File: test_image_compression.py

package info (click to toggle)
python-fitsio 1.2.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,200 kB
  • sloc: ansic: 9,410; python: 5,802; makefile: 9
file content (357 lines) | stat: -rw-r--r-- 9,948 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import pytest
import sys
import os
import tempfile
from .checks import (
    # check_header,
    compare_array,
    compare_array_abstol,
)
import numpy as np
from ..fitslib import (
    FITS,
    read,
    write,
)


@pytest.mark.parametrize(
    'compress',
    [
        'rice',
        'hcompress',
        'plio',
        'gzip',
        'gzip_2',
        'gzip_lossless',
        'gzip_2_lossless',
    ]
)
def test_compressed_write_read(compress):
    """
    Test writing and reading a rice compressed image
    """
    nrows = 5
    ncols = 20
    if compress in ['rice', 'hcompress'] or 'gzip' in compress:
        dtypes = ['u1', 'i1', 'u2', 'i2', 'u4', 'i4', 'f4', 'f8']
    elif compress == 'plio':
        dtypes = ['i1', 'i2', 'i4', 'f4', 'f8']
    else:
        raise ValueError('unexpected compress %s' % compress)

    if 'lossless' in compress:
        qlevel = None
    else:
        qlevel = 16

    seed = 1919
    rng = np.random.RandomState(seed)

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        for ext, dtype in enumerate(dtypes):
            if dtype[0] == 'f':
                data = rng.normal(size=(nrows, ncols))
                if compress == 'plio':
                    data = data.clip(min=0)
                data = data.astype(dtype)
            else:
                data = np.arange(
                    nrows * ncols, dtype=dtype,
                ).reshape(nrows, ncols)

            csend = compress.replace('_lossless', '')
            write(fname, data, compress=csend, qlevel=qlevel)
            rdata = read(fname, ext=ext+1)

            if 'lossless' in compress or dtype[0] in ['i', 'u']:
                compare_array(
                    data, rdata,
                    "%s compressed images ('%s')" % (compress, dtype)
                )
            else:
                # lossy floating point
                compare_array_abstol(
                    data,
                    rdata,
                    0.2,
                    "%s compressed images ('%s')" % (compress, dtype),
                )

        with FITS(fname) as fits:
            for ii in range(len(dtypes)):
                i = ii + 1
                assert fits[i].is_compressed(), "is compressed"


@pytest.mark.parametrize(
    'compress',
    [
        'rice',
        'hcompress',
        'plio',
        'gzip',
        'gzip_2',
        'gzip_lossless',
        'gzip_2_lossless',
    ]
)
def test_compressed_write_read_fitsobj(compress):
    """
    Test writing and reading a rice compressed image

    In this version, keep the fits object open
    """
    nrows = 5
    ncols = 20
    if compress in ['rice', 'hcompress'] or 'gzip' in compress:
        dtypes = ['u1', 'i1', 'u2', 'i2', 'u4', 'i4', 'f4', 'f8']
        # dtypes = ['u2']
    elif compress == 'plio':
        dtypes = ['i1', 'i2', 'i4', 'f4', 'f8']
    else:
        raise ValueError('unexpected compress %s' % compress)

    if 'lossless' in compress:
        qlevel = None
        # qlevel = 9999
    else:
        qlevel = 16

    seed = 1919
    rng = np.random.RandomState(seed)

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note i8 not supported for compressed!

            for dtype in dtypes:
                if dtype[0] == 'f':
                    data = rng.normal(size=(nrows, ncols))
                    if compress == 'plio':
                        data = data.clip(min=0)
                    data = data.astype(dtype)
                else:
                    data = np.arange(
                        nrows * ncols, dtype=dtype,
                    ).reshape(nrows, ncols)

                csend = compress.replace('_lossless', '')
                fits.write_image(data, compress=csend, qlevel=qlevel)
                rdata = fits[-1].read()

                if 'lossless' in compress or dtype[0] in ['i', 'u']:
                    # for integers we have chosen a wide range of values, so
                    # there will be no quantization and we expect no
                    # information loss
                    compare_array(
                        data, rdata,
                        "%s compressed images ('%s')" % (compress, dtype)
                    )
                else:
                    # lossy floating point
                    compare_array_abstol(
                        data,
                        rdata,
                        0.2,
                        "%s compressed images ('%s')" % (compress, dtype),
                    )

        with FITS(fname) as fits:
            for ii in range(len(dtypes)):
                i = ii + 1
                assert fits[i].is_compressed(), "is compressed"


@pytest.mark.skipif(sys.version_info < (3, 9),
                    reason='importlib bug in 3.8')
def test_gzip_tile_compressed_read_lossless_astropy():
    """
    Test reading an image gzip compressed by astropy (fixed by cfitsio 3.49)
    """
    import importlib.resources
    ref = importlib.resources.files("fitsio") / 'test_images' / 'test_gzip_compressed_image.fits.fz'  # noqa
    with importlib.resources.as_file(ref) as gzip_file:
        data = read(gzip_file)

    compare_array(data, data*0.0, "astropy lossless compressed image")


def test_compress_preserve_zeros():
    """
    Test writing and reading gzip compressed image
    """

    zinds = [
        (1, 3),
        (2, 9),
    ]

    dtypes = ['f4', 'f8']

    seed = 2020
    rng = np.random.RandomState(seed)

    # Do not test hcompress as it doesn't support SUBTRACTIVE_DITHER_2
    for compress in ['gzip', 'gzip_2', 'rice']:
        with tempfile.TemporaryDirectory() as tmpdir:
            fname = os.path.join(tmpdir, 'test.fits')

            with FITS(fname, 'rw') as fits:

                for dtype in dtypes:

                    data = rng.normal(size=5*20).reshape(5, 20).astype(dtype)
                    for zind in zinds:
                        data[zind[0], zind[1]] = 0.0

                    fits.write_image(
                        data,
                        compress=compress,
                        qlevel=16,
                        qmethod='SUBTRACTIVE_DITHER_2',
                    )
                    rdata = fits[-1].read()

                    for zind in zinds:
                        assert rdata[zind[0], zind[1]] == 0.0


@pytest.mark.parametrize(
    'compress',
    [
        'rice',
        'hcompress',
        'plio',
    ]
)
@pytest.mark.parametrize(
    'seed_type',
    ['matched', 'unmatched', 'checksum', 'checksum_int'],
)
@pytest.mark.parametrize(
    'use_fits_object',
    [False, True],
)
@pytest.mark.parametrize(
    'dtype',
    ['f4', 'f8'],
)
def test_compressed_seed(compress, seed_type, use_fits_object, dtype):
    """
    Test writing and reading a rice compressed image
    """
    nrows = 5
    ncols = 20

    qlevel = 16

    seed = 1919
    rng = np.random.RandomState(seed)

    if seed_type == 'matched':
        # dither_seed = 9881
        dither_seed1 = 9881
        dither_seed2 = 9881
    elif seed_type == 'unmatched':
        # dither_seed = None
        dither_seed1 = 3
        dither_seed2 = 4
    elif seed_type == 'checksum':
        dither_seed1 = 'checksum'
        dither_seed2 = b'checksum'
    elif seed_type == 'checksum_int':
        dither_seed1 = -1
        # any negative means use checksum
        dither_seed2 = -3

    with tempfile.TemporaryDirectory() as tmpdir:
        fname1 = os.path.join(tmpdir, 'test1.fits')
        fname2 = os.path.join(tmpdir, 'test2.fits')

        data = rng.normal(size=(nrows, ncols))
        if compress == 'plio':
            data = data.clip(min=0)
        data = data.astype(dtype)

        if use_fits_object:
            with FITS(fname1, 'rw') as fits1:
                fits1.write(
                    data, compress=compress, qlevel=qlevel,
                    # dither_seed=dither_seed,
                    dither_seed=dither_seed1,
                )
                rdata1 = fits1[-1].read()

            with FITS(fname2, 'rw') as fits2:
                fits2.write(
                    data, compress=compress, qlevel=qlevel,
                    # dither_seed=dither_seed,
                    dither_seed=dither_seed2,
                )
                rdata2 = fits2[-1].read()
        else:
            write(
                fname1, data, compress=compress, qlevel=qlevel,
                # dither_seed=dither_seed,
                dither_seed=dither_seed1,
            )
            rdata1 = read(fname1)

            write(
                fname2, data, compress=compress, qlevel=qlevel,
                # dither_seed=dither_seed,
                dither_seed=dither_seed2,
            )
            rdata2 = read(fname2)

        mess = "%s compressed images ('%s')" % (compress, dtype)

        if seed_type in ['checksum', 'checksum_int', 'matched']:
            assert np.all(rdata1 == rdata2), mess
        else:
            assert np.all(rdata1 != rdata2), mess


@pytest.mark.parametrize(
    'dither_seed',
    ['blah', 10_001],
)
def test_compressed_seed_bad(dither_seed):
    """
    Test writing and reading a rice compressed image
    """
    compress = 'rice'
    dtype = 'f4'
    nrows = 5
    ncols = 20

    qlevel = 16

    seed = 1919
    rng = np.random.RandomState(seed)

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        data = rng.normal(size=(nrows, ncols))
        data = data.astype(dtype)

        with pytest.raises(ValueError):
            write(
                fname, data, compress=compress, qlevel=qlevel,
                dither_seed=dither_seed,
            )


if __name__ == '__main__':
    test_compressed_seed(
        compress='rice',
        match_seed=False,
        use_fits_object=True,
        dtype='f4',
    )