:
ncopy = len(item)
if sys.version_info > (3,0,0):
ts = array[name].dtype.descr[0][1][1]
if ts != 'S':
array[name][irow][0:ncopy] = item[:]
else:
array[name][irow] = item
else:
array[name][irow][0:ncopy] = item[:]
return array
def _extract_rows(self, rows):
"""
Extract an array of rows from an input scalar or sequence
"""
if rows is not None:
rows = numpy.array(rows, ndmin=1, copy=False, dtype='i8')
# returns unique, sorted
rows = numpy.unique(rows)
maxrow = self._info['nrows']-1
if rows[0] < 0 or rows[-1] > maxrow:
raise ValueError("rows must be in [%d,%d]" % (0,maxrow))
return rows
def _process_slice(self, arg):
"""
process the input slice for use calling the C code
"""
start = arg.start
stop = arg.stop
step = arg.step
nrows=self._info['nrows']
if step is None:
step=1
if start is None:
start = 0
if stop is None:
stop = nrows
if start < 0:
start = nrows + start
if start < 0:
raise IndexError("Index out of bounds")
if stop < 0:
stop = nrows + start + 1
if stop < start:
# will return an empty struct
stop = start
if stop > nrows:
stop=nrows
return slice(start, stop, step)
def _slice2rows(self, start, stop, step=None):
"""
Convert a slice to an explicit array of rows
"""
nrows=self._info['nrows']
if start is None:
start=0
if stop is None:
stop=nrows
if step is None:
step=1
tstart = self._fix_range(start)
tstop = self._fix_range(stop)
if tstart == 0 and tstop == nrows:
# this is faster: if all fields are also requested, then a
# single fread will be done
return None
if stop < start:
raise ValueError("start is greater than stop in slice")
return numpy.arange(tstart, tstop, step, dtype='i8')
def _fix_range(self, num, isslice=True):
"""
Ensure the input is within range.
If el=True, then don't treat as a slice element
"""
nrows = self._info['nrows']
if isslice:
# include the end
if num < 0:
num=nrows + (1+num)
elif num > nrows:
num=nrows
else:
# single element
if num < 0:
num=nrows + num
elif num > (nrows-1):
num=nrows-1
return num
def _rescale_and_convert_field_inplace(self, array, name, scale, zero):
"""
Apply fits scalings. Also, convert bool to proper
numpy boolean values
"""
self._rescale_array(array[name], scale, zero)
if array[name].dtype==numpy.bool:
array[name] = self._convert_bool_array(array[name])
return array
def _rescale_and_convert(self, array, scale, zero, name=None):
"""
Apply fits scalings. Also, convert bool to proper
numpy boolean values
"""
self._rescale_array(array, scale, zero)
if array.dtype==numpy.bool:
array = self._convert_bool_array(array)
return array
def _rescale_array(self, array, scale, zero):
"""
Scale the input array
"""
if scale != 1.0:
sval=numpy.array(scale,dtype=array.dtype)
array *= sval
if zero != 0.0:
zval=numpy.array(zero,dtype=array.dtype)
array += zval
def _convert_bool_array(self, array):
"""
cfitsio reads as characters 'T' and 'F' -- convert to real boolean
If input is a fits bool, convert to numpy boolean
"""
output = (array.view(numpy.int8) == ord('T')).astype(numpy.bool)
return output
def _get_tbl_numpy_dtype(self, colnum, include_endianness=True):
"""
Get numpy type for the input column
"""
table_type = self._info['hdutype']
table_type_string = _hdu_type_map[table_type]
try:
ftype = self._info['colinfo'][colnum]['eqtype']
if table_type == ASCII_TBL:
npy_type = _table_fits2npy_ascii[abs(ftype)]
else:
npy_type = _table_fits2npy[abs(ftype)]
except KeyError:
raise KeyError("unsupported %s fits data "
"type: %d" % (table_type_string, ftype))
isvar=False
if ftype < 0:
isvar=True
if include_endianness:
# if binary we will read the big endian bytes directly,
# if ascii we read into native byte order
if table_type == ASCII_TBL:
addstr=''
else:
addstr='>'
if npy_type not in ['u1','i1','S']:
npy_type = addstr+npy_type
if npy_type == 'S':
width = self._info['colinfo'][colnum]['width']
npy_type = 'S%d' % width
return npy_type, isvar
def _process_args_as_rows_or_columns(self, arg, unpack=False):
"""
We must be able to interpret the args as as either a column name or
row number, or sequences thereof. Numpy arrays and slices are also
fine.
Examples:
'field'
35
[35,55,86]
['f1',f2',...]
Can also be tuples or arrays.
"""
isslice = False
isrows = False
result=arg
if isinstance(arg, (tuple,list,numpy.ndarray)):
# a sequence was entered
if isstring(arg[0]):
pass
else:
isrows=True
result = arg
elif isstring(arg):
# a single string was entered
pass
elif isinstance(arg, slice):
isrows=True
if unpack:
result = self._slice2rows(arg.start, arg.stop, arg.step)
else:
isslice=True
result = self._process_slice(arg)
else:
# a single object was entered. Probably should apply some more
# checking on this
isrows=True
return result, isrows, isslice
def _read_var_column(self, colnum, rows, vstorage):
"""
first read as a list of arrays, then copy into either a fixed length
array or an array of objects, depending on vstorage.
"""
if sys.version_info > (3,0,0):
stype=bytes
else:
stype=str
dlist = self._FITS.read_var_column_as_list(self._ext+1,colnum+1,rows)
if vstorage == 'fixed':
tform = self._info['colinfo'][colnum]['tform']
max_size = extract_vararray_max(tform)
if max_size <= 0:
name=self._info['colinfo'][colnum]['name']
mess='Will read as an object field'
if max_size < 0:
mess="Column '%s': No maximum size: '%s'. %s"
mess=mess % (name,tform,mess)
warnings.warn(mess, FITSRuntimeWarning)
else:
mess="Column '%s': Max size is zero: '%s'. %s"
mess=mess % (name,tform,mess)
warnings.warn(mess, FITSRuntimeWarning)
# we are forced to read this as an object array
return self._read_var_column(colnum, rows, 'object')
if isinstance(dlist[0],stype):
descr = 'S%d' % max_size
array = numpy.fromiter(dlist, descr)
else:
descr=dlist[0].dtype.str
array = numpy.zeros( (len(dlist), max_size), dtype=descr)
for irow,item in enumerate(dlist):
ncopy = len(item)
array[irow,0:ncopy] = item[:]
else:
array=numpy.zeros(len(dlist), dtype='O')
for irow,item in enumerate(dlist):
array[irow] = item
return array
def _extract_colnums(self, columns=None):
"""
Extract an array of columns from the input
"""
if columns is None:
return numpy.arange(self._ncol, dtype='i8')
if not isinstance(columns,(tuple,list,numpy.ndarray)):
# is a scalar
return self._extract_colnum(columns)
colnums = numpy.zeros(len(columns), dtype='i8')
for i in xrange(colnums.size):
colnums[i] = self._extract_colnum(columns[i])
# returns unique sorted
colnums = numpy.unique(colnums)
return colnums
def _extract_colnum(self, col):
"""
Get the column number for the input column
"""
if isinteger(col):
colnum = col
if (colnum < 0) or (colnum > (self._ncol-1)):
raise ValueError("column number should be in [0,%d]" % (0,self._ncol-1))
else:
colstr='%s' % col
try:
if self.case_sensitive:
mess="column name '%s' not found (case sensitive)" % col
colnum = self._colnames.index(colstr)
else:
mess="column name '%s' not found (case insensitive)" % col
colnum = self._colnames_lower.index(colstr.lower())
except ValueError:
raise ValueError(mess)
return int(colnum)
def _update_info(self):
"""
Call parent method and make sure this is in fact a
table HDU. Set some convenience data.
"""
super(TableHDU,self)._update_info()
if self._info['hdutype'] == IMAGE_HDU:
mess="Extension %s is not a Table HDU" % self.ext
raise ValueError(mess)
if 'colinfo' in self._info:
self._colnames = [i['name'] for i in self._info['colinfo']]
self._colnames_lower = [i['name'].lower() for i in self._info['colinfo']]
self._ncol = len(self._colnames)
def __getitem__(self, arg):
"""
Get data from a table using python [] notation.
You can use [] to extract column and row subsets, or read everything.
The notation is essentially the same as numpy [] notation, except that
a sequence of column names may also be given. Examples reading from
"filename", extension "ext"
fits=fitsio.FITS(filename)
fits[ext][:]
fits[ext][2:5]
fits[ext][200:235:2]
fits[ext][rows]
fits[ext][cols][rows]
Note data are only read once the rows are specified.
Note you can only read variable length arrays the default way,
using this function, so set it as you want on construction.
This function is used for ascii tables as well
"""
res, isrows, isslice = \
self._process_args_as_rows_or_columns(arg)
if isrows:
# rows were entered: read all columns
if isslice:
array = self.read_slice(res.start, res.stop, res.step)
else:
# will also get here if slice is entered but this
# is an ascii table
array = self.read(rows=res)
else:
return TableColumnSubset(self, res)
if self.lower:
_names_to_lower_if_recarray(array)
elif self.upper:
_names_to_upper_if_recarray(array)
return array
def __iter__(self):
"""
Get an iterator for a table
e.g.
f=fitsio.FITS(fname)
hdu1 = f[1]
for row in hdu1:
...
"""
# always start with first row
self._iter_row=0
# for iterating we must assume the number of rows will not change
self._iter_nrows=self.get_nrows()
self._buffer_iter_rows(0)
return self
def next(self):
"""
get the next row when iterating
e.g.
f=fitsio.FITS(fname)
hdu1 = f[1]
for row in hdu1:
...
By default read one row at a time. Send iter_row_buffer to get a more
efficient buffering.
"""
return self._get_next_buffered_row()
__next__=next
def _get_next_buffered_row(self):
"""
Get the next row for iteration.
"""
if self._iter_row == self._iter_nrows:
raise StopIteration
if self._row_buffer_index >= self._iter_row_buffer:
self._buffer_iter_rows(self._iter_row)
data=self._row_buffer[self._row_buffer_index]
self._iter_row += 1
self._row_buffer_index += 1
return data
def _buffer_iter_rows(self, start):
"""
Read in the buffer for iteration
"""
self._row_buffer = self[start:start+self._iter_row_buffer]
# start back at the front of the buffer
self._row_buffer_index = 0
def __repr__(self):
"""
textual representation for some metadata
"""
text, spacing = self._get_repr_list()
text.append('%srows: %d' % (spacing,self._info['nrows']))
text.append('%scolumn info:' % spacing)
cspacing = ' '*4
nspace = 4
nname = 15
ntype = 6
format = cspacing + "%-" + str(nname) + "s %" + str(ntype) + "s %s"
pformat = cspacing + "%-" + str(nname) + "s\n %" + str(nspace+nname+ntype) + "s %s"
for colnum,c in enumerate(self._info['colinfo']):
if len(c['name']) > nname:
f = pformat
else:
f = format
dt,isvar = self._get_tbl_numpy_dtype(colnum, include_endianness=False)
if isvar:
tform = self._info['colinfo'][colnum]['tform']
if dt[0] == 'S':
dt = 'S0'
dimstr='vstring[%d]' % extract_vararray_max(tform)
else:
dimstr = 'varray[%s]' % extract_vararray_max(tform)
else:
if dt[0] == 'S':
is_string=True
else:
is_string=False
dimstr = _get_col_dimstr(c['tdim'],is_string=is_string)
s = f % (c['name'],dt,dimstr)
text.append(s)
text = '\n'.join(text)
return text
class AsciiTableHDU(TableHDU):
def read(self, **keys):
"""
read a data from an ascii table HDU
By default, all rows are read. Send rows= to select subsets of the
data. Table data are read into a recarray for multiple columns,
plain array for a single column.
parameters
----------
columns: list/array
An optional set of columns to read from table HDUs. Can be string
or number. If a sequence, a recarray is always returned. If a
scalar, an ordinary array is returned.
rows: list/array, optional
An optional list of rows to read from table HDUS. Default is to
read all.
vstorage: string, optional
Over-ride the default method to store variable length columns. Can
be 'fixed' or 'object'. See docs on fitsio.FITS for details.
lower: bool, optional
If True, force all columns names to lower case in output. Will over
ride the lower= keyword from construction.
upper: bool, optional
If True, force all columns names to upper case in output. Will over
ride the lower= keyword from construction.
"""
rows = keys.get('rows',None)
columns = keys.get('columns',None)
# if columns is None, returns all. Guaranteed to be unique and sorted
colnums = self._extract_colnums(columns)
if isinstance(colnums,int):
# scalar sent, don't read as a recarray
return self.read_column(columns, **keys)
rows = self._extract_rows(rows)
if rows is None:
nrows = self._info['nrows']
else:
nrows = rows.size
# if rows is None still returns None, and is correctly interpreted
# by the reader to mean all
rows = self._extract_rows(rows)
# this is the full dtype for all columns
dtype, offsets, isvar = self.get_rec_dtype(colnums=colnums, **keys)
array = numpy.zeros(nrows, dtype=dtype)
# note reading into existing data
wnotvar,=numpy.where(isvar == False)
if wnotvar.size > 0:
for i in wnotvar:
colnum = colnums[i]
name=array.dtype.names[i]
a=array[name].copy()
self._FITS.read_column(self._ext+1,colnum+1, a, rows)
array[name] = a
del a
wvar,=numpy.where(isvar == True)
if wvar.size > 0:
for i in wvar:
colnum = colnums[i]
name = array.dtype.names[i]
dlist = self._FITS.read_var_column_as_list(self._ext+1,colnum+1,rows)
if isinstance(dlist[0],str):
is_string=True
else:
is_string=False
if array[name].dtype.descr[0][1][1] == 'O':
# storing in object array
# get references to each, no copy made
for irow,item in enumerate(dlist):
array[name][irow] = item
else:
for irow,item in enumerate(dlist):
if is_string:
array[name][irow]= item
else:
ncopy = len(item)
array[name][irow][0:ncopy] = item[:]
lower=keys.get('lower',False)
upper=keys.get('upper',False)
if self.lower or lower:
_names_to_lower_if_recarray(array)
elif self.upper or upper:
_names_to_upper_if_recarray(array)
return array
read_ascii=read
class ImageHDU(HDUBase):
def _update_info(self):
"""
Call parent method and make sure this is in fact a
image HDU. Set dims in C order
"""
super(ImageHDU,self)._update_info()
if self._info['hdutype'] != IMAGE_HDU:
mess="Extension %s is not a Image HDU" % self.ext
raise ValueError(mess)
# convert to c order
if 'dims' in self._info:
self._info['dims'] = list( reversed(self._info['dims']) )
def has_data(self):
"""
Determine if this HDU has any data
For images, check that the dimensions are not zero.
For tables, check that the row count is not zero
"""
ndims = self._info.get('ndims',0)
if ndims == 0:
return False
else:
return True
def is_compressed(self):
"""
returns true of this extension is compressed
"""
return self._info['is_compressed_image']==1
def get_comptype(self):
"""
Get the compression type.
None if the image is not compressed.
"""
return self._info['comptype']
def get_dims(self):
"""
get the shape of the image. Returns () for empty
"""
if self._info['ndims'] != 0:
dims = self._info['dims']
else:
dims = ()
return dims
def reshape(self, dims):
"""
reshape an existing image to the requested dimensions
parameters
----------
dims: sequence
Any sequence convertible to i8
"""
adims = numpy.array(dims, ndmin=1, dtype='i8')
self._FITS.reshape_image(self._ext+1, adims)
def write(self, img, start=0, **keys):
"""
Write the image into this HDU
If data already exist in this HDU, they will be overwritten. If the
image to write is larger than the image on disk, or if the start
position is such that the write would extend beyond the existing
dimensions, the on-disk image is expanded.
parameters
----------
img: ndarray
A simple numpy ndarray
start: integer or sequence
Where to start writing data. Can be an integer offset
into the entire array, or a sequence determining where
in N-dimensional space to start.
"""
dims=self.get_dims()
if img.dtype.fields is not None:
raise ValueError("got recarray, expected regular ndarray")
if img.size == 0:
raise ValueError("data must have at least 1 row")
# data must be c-contiguous and native byte order
if not img.flags['C_CONTIGUOUS']:
# this always makes a copy
img_send = numpy.ascontiguousarray(img)
array_to_native(img_send, inplace=True)
else:
img_send = array_to_native(img, inplace=False)
if not numpy.isscalar(start):
# convert to scalar offset
# note we use the on-disk data type to get itemsize
offset = _convert_full_start_to_offset(dims, start)
else:
offset = start
# see if we need to resize the image
if self.has_data():
self._expand_if_needed(dims, img.shape, start, offset)
self._FITS.write_image(self._ext+1, img_send, offset+1)
self._update_info()
def read(self, **keys):
"""
Read the image.
If the HDU is an IMAGE_HDU, read the corresponding image. Compression
and scaling are dealt with properly.
"""
if not self.has_data():
return None
dtype, shape = self._get_dtype_and_shape()
array = numpy.zeros(shape, dtype=dtype)
self._FITS.read_image(self._ext+1, array)
return array
def _get_dtype_and_shape(self):
"""
Get the numpy dtype and shape for image
"""
npy_dtype = self._get_image_numpy_dtype()
if self._info['ndims'] != 0:
shape = self._info['dims']
else:
raise IOError("no image present in HDU")
return npy_dtype, shape
def _get_image_numpy_dtype(self):
"""
Get the numpy dtype for the image
"""
try:
ftype = self._info['img_equiv_type']
npy_type = _image_bitpix2npy[ftype]
except KeyError:
raise KeyError("unsupported fits data type: %d" % ftype)
return npy_type
def __getitem__(self, arg):
"""
Get data from an image using python [] slice notation.
e.g., [2:25, 4:45].
"""
return self._read_image_slice(arg)
def _read_image_slice(self, arg):
"""
workhorse to read a slice
"""
if 'ndims' not in self._info:
raise ValueError("Attempt to slice empty extension")
if isinstance(arg, slice):
# one-dimensional, e.g. 2:20
return self._read_image_slice((arg,))
if not isinstance(arg, tuple):
raise ValueError("arguments must be slices, one for each "
"dimension, e.g. [2:5] or [2:5,8:25] etc.")
# should be a tuple of slices, one for each dimension
# e.g. [2:3, 8:100]
nd = len(arg)
if nd != self._info['ndims']:
raise ValueError("Got slice dimensions %d, "
"expected %d" % (nd,self._info['ndims']))
targ=arg
arg=[]
for a in targ:
if isinstance(a,slice):
arg.append(a)
elif isinstance(a,int):
arg.append( slice(a,a+1,1) )
else:
raise ValueError("arguments must be slices, e.g. 2:12")
dims=self._info['dims']
arrdims = []
first = []
last = []
steps = []
# check the args and reverse dimensions since
# fits is backwards from numpy
dim=0
for slc in arg:
start = slc.start
stop = slc.stop
step = slc.step
if start is None:
start=0
if stop is None:
stop = dims[dim]
if step is None:
step=1
if step < 1:
raise ValueError("slice steps must be >= 1")
if start < 0:
start = dims[dim] + start
if start < 0:
raise IndexError("Index out of bounds")
if stop < 0:
stop = dims[dim] + start + 1
# move to 1-offset
start = start + 1
if stop < start:
raise ValueError("python slices but include at least one "
"element, got %s" % slc)
if stop > dims[dim]:
stop = dims[dim]
first.append(start)
last.append(stop)
steps.append(step)
arrdims.append(stop-start+1)
dim += 1
first.reverse()
last.reverse()
steps.reverse()
first = numpy.array(first, dtype='i8')
last = numpy.array(last, dtype='i8')
steps = numpy.array(steps, dtype='i8')
npy_dtype = self._get_image_numpy_dtype()
array = numpy.zeros(arrdims, dtype=npy_dtype)
self._FITS.read_image_slice(self._ext+1, first, last, steps, array)
return array
def _expand_if_needed(self, dims, write_dims, start, offset):
"""
expand the on-disk image if the indended write will extend
beyond the existing dimensions
"""
from operator import mul
if numpy.isscalar(start):
start_is_scalar=True
else:
start_is_scalar=False
existing_size=reduce(mul, dims, 1)
required_size = offset + reduce(mul, write_dims, 1)
if required_size > existing_size:
print(" required size:",required_size,"existing size:",existing_size)
# we need to expand the image
ndim=len(dims)
idim=len(write_dims)
if start_is_scalar:
if start == 0:
start=[0]*ndim
else:
raise ValueError("When expanding "
"an existing image while writing, the start keyword "
"must have the same number of dimensions "
"as the image or be exactly 0, got %s " % start)
if idim != ndim:
raise ValueError("When expanding "
"an existing image while writing, the input image "
"must have the same number of dimensions "
"as the original. "
"Got %d instead of %d" % (idim,ndim))
new_dims = []
for i in xrange(ndim):
required_dim = start[i] + write_dims[i]
if required_dim < dims[i]:
# careful not to shrink the image!
dimsize=dims[i]
else:
dimsize=required_dim
new_dims.append(dimsize)
print(" reshaping image to:",new_dims)
self.reshape(new_dims)
def __repr__(self):
"""
Representation for ImageHDU
"""
text, spacing = self._get_repr_list()
text.append("%simage info:" % spacing)
cspacing = ' '*4
# need this check for when we haven't written data yet
if 'ndims' in self._info:
if self._info['comptype'] is not None:
text.append("%scompression: %s" % (cspacing,self._info['comptype']))
if self._info['ndims'] != 0:
dimstr = [str(d) for d in self._info['dims']]
dimstr = ",".join(dimstr)
else:
dimstr=''
dt = _image_bitpix2npy[self._info['img_equiv_type']]
text.append("%sdata type: %s" % (cspacing,dt))
text.append("%sdims: [%s]" % (cspacing,dimstr))
text = '\n'.join(text)
return text
def _get_col_dimstr(tdim, is_string=False):
"""
not for variable length
"""
dimstr=''
if tdim is None:
dimstr='array[bad TDIM]'
else:
if is_string:
if len(tdim) > 1:
dimstr = [str(d) for d in tdim[1:]]
else:
if len(tdim) > 1 or tdim[0] > 1:
dimstr = [str(d) for d in tdim]
if dimstr != '':
dimstr = ','.join(dimstr)
dimstr = 'array[%s]' % dimstr
return dimstr
class TableColumnSubset(object):
"""
A class representing a subset of the the columns on disk. When called
with .read() or [ rows ] the data are read from disk.
Useful because subsets can be passed around to functions, or chained
with a row selection.
This class is returned when using [ ] notation to specify fields in a
TableHDU class
fits = fitsio.FITS(fname)
colsub = fits[ext][field_list]
returns a TableColumnSubset object. To read rows:
data = fits[ext][field_list][row_list]
colsub = fits[ext][field_list]
data = colsub[row_list]
data = colsub.read(rows=row_list)
to read all, use .read() with no args or [:]
"""
def __init__(self, fitshdu, columns):
"""
Input is the SFile instance and a list of column names.
"""
self.columns = columns
if isstring(columns) or isinteger(columns):
# this is to check if it exists
self.colnums = [fitshdu._extract_colnum(columns)]
self.is_scalar=True
self.columns_list = [columns]
else:
# this is to check if it exists
self.colnums = fitshdu._extract_colnums(columns)
self.is_scalar=False
self.columns_list = columns
self.fitshdu = fitshdu
def read(self, **keys):
"""
Read the data from disk and return as a numpy array
"""
if self.is_scalar:
data = self.fitshdu.read_column(self.columns, **keys)
else:
c=keys.get('columns',None)
if c is None:
keys['columns'] = self.columns
data = self.fitshdu.read(**keys)
return data
def __getitem__(self, arg):
"""
If columns are sent, then the columns will just get reset and
we'll return a new object
If rows are sent, they are read and the result returned.
"""
# we have to unpack the rows if we are reading a subset
# of the columns because our slice operator only works
# on whole rows. We could allow rows= keyword to
# be a slice...
res, isrows, isslice = \
self.fitshdu._process_args_as_rows_or_columns(arg, unpack=True)
if isrows:
# rows was entered: read all current column subset
return self.read(rows=res)
# columns was entered. Return a subset objects
return TableColumnSubset(self.fitshdu, columns=res)
def __repr__(self):
"""
Representation for TableColumnSubset
"""
spacing = ' '*2
cspacing = ' '*4
hdu = self.fitshdu
info = self.fitshdu._info
colinfo = info['colinfo']
text = []
text.append("%sfile: %s" % (spacing,hdu._filename))
text.append("%sextension: %d" % (spacing,info['hdunum']-1))
text.append("%stype: %s" % (spacing,_hdu_type_map[info['hdutype']]))
text.append('%srows: %d' % (spacing,info['nrows']))
text.append("%scolumn subset:" % spacing)
cspacing = ' '*4
nspace = 4
nname = 15
ntype = 6
format = cspacing + "%-" + str(nname) + "s %" + str(ntype) + "s %s"
pformat = cspacing + "%-" + str(nname) + "s\n %" + str(nspace+nname+ntype) + "s %s"
for colnum in self.colnums:
cinfo = colinfo[colnum]
if len(cinfo['name']) > nname:
f = pformat
else:
f = format
dt,isvar = hdu._get_tbl_numpy_dtype(colnum, include_endianness=False)
if isvar:
tform = cinfo['tform']
if dt[0] == 'S':
dt = 'S0'
dimstr='vstring[%d]' % extract_vararray_max(tform)
else:
dimstr = 'varray[%s]' % extract_vararray_max(tform)
else:
dimstr = _get_col_dimstr(cinfo['tdim'])
s = f % (cinfo['name'],dt,dimstr)
text.append(s)
s = "\n".join(text)
return s
def extract_vararray_max(tform):
"""
Extract number from PX(number)
"""
first=tform.find('(')
last=tform.rfind(')')
if first == -1 or last == -1:
# no max length specified
return -1
maxnum=int(tform[first+1:last])
return maxnum
def check_extver(extver):
if extver is None:
return 0
extver=int(extver)
if extver <= 0:
raise ValueError("extver must be > 0")
return extver
def extract_filename(filename):
filename=filename.strip()
if filename[0] == "!":
filename=filename[1:]
filename = os.path.expandvars(filename)
filename = os.path.expanduser(filename)
return filename
def tdim2shape(tdim, name, is_string=False):
shape=None
if tdim is None:
raise ValueError("field '%s' has malformed TDIM" % name)
if len(tdim) > 1 or tdim[0] > 1:
if is_string:
shape = list( reversed(tdim[1:]) )
else:
shape = list( reversed(tdim) )
if len(shape) == 1:
shape = shape[0]
else:
shape = tuple(shape)
return shape
def array2tabledef(data, table_type='binary'):
"""
Similar to descr2tabledef but if there are object columns a type
and max length will be extracted and used for the tabledef
"""
is_ascii = (table_type=='ascii')
if data.dtype.fields is None:
raise ValueError("data must have fields")
names=[]
formats=[]
dims=[]
descr=data.dtype.descr
for d in descr:
# these have the form '<f4' or '|S25', etc. Extract the pure type
npy_dtype = d[1][1:]
if is_ascii:
if npy_dtype in ['u1','i1']:
raise ValueError("1-byte integers are not supported for ascii tables: '%s'" % npy_dtype)
if npy_dtype in ['u2']:
raise ValueError("unsigned 2-byte integers are not supported for ascii tables: '%s'" % npy_dtype)
if npy_dtype[0] == 'O':
# this will be a variable length column 1Pt(len) where t is the
# type and len is max length. Each element must be convertible to
# the same type as the first
name=d[0]
form, dim = npy_obj2fits(data,name)
elif npy_dtype[0] == "V":
continue
else:
name, form, dim = npy2fits(d,table_type=table_type)
if name == '':
raise ValueError("field name is an empty string")
"""
if is_ascii:
if dim is not None:
raise ValueError("array columns are not supported for ascii tables")
"""
names.append(name)
formats.append(form)
dims.append(dim)
return names, formats, dims
def collection2tabledef(data, names=None, table_type='binary'):
if isinstance(data,dict):
if names is None:
names = list(data.keys())
isdict=True
elif isinstance(data,list):
if names is None:
raise ValueError("For list of array, send names=")
isdict=False
else:
raise ValueError("expected a dict")
is_ascii = (table_type=='ascii')
formats=[]
dims=[]
for i,name in enumerate(names):
if isdict:
this_data=data[name]
else:
this_data=data[i]
dt=this_data.dtype.descr[0]
dname=dt[1][1:]
if is_ascii:
if dname in ['u1','i1']:
raise ValueError("1-byte integers are not supported for ascii tables: '%s'" % dname)
if dname in ['u2']:
raise ValueError("unsigned 2-byte integers are not supported for ascii tables: '%s'" % dname)
if dname[0] == 'O':
# this will be a variable length column 1Pt(len) where t is the
# type and len is max length. Each element must be convertible to
# the same type as the first
form, dim = npy_obj2fits(this_data)
else:
send_dt=dt
if len(this_data.shape) > 1:
send_dt=list(dt) + [this_data.shape[1:]]
_, form, dim = npy2fits(send_dt,table_type=table_type)
formats.append(form)
dims.append(dim)
return names, formats, dims
def descr2tabledef(descr, table_type='binary'):
"""
Create a FITS table def from the input numpy descriptor.
parameters
----------
descr: list
A numpy recarray type descriptor array.dtype.descr
returns
-------
names, formats, dims: tuple of lists
These are the ttyp, tform and tdim header entries
for each field. dim entries may be None
"""
names=[]
formats=[]
dims=[]
for d in descr:
"""
npy_dtype = d[1][1:]
if is_ascii and npy_dtype in ['u1','i1']:
raise ValueError("1-byte integers are not supported for ascii tables")
"""
name, form, dim = npy2fits(d,table_type=table_type)
if name == '':
raise ValueError("field name is an empty string")
"""
if is_ascii:
if dim is not None:
raise ValueError("array columns are not supported for ascii tables")
"""
names.append(name)
formats.append(form)
dims.append(dim)
return names, formats, dims
def npy_obj2fits(data, name=None):
# this will be a variable length column 1Pt(len) where t is the
# type and len is max length. Each element must be convertible to
# the same type as the first
if sys.version_info > (3,0,0):
stype=bytes
else:
stype=str
if name is None:
d = data.dtype.descr
first=data[0]
else:
d = data[name].dtype.descr
first = data[name][0]
# note numpy._string is an instance of str in python2, bytes
# in python3
if isinstance(first, stype):
fits_dtype = _table_npy2fits_form['S']
else:
arr0 = numpy.array(first,copy=False)
dtype0 = arr0.dtype
npy_dtype = dtype0.descr[0][1][1:]
if npy_dtype[0] == 'S':
raise ValueError("Field '%s' is an arrays of strings, this is "
"not allowed in variable length columns" % name)
if npy_dtype not in _table_npy2fits_form:
raise ValueError("Field '%s' has unsupported type '%s'" % (name,npy_dtype))
fits_dtype = _table_npy2fits_form[npy_dtype]
# Q uses 64-bit addressing, should try at some point but the cfitsio manual
# says it is experimental
#form = '1Q%s' % fits_dtype
form = '1P%s' % fits_dtype
dim=None
return form, dim
def npy2fits(d, table_type='binary'):
"""
d is the full element from the descr
"""
npy_dtype = d[1][1:]
if npy_dtype[0] == 'S':
name, form, dim = npy_string2fits(d,table_type=table_type)
else:
name, form, dim = npy_num2fits(d, table_type=table_type)
return name, form, dim
def npy_num2fits(d, table_type='binary'):
"""
d is the full element from the descr
For vector,array columns the form is the total counts
followed by the code.
For array columns with dimension greater than 1, the dim is set to
(dim1, dim2, ...)
So it is treated like an extra dimension
"""
dim = None
name = d[0]
npy_dtype = d[1][1:]
if npy_dtype[0] == 'S':
raise ValueError("got S type: use npy_string2fits")
if npy_dtype not in _table_npy2fits_form:
raise ValueError("unsupported type '%s'" % npy_dtype)
if table_type=='binary':
form = _table_npy2fits_form[npy_dtype]
else:
form = _table_npy2fits_form_ascii[npy_dtype]
# now the dimensions
if len(d) > 2:
if table_type == 'ascii':
raise ValueError("Ascii table columns must be scalar, got %s" % str(d))
# Note, depending on numpy version, even 1-d can be a tuple
if isinstance(d[2], tuple):
count=reduce(lambda x, y: x*y, d[2])
form = '%d%s' % (count,form)
if len(d[2]) > 1:
# this is multi-dimensional array column. the form
# should be total elements followed by A
dim = list(reversed(d[2]))
dim = [str(e) for e in dim]
dim = '(' + ','.join(dim)+')'
else:
# this is a vector (1d array) column
count = d[2]
form = '%d%s' % (count,form)
return name, form, dim
def npy_string2fits(d,table_type='binary'):
"""
d is the full element from the descr
form for strings is the total number of bytes followed by A. Thus
for vector or array columns it is the size of the string times the
total number of elements in the array.
Then the dim is set to
(sizeofeachstring, dim1, dim2, ...)
So it is treated like an extra dimension
"""
dim = None
name = d[0]
npy_dtype = d[1][1:]
if npy_dtype[0] != 'S':
raise ValueError("expected S type")
# get the size of each string
string_size_str = npy_dtype[1:]
string_size = int(string_size_str)
# now the dimensions
if len(d) == 2:
if table_type == 'ascii':
form = 'A'+string_size_str
else:
form = string_size_str+'A'
else:
if table_type == 'ascii':
raise ValueError("Ascii table columns must be scalar, got %s" % str(d))
if isinstance(d[2], tuple):
# this is an array column. the form
# should be total elements followed by A
#count = 1
#count = [count*el for el in d[2]]
count=reduce(lambda x, y: x*y, d[2])
count = string_size*count
form = '%dA' % count
# will have to do tests to see if this is the right order
dim = list(reversed(d[2]))
#dim = d[2]
dim = [string_size_str] + [str(e) for e in dim]
dim = '(' + ','.join(dim)+')'
else:
# this is a vector (1d array) column
count = string_size*d[2]
form = '%dA' % count
# will have to do tests to see if this is the right order
dim = [string_size_str, str(d[2])]
dim = '(' + ','.join(dim)+')'
return name, form, dim
class FITSHDR(object):
"""
A class representing a FITS header.
parameters
----------
record_list: optional
A list of dicts, or dict, or another FITSHDR
convert: bool, optional
If True, convert strings. E.g. '3' gets
converted to 3 and "'hello'" gets converted
to 'hello' and 'T'/'F' to True/False. Default
is False.
If the input is a card string, convert is implied True
examples:
hdr=FITSHDR()
# set a simple value
hdr['blah'] = 35
# set from a dict to include a comment.
rec={'name':'fromdict', 'value':3, 'comment':'my comment'}
hdr.add_record(rec)
# can do the same with a full FITSRecord
rec=FITSRecord( {'name':'temp', 'value':35, 'comment':'temp in C'} )
hdr.add_record(rec)
# in the above, the record is replaced if one with the same name
# exists, except for COMMENT and HISTORY, which can exist as
# duplicates
# print the header
print(hdr)
# print a single record
print(hdr['fromdict'])
# can also set from a card
hdr.add_record('test = 77')
# using a FITSRecord object (internally uses FITSCard)
card=FITSRecord('test = 77')
hdr.add_record(card)
# can also construct with a record list
recs=[{'name':'test', 'value':35, 'comment':'a comment'},
{'name':'blah', 'value':'some string'}]
hdr=FITSHDR(recs)
# if you have no comments, you can construct with a simple dict
recs={'day':'saturday',
'telescope':'blanco'}
hdr=FITSHDR(recs)
"""
def __init__(self, record_list=None, convert=False):
self._record_list = []
self._record_map = {}
self._index_map={}
if isinstance(record_list,FITSHDR):
for r in record_list.records():
self.add_record(r, convert=convert)
elif isinstance(record_list, dict):
for k in record_list:
r = {'name':k, 'value':record_list[k]}
self.add_record(r, convert=convert)
elif isinstance(record_list, list):
for r in record_list:
self.add_record(r, convert=convert)
elif record_list is not None:
raise ValueError("expected a dict or list of dicts or FITSHDR")
def add_record(self, record_in, convert=False):
"""
Add a new record. Strip quotes from around strings.
This will over-write if the key already exists, except
for COMMENT and HISTORY fields
parameters
-----------
record:
The record, either a dict or a header card string
or a FITSRecord or FITSCard
convert: bool, optional
If True, convert strings. E.g. '3' gets
converted to 3 and "'hello'" gets converted
to 'hello' and 'T'/'F' to True/False. Default
is False.
If the input is a card string, convert is implied True
"""
record = FITSRecord(record_in, convert=convert)
# only append when this name already exists if it is
# a comment or history field, otherwise simply over-write
key=record['name'].upper()
key_exists = key in self._record_map
if not key_exists or key == 'COMMENT' or key == 'HISTORY':
# append new record
self._record_list.append(record)
index=len(self._record_list)-1
self._index_map[key] = index
else:
# over-write existing
index = self._index_map[key]
self._record_list[index] = record
self._record_map[key] = record
def _add_to_map(self, record):
key=record['name'].upper()
self._record_map[key] = record
def get_comment(self, item):
"""
Get the comment for the requested entry
"""
key=item.upper()
if key not in self._record_map:
raise ValueError("unknown record: %s" % key)
if 'comment' not in self._record_map[key]:
return None
else:
return self._record_map[key]['comment']
def records(self):
"""
Return the list of full records as a list of dictionaries.
"""
return self._record_list
def keys(self):
"""
Return a copy of the current key list.
"""
return [e['name'] for e in self._record_list]
def delete(self, name):
"""
Delete the specified entry if it exists.
"""
if isinstance(name, (list,tuple)):
for xx in name:
self.delete(xx)
else:
if name in self._record_map:
del self._record_map[name]
self._record_list = [r for r in self._record_list if r['name'] != name]
def clean(self, is_table=False):
"""
Remove reserved keywords from the header.
These are keywords that the fits writer must write in order
to maintain consistency between header and data.
keywords
--------
is_table: bool, optional
Set True if this is a table, so extra keywords will be cleaned
"""
rmnames = ['SIMPLE','EXTEND','XTENSION','BITPIX','PCOUNT','GCOUNT',
'THEAP',
'EXTNAME',
'BLANK',
'ZQUANTIZ','ZDITHER0','ZIMAGE','ZCMPTYPE',
'ZSIMPLE','ZTENSION','ZPCOUNT','ZGCOUNT',
'ZBITPIX','ZEXTEND',
#'FZTILELN','FZALGOR',
'CHECKSUM','DATASUM']
if is_table:
# these are not allowed in tables
rmnames += [
'BUNIT','BSCALE','BZERO',
]
self.delete(rmnames)
r = self._record_map.get('NAXIS',None)
if r is not None:
naxis = int(r['value'])
self.delete('NAXIS')
rmnames = ['NAXIS%d' % i for i in xrange(1,naxis+1)]
self.delete(rmnames)
r = self._record_map.get('ZNAXIS',None)
self.delete('ZNAXIS')
if r is not None:
znaxis = int(r['value'])
rmnames = ['ZNAXIS%d' % i for i in xrange(1,znaxis+1)]
self.delete(rmnames)
rmnames = ['ZTILE%d' % i for i in xrange(1,znaxis+1)]
self.delete(rmnames)
rmnames = ['ZNAME%d' % i for i in xrange(1,znaxis+1)]
self.delete(rmnames)
rmnames = ['ZVAL%d' % i for i in xrange(1,znaxis+1)]
self.delete(rmnames)
r = self._record_map.get('TFIELDS',None)
if r is not None:
tfields = int(r['value'])
self.delete('TFIELDS')
if tfields > 0:
nbase = ['TFORM','TTYPE','TDIM','TUNIT','TSCAL','TZERO',
'TNULL','TDISP','TDMIN','TDMAX','TDESC','TROTA',
'TRPIX','TRVAL','TDELT','TCUNI',
#'FZALG'
]
for i in xrange(1,tfields+1):
names=['%s%d' % (n,i) for n in nbase]
self.delete(names)
def get(self, item, default_value=None):
"""
Get the requested header entry by keyword name
"""
key=item.upper()
if key not in self._record_map:
return default_value
return self._record_map[key]['value']
def __len__(self):
return len(self._record_list)
def __contains__(self, item):
if isinstance(item, FITSRecord):
name=item['name']
elif isinstance(item, dict):
name=item.get('name',None)
if name is None:
raise ValueError("dict record must have 'name' field")
else:
name=item
name=name.upper()
return name in self._record_map
def __setitem__(self, item, value):
if isinstance(value, (dict,FITSRecord)):
if item.upper() != value['name'].upper():
raise ValueError("when setting using a FITSRecord, the "
"name field must match")
rec=value
else:
rec = {'name':item, 'value':value}
self.add_record(rec)
def __getitem__(self, item):
key=item.upper()
if key not in self._record_map:
raise ValueError("unknown record: %s" % key)
return self._record_map[key]['value']
def __iter__(self):
self._current=0
return self
def next(self):
"""
for iteration over the header entries
"""
if self._current < len(self._record_list):
rec=self._record_list[self._current]
key=rec['name']
self._current += 1
return key
else:
raise StopIteration
__next__=next
def _record2card(self, record):
"""
when we add new records they don't have a card,
this sort of fakes it up similar to what cfitsio
does, just for display purposes. e.g.
DBL = 23.299843
LNG = 3423432
KEYSNC = 'hello '
KEYSC = 'hello ' / a comment for string
KEYDC = 3.14159265358979 / a comment for pi
KEYLC = 323423432 / a comment for long
basically,
- 8 chars, left aligned, for the keyword name
- a space
- 20 chars for value, left aligned for strings, right aligned for
numbers
- if there is a comment, one space followed by / then another space
then the comment out to 80 chars
"""
name = record['name']
value = record['value']
if name == 'COMMENT':
card = 'COMMENT %s' % value
elif name=='HISTORY':
card = 'HISTORY %s' % value
else:
card = '%-8s= ' % name[0:8]
# these may be string representations of data, or actual strings
if isstring(value):
value = str(value)
if len(value) > 0:
if value[0] != "'":
# this is a string representing a string header field
# make it look like it will look in the header
value = "'" + value + "'"
vstr = '%-20s' % value
else:
vstr = "%20s" % value
else:
vstr="''"
else:
vstr = '%20s' % value
card += vstr
if 'comment' in record:
card += ' / %s' % record['comment']
return card[0:80]
def __repr__(self):
rep=['']
for r in self._record_list:
if 'card_string' not in r:
card = self._record2card(r)
else:
card = r['card_string']
rep.append(card)
return '\n'.join(rep)
class FITSRecord(dict):
"""
Class to represent a FITS header record
parameters
----------
record: string or dict
If a string, it should represent a FITS header card
If a dict it should have 'name' and 'value' fields.
Can have a 'comment' field.
examples
--------
# from a dict. Can include a comment
rec=FITSRecord( {'name':'temp', 'value':35, 'comment':'temperature in C'} )
# from a card
card=FITSRecord('test = 77 / My comment')
"""
def __init__(self, record, convert=False):
self.set_record(record, convert=convert)
def set_record(self, record, convert=False):
"""
check the record is valid and convert to a dict
parameters
----------
record: string
Dict representing a record or a string representing a FITS header
card
convert: bool, optional
If True, convert strings. E.g. '3' gets
converted to 3 and "'hello'" gets converted
to 'hello' and 'T'/'F' to True/False. Default
is False.
If the input is a card string, convert is implied True
"""
import copy
if isstring(record):
card=FITSCard(record)
self.update(card)
self.verify()
else:
if isinstance(record,FITSRecord):
self.update(record)
elif isinstance(record,dict):
# if the card is present, always construct the record from that
if 'card_string' in record:
self.set_record(record['card_string'])
else:
# we will need to verify it
self.update(record)
else:
raise ValueError("record must be a string card or "
"dictionary or FITSRecord")
self.verify()
if convert:
self['value_orig'] = copy.copy(self['value'])
if isstring(self['value']):
self['value'] = self._convert_value(self['value_orig'])
def verify(self):
"""
make sure name,value exist
"""
if 'name' not in self:
raise ValueError("each record must have a 'name' field")
if 'value' not in self:
raise ValueError("each record must have a 'value' field")
def _convert_value(self, value_orig):
"""
things like 6 and 1.25 are converted with ast.literal_value
Things like 'hello' are stripped of quotes
"""
import ast
try:
value = ast.literal_eval(value_orig)
except:
value = self._convert_quoted_string(value_orig)
return value
def _convert_quoted_string(self, value):
"""
Possibly remove quotes around strings. Deal with bool
"""
# Strip extra quotes from strings if needed
if value.startswith("'") and value.endswith("'"):
val = value[1:-1]
elif value=='T':
val=True
elif value=='F':
val=False
else:
val=value
return val
TYP_STRUC_KEY=10
TYP_CMPRS_KEY= 20
TYP_SCAL_KEY = 30
TYP_NULL_KEY = 40
TYP_DIM_KEY = 50
TYP_RANG_KEY = 60
TYP_UNIT_KEY = 70
TYP_DISP_KEY = 80
TYP_HDUID_KEY= 90
TYP_CKSUM_KEY= 100
TYP_WCS_KEY = 110
TYP_REFSYS_KEY= 120
TYP_COMM_KEY = 130
TYP_CONT_KEY = 140
TYP_USER_KEY = 150
class FITSCard(FITSRecord):
"""
class to represent ordinary FITS cards.
CONTINUE not supported
examples
--------
# from a card
card=FITSRecord('test = 77 / My comment')
"""
def __init__(self, card_string):
self.set_card(card_string)
def set_card(self, card_string):
self['card_string']=card_string
self._check_equals()
self._check_type()
self._check_len()
front=card_string[0:7]
if (not self.has_equals() or front=='COMMENT' or front=='HISTORY'):
if front=='CONTINU':
raise ValueError("CONTINUE not supported")
if front=='HISTORY':
self._set_as_history()
else:
# note anything without an = and not history is
# treated as comment; this is built into cfitsio
# as well
self._set_as_comment()
else:
self._set_as_key()
def has_equals(self):
"""
True if = is in position 8
"""
return self._has_equals
def _check_equals(self):
"""
check for = in position 8, set attribute _has_equals
"""
card_string=self['card_string']
if len(card_string) < 9:
self._has_equals=False
elif card_string[8]=='=':
self._has_equals=True
else:
self._has_equals=False
def _set_as_key(self):
card_string=self['card_string']
res=_fitsio_wrap.parse_card(card_string)
keyclass, name, value, dtype, comment=res
if keyclass==140:
raise ValueError("bad card '%s'. CONTINUE not "
"supported" % card_string)
self['class'] = keyclass
self['name'] = name
self['value_orig'] = value
self['value'] = self._convert_value(value)
self['dtype'] = dtype
self['comment'] = comment
def _set_as_comment(self):
comment=self._extract_comm_or_hist_value()
self['class'] = TYP_COMM_KEY
self['name'] = 'COMMENT'
self['value'] = comment
def _set_as_history(self):
history=self._extract_comm_or_hist_value()
self['class'] = TYP_COMM_KEY
self['name'] = 'HISTORY'
self['value'] = history
def _extract_comm_or_hist_value(self):
card_string=self['card_string']
if self._has_equals:
if len(card_string) >= 9:
value=card_string[9:]
else:
value=''
else:
if len(card_string) >= 8:
#value=card_string[7:]
value=card_string[8:]
else:
value=''
return value
def _check_type(self):
card_string=self['card_string']
if not isstring(card_string):
raise TypeError("card must be a string, got type %s" % type(card_string))
def _check_len(self):
ln=len(self['card_string'])
if ln > 80:
mess="len(card) is %d. cards must have length < 80"
raise ValueError(mess)
def get_tile_dims(tile_dims, imshape):
"""
Just make sure the tile dims has the appropriate number of dimensions
"""
if tile_dims is None:
td=None
else:
td = numpy.array(tile_dims, dtype='i8')
nd=len(imshape)
if td.size != nd:
msg="expected tile_dims to have %d dims, got %d" % (td.size,nd)
raise ValueError(msg)
return td
def get_compress_type(compress):
if compress is not None:
compress = str(compress).upper()
if compress not in _compress_map:
raise ValueError("compress must be one of %s" % list(_compress_map.keys()))
return _compress_map[compress]
def check_comptype_img(comptype, dtype_str):
if comptype == NOCOMPRESS:
return
if dtype_str == 'i8':
# no i8 allowed for tile-compressed images
raise ValueError("8-byte integers not supported when using tile compression")
if comptype == PLIO_1:
# no unsigned for plio
if dtype_str[0] == 'u':
raise ValueError("unsigned integers currently not "
"allowed when writing using PLIO "
"tile compression")
def isstring(arg):
return isinstance(arg, _stypes)
def isinteger(arg):
return isinstance(arg, _itypes)
def fields_are_object(arr):
isobj=numpy.zeros(len(arr.dtype.names),dtype=numpy.bool)
for i,name in enumerate(arr.dtype.names):
if is_object(arr[name]):
isobj[i] = True
return isobj
def is_object(arr):
if arr.dtype.descr[0][1][1] == 'O':
return True
else:
return False
def array_to_native_c(array_in, inplace=False):
# copy only made if not C order
arr=numpy.array(array_in, order='C', copy=False)
return array_to_native(arr, inplace=inplace)
def array_to_native(array, inplace=False):
if numpy.little_endian:
machine_little=True
else:
machine_little=False
data_little=False
if array.dtype.names is None:
if array.dtype.base.byteorder=='|':
# strings and 1 byte integers
return array
data_little = is_little_endian(array)
else:
# assume all are same byte order: we only need to find one with
# little endian
for fname in array.dtype.names:
if is_little_endian(array[fname]):
data_little=True
break
if ( (machine_little and not data_little)
or (not machine_little and data_little) ):
output = array.byteswap(inplace)
else:
output = array
return output
def is_little_endian(array):
"""
Return True if array is little endian, False otherwise.
Parameters
----------
array: numpy array
A numerical python array.
Returns
-------
Truth value:
True for little-endian
Notes
-----
Strings are neither big or little endian. The input must be a simple numpy
array, not an array with fields.
"""
if numpy.little_endian:
machine_little=True
else:
machine_little=False
byteorder = array.dtype.base.byteorder
return (byteorder == '<') or (machine_little and byteorder == '=')
def _extract_table_type(type):
"""
Get the numerical table type
"""
if isinstance(type,str):
type=type.lower()
if type[0:7] == 'binary':
table_type = BINARY_TBL
elif type[0:6] == 'ascii':
table_type = ASCII_TBL
else:
raise ValueError("table type string should begin with 'binary' or 'ascii' (case insensitive)")
else:
type=int(type)
if type not in [BINARY_TBL,ASCII_TBL]:
raise ValueError("table type num should be BINARY_TBL (%d) or ASCII_TBL (%d)" % (BINARY_TBL,ASCII_TBL))
table_type=type
return table_type
def _names_to_lower_if_recarray(data):
if data.dtype.names is not None:
data.dtype.names = [n.lower() for n in data.dtype.names]
def _names_to_upper_if_recarray(data):
if data.dtype.names is not None:
data.dtype.names = [n.upper() for n in data.dtype.names]
def _convert_full_start_to_offset(dims, start):
# convert to scalar offset
# note we use the on-disk data type to get itemsize
ndim=len(dims)
# convert sequence to pixel start
if len(start) != ndim:
m="start has len %d, which does not match requested dims %d"
raise ValueError(m % (len(start),ndim))
# this is really strides / itemsize
strides=[1]
for i in xrange(1,ndim):
strides.append( strides[i-1] * dims[ndim-i] )
strides.reverse()
s=start
start_index = sum( [s[i]*strides[i] for i in xrange(ndim)] )
return start_index
# this doesn't work
#GZIP_2 = 22
_compress_map={None:NOCOMPRESS,
'RICE': RICE_1,
'RICE_1': RICE_1,
'GZIP': GZIP_1,
'GZIP_1': GZIP_1,
'PLIO': PLIO_1,
'PLIO_1': PLIO_1,
'HCOMPRESS': HCOMPRESS_1,
'HCOMPRESS_1': HCOMPRESS_1,
NOCOMPRESS:None,
RICE_1:'RICE_1',
GZIP_1:'GZIP_1',
PLIO_1:'PLIO_1',
HCOMPRESS_1:'HCOMPRESS_1'}
_modeprint_map = {'r':'READONLY','rw':'READWRITE', 0:'READONLY',1:'READWRITE'}
_char_modemap = {'r':'r','rw':'rw',
READONLY:'r',READWRITE:'rw'}
_int_modemap = {'r':READONLY,'rw':READWRITE, READONLY:READONLY, READWRITE:READWRITE}
_hdu_type_map = {IMAGE_HDU:'IMAGE_HDU',
ASCII_TBL:'ASCII_TBL',
BINARY_TBL:'BINARY_TBL',
'IMAGE_HDU':IMAGE_HDU,
'ASCII_TBL':ASCII_TBL,
'BINARY_TBL':BINARY_TBL}
# no support yet for complex
_table_fits2npy = {#1: 'b1',
11: 'u1',
12: 'i1',
14: 'b1', # logical. Note pyfits uses this for i1, cfitsio casts to char*
16: 'S',
20: 'u2',
21: 'i2',
30: 'u4', # 30=TUINT
31: 'i4', # 31=TINT
40: 'u4', # 40=TULONG
41: 'i4', # 41=TLONG
42: 'f4',
81: 'i8',
82: 'f8',
83: 'c8', # TCOMPLEX
163: 'c16'} # TDBLCOMPLEX
# cfitsio returns only types f8, i4 and strings for column types. in order to
# avoid data loss, we always use i8 for integer types
_table_fits2npy_ascii = {16: 'S',
31: 'i8', # listed as TINT, reading as i8
41: 'i8', # listed as TLONG, reading as i8
81: 'i8',
21: 'i4', # listed as TSHORT, reading as i4
42: 'f8', # listed as TFLOAT, reading as f8
82: 'f8'}
# for TFORM
_table_npy2fits_form = {'b1':'L',
'u1':'B',
'i1':'S', # gets converted to unsigned
'S' :'A',
'u2':'U', # gets converted to signed
'i2':'I',
'u4':'V', # gets converted to signed
'i4':'J',
'i8':'K',
'f4':'E',
'f8':'D',
'c8':'C',
'c16':'M'}
_table_npy2fits_form_ascii = {'S' :'A1', # Need to add max here
'i2':'I7', # I
'i4':'I12', # ??
#'i8':'I21', # K # i8 aren't supported
#'f4':'E15.7', # F
'f4':'E26.17', # F We must write as f8 since we can only read as f8
'f8':'E26.17'} # D 25.16 looks right, but this is recommended
# from mrdfits; note G gets turned into E
# types= ['A', 'I', 'L', 'B', 'F', 'D', 'C', 'M', 'K']
# formats=['A1', 'I6', 'I10', 'I4', 'G15.9','G23.17', 'G15.9', 'G23.17','I20']
# remember, you should be using the equivalent image type for this
_image_bitpix2npy = {8: 'u1',
10: 'i1',
16: 'i2',
20: 'u2',
32: 'i4',
40: 'u4',
64: 'i8',
-32: 'f4',
-64: 'f8'}
# for header keywords
_ftypes = (float,numpy.float32,numpy.float64)
if sys.version_info > (3,0,0):
_itypes=(int,)
_stypes = (str,)
else:
_itypes=(int,long)
_stypes = (basestring,unicode,)
_itypes += (numpy.uint8,numpy.int8,
numpy.uint16,numpy.int16,
numpy.uint32,numpy.int32,
numpy.uint64,numpy.int64)
_stypes += (numpy.string_,)
|