File: test_image.py

package info (click to toggle)
python-fitsio 1.2.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,200 kB
  • sloc: ansic: 9,410; python: 5,802; makefile: 9
file content (278 lines) | stat: -rw-r--r-- 8,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import tempfile
# import warnings
from .checks import check_header, compare_array
import numpy as np
from ..fitslib import FITS

DTYPES = ['u1', 'i1', 'u2', 'i2', '<u4', 'i4', 'i8', '>f4', 'f8']


def test_image_write_read():
    """
    Test a basic image write, data and a header, then reading back in to
    check the values
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')
        with FITS(fname, 'rw') as fits:

            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(5*20, dtype=dtype).reshape(5, 20)
                header = {'DTYPE': dtype, 'NBYTES': data.dtype.itemsize}
                fits.write_image(data, header=header)
                rdata = fits[-1].read()

                compare_array(data, rdata, "images")

                rh = fits[-1].read_header()
                check_header(header, rh)

        with FITS(fname) as fits:
            for i in range(len(DTYPES)):
                assert not fits[i].is_compressed(), 'not compressed'


def test_image_write_empty():
    """
    Test a basic image write, with no data and just a header, then reading
    back in to check the values
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        data = None

        header = {
            'EXPTIME': 120,
            'OBSERVER': 'Beatrice Tinsley',
            'INSTRUME': 'DECam',
            'FILTER': 'r',
        }
        ccds = ['CCD1', 'CCD2', 'CCD3', 'CCD4', 'CCD5', 'CCD6', 'CCD7', 'CCD8']
        with FITS(fname, 'rw', ignore_empty=True) as fits:
            for extname in ccds:
                fits.write_image(data, header=header)
                _ = fits[-1].read()
                rh = fits[-1].read_header()
                check_header(header, rh)


def test_image_write_read_from_dims():
    """
    Test creating an image from dims and writing in place
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(5*20, dtype=dtype).reshape(5, 20)

                fits.create_image_hdu(dims=data.shape, dtype=data.dtype)

                fits[-1].write(data)
                rdata = fits[-1].read()

                compare_array(data, rdata, "images")

        with FITS(fname) as fits:
            for i in range(len(DTYPES)):
                assert not fits[i].is_compressed(), "not compressed"


def test_image_write_read_from_dims_chunks():
    """
    Test creating an image and reading/writing chunks
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(5*3, dtype=dtype).reshape(5, 3)

                fits.create_image_hdu(dims=data.shape, dtype=data.dtype)

                chunk1 = data[0:2, :]
                chunk2 = data[2:, :]

                #
                # first using scalar pixel offset
                #

                fits[-1].write(chunk1)

                start = chunk1.size
                fits[-1].write(chunk2, start=start)

                rdata = fits[-1].read()

                compare_array(data, rdata, "images")

                #
                # now using sequence, easier to calculate
                #

                fits.create_image_hdu(dims=data.shape,
                                      dtype=data.dtype)

                # first using pixel offset
                fits[-1].write(chunk1)

                start = [2, 0]
                fits[-1].write(chunk2, start=start)

                rdata2 = fits[-1].read()

                compare_array(data, rdata2, "images")

        with FITS(fname) as fits:
            for i in range(len(DTYPES)):
                assert not fits[i].is_compressed(), "not compressed"


def test_image_slice():
    """
    test reading an image slice
    """
    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(16*20, dtype=dtype).reshape(16, 20)
                header = {'DTYPE': dtype, 'NBYTES': data.dtype.itemsize}

                fits.write_image(data, header=header)
                rdata = fits[-1][4:12, 9:17]

                compare_array(data[4:12, 9:17], rdata, "images")

                rh = fits[-1].read_header()
                check_header(header, rh)


def _check_shape(expected_data, rdata):
    mess = (
        'Data are not the same (Expected shape: %s, '
        'actual shape: %s.' % (expected_data.shape, rdata.shape)
    )
    np.testing.assert_array_equal(expected_data, rdata, mess)


def test_read_flip_axis_slice():
    """
    Test reading a slice when the slice's start is less than the slice's stop.
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            dtype = np.int16
            data = np.arange(100 * 200, dtype=dtype).reshape(100, 200)
            fits.write_image(data)
            hdu = fits[-1]
            rdata = hdu[:, 130:70]

            # Expanded by two to emulate adding one to the start value, and
            # adding one to the calculated dimension.
            expected_data = data[:, 130:70:-1]

            _check_shape(expected_data, rdata)

            rdata = hdu[:, 130:70:-6]
            expected_data = data[:, 130:70:-6]
            _check_shape(expected_data, rdata)

            # Expanded by two to emulate adding one to the start value, and
            # adding one to the calculated dimension.
            expected_data = data[:, 130:70:-6]
            _check_shape(expected_data, rdata)

            # Positive step integer with start > stop will return an empty
            # array
            rdata = hdu[:, 90:60:4]
            expected_data = np.empty(0, dtype=dtype)
            _check_shape(expected_data, rdata)

            # Negative step integer with start < stop will return an empty
            # array.
            rdata = hdu[:, 60:90:-4]
            expected_data = np.empty(0, dtype=dtype)
            _check_shape(expected_data, rdata)


def test_image_slice_striding():
    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(16*20, dtype=dtype).reshape(16, 20)
                header = {'DTYPE': dtype, 'NBYTES': data.dtype.itemsize}
                fits.write_image(data, header=header)

                rdata = fits[-1][4:16:4, 2:20:2]
                expected_data = data[4:16:4, 2:20:2]
                assert rdata.shape == expected_data.shape, (
                    "Shapes differ with dtype %s" % dtype
                )
                compare_array(
                    expected_data, rdata, "images with dtype %s" % dtype
                )


def test_read_ignore_scaling():
    """
    Test the flag to ignore scaling when reading an HDU.
    """
    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            dtype = 'i2'
            data = np.arange(10 * 20, dtype=dtype).reshape(10, 20)
            header = {
                'DTYPE': dtype,
                'BITPIX': 16,
                'NBYTES': data.dtype.itemsize,
                'BZERO': 9.33,
                'BSCALE': 3.281
            }

            fits.write_image(data, header=header)
            hdu = fits[-1]

            rdata = hdu.read()
            assert rdata.dtype == np.float32, 'Wrong dtype.'

            hdu.ignore_scaling = True
            rdata = hdu[:, :]
            assert rdata.dtype == dtype, 'Wrong dtype when ignoring.'
            np.testing.assert_array_equal(
                data, rdata, err_msg='Wrong unscaled data.'
            )

            rh = fits[-1].read_header()
            check_header(header, rh)

            hdu.ignore_scaling = False
            rdata = hdu[:, :]
            assert rdata.dtype == np.float32, (
                'Wrong dtype when not ignoring.'
            )
            np.testing.assert_array_equal(
                data.astype(np.float32), rdata,
                err_msg='Wrong scaled data returned.'
            )