File: test_image.py

package info (click to toggle)
python-fitsio 1.3.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,020 kB
  • sloc: python: 7,963; ansic: 3,962; makefile: 10
file content (804 lines) | stat: -rw-r--r-- 25,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import os
import tempfile

import pytest

# import warnings
from .checks import check_header, compare_array
from ..util import cfitsio_version, cfitsio_is_bundled
import numpy as np
from ..fitslib import FITS

CFITSIO_VERSION = cfitsio_version(asfloat=True)
DTYPES = ['u1', 'i1', 'u2', 'i2', '<u4', 'i4', 'i8', '>f4', 'f8']
if CFITSIO_VERSION > 3.44:
    DTYPES += ["u8"]


@pytest.mark.parametrize("with_nan", [False, True])
def test_image_write_read(with_nan):
    """
    Test a basic image write, data and a header, then reading back in to
    check the values
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')
        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(5 * 20, dtype=dtype).reshape(5, 20)
                if "f" in dtype and with_nan:
                    data[3, 13] = np.nan

                header = {'DTYPE': dtype, 'NBYTES': data.dtype.itemsize}
                fits.write_image(data, header=header)
                rdata = fits[-1].read()

                np.testing.assert_array_equal(data, rdata)

                rh = fits[-1].read_header()
                check_header(header, rh)

        with FITS(fname) as fits:
            for i in range(len(DTYPES)):
                assert not fits[i].is_compressed(), 'not compressed'


@pytest.mark.parametrize("fname", ["mem://", "test.fits"])
def test_image_write_read_bool(fname):
    rng = np.random.RandomState(seed=10)
    with tempfile.TemporaryDirectory() as tmpdir:
        if "mem://" not in fname:
            fpth = os.path.join(tmpdir, fname)
        else:
            fpth = fname

        with FITS(fpth, "rw") as fits:
            a = rng.rand(10)
            fits.write(a)
            a = rng.rand(10) > 0.5
            with pytest.raises(TypeError) as e:
                fits.write(a)

        assert "Unsupported numpy image datatype 0" in str(e)


@pytest.mark.parametrize("with_nan", [False, True])
@pytest.mark.parametrize("dtype", DTYPES)
def test_image_write_read_unaligned(dtype, with_nan):
    """
    Test a basic image write, data and a header, then reading back in to
    check the values. The data from numpy is an unaligned view. The code
    to make the unaligned view was generated by Google's AI and then modified
    by hand to fix a bug.
    """

    if (
        dtype == ">f4" or ("f" in dtype and with_nan)
    ) and not cfitsio_is_bundled():
        pytest.xfail(
            reason=(
                "Non-bundled cfitsio libraries have a bug for "
                "underflow handling. "
                "See https://github.com/HEASARC/cfitsio/pull/102."
            ),
        )

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')
        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            data = np.arange(20, dtype=dtype)
            unaligned_data = np.ndarray(
                shape=(19,),
                dtype=data.dtype,
                buffer=data.data,
                offset=1,  # Offset by 1 byte
                strides=data.strides,
            )
            if not dtype.endswith("1"):
                assert not unaligned_data.flags["ALIGNED"]

            if "f" in dtype and with_nan:
                unaligned_data[3] = np.nan

            header = {
                'DTYPE': dtype,
                'NBYTES': unaligned_data.dtype.itemsize,
            }
            fits.write_image(unaligned_data, header=header)
            rdata = fits[-1].read()

            np.testing.assert_array_equal(unaligned_data, rdata)

            rh = fits[-1].read_header()
            check_header(header, rh)

        with FITS(fname) as fits:
            assert not fits[0].is_compressed(), 'not compressed'


@pytest.mark.parametrize("with_nan", [False, True])
def test_image_subnormal_float32(with_nan):
    if not cfitsio_is_bundled():
        pytest.xfail(
            reason=(
                "Non-bundled cfitsio libraries have a bug for "
                "underflow handling. "
                "See https://github.com/HEASARC/cfitsio/pull/102."
            ),
        )
    v = 8.82818e-44
    v = [v] * 10
    if with_nan:
        v += [np.nan]
    nv = np.array(v, dtype=np.float32)

    with FITS("mem://", 'rw') as fits:
        fits.write_image(nv)
        rdata = fits[-1].read()

        np.testing.assert_array_equal(rdata, nv)


@pytest.mark.parametrize("with_nan", [False, True])
def test_image_subnormal_float64(with_nan):
    if not cfitsio_is_bundled():
        pytest.xfail(
            reason=(
                "Non-bundled cfitsio libraries have a bug for "
                "underflow handling. "
                "See https://github.com/HEASARC/cfitsio/pull/102."
            ),
        )
    v = 2.225073858507203e-309
    v = [v] * 10
    if with_nan:
        v += [np.nan]
    nv = np.array(v, dtype=np.float64)

    with FITS("mem://", 'rw') as fits:
        fits.write_image(nv)
        rdata = fits[-1].read()

        np.testing.assert_array_equal(rdata, nv)


def test_image_write_empty():
    """
    Test a basic image write, with no data and just a header, then reading
    back in to check the values
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        data = None

        header = {
            'EXPTIME': 120,
            'OBSERVER': 'Beatrice Tinsley',
            'INSTRUME': 'DECam',
            'FILTER': 'r',
        }
        ccds = ['CCD1', 'CCD2', 'CCD3', 'CCD4', 'CCD5', 'CCD6', 'CCD7', 'CCD8']
        with FITS(fname, 'rw', ignore_empty=True) as fits:
            for extname in ccds:
                fits.write_image(data, header=header)
                _ = fits[-1].read()
                rh = fits[-1].read_header()
                check_header(header, rh)


@pytest.mark.parametrize("with_nan", [False, True])
def test_image_write_read_from_dims(with_nan):
    """
    Test creating an image from dims and writing in place
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(5 * 20, dtype=dtype).reshape(5, 20)
                if "f" in dtype and with_nan:
                    data[3, 13] = np.nan

                fits.create_image_hdu(dims=data.shape, dtype=data.dtype)

                fits[-1].write(data)
                rdata = fits[-1].read()

                np.testing.assert_array_equal(data, rdata)

        with FITS(fname) as fits:
            for i in range(len(DTYPES)):
                assert not fits[i].is_compressed(), "not compressed"


@pytest.mark.parametrize("with_nan", [False, True])
def test_image_write_read_from_dims_chunks(with_nan):
    """
    Test creating an image and reading/writing chunks
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(5 * 3, dtype=dtype).reshape(5, 3)
                if "f" in dtype and with_nan:
                    data[3, 1] = np.nan

                fits.create_image_hdu(dims=data.shape, dtype=data.dtype)

                chunk1 = data[0:2, :]
                chunk2 = data[2:, :]

                #
                # first using scalar pixel offset
                #

                fits[-1].write(chunk1)

                start = chunk1.size
                fits[-1].write(chunk2, start=start)

                rdata = fits[-1].read()

                np.testing.assert_array_equal(data, rdata)

                #
                # now using sequence, easier to calculate
                #

                fits.create_image_hdu(dims=data.shape, dtype=data.dtype)

                # first using pixel offset
                fits[-1].write(chunk1)

                start = [2, 0]
                fits[-1].write(chunk2, start=start)

                rdata2 = fits[-1].read()

                np.testing.assert_array_equal(data, rdata2)

        with FITS(fname) as fits:
            for i in range(len(DTYPES)):
                assert not fits[i].is_compressed(), "not compressed"


@pytest.mark.parametrize("with_nan", [False, True])
def test_image_slice(with_nan):
    """
    test reading an image slice
    """
    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(16 * 20, dtype=dtype).reshape(16, 20)
                if "f" in dtype and with_nan:
                    data[3, 13] = np.nan

                header = {'DTYPE': dtype, 'NBYTES': data.dtype.itemsize}

                fits.write_image(data, header=header)
                rdata = fits[-1][4:12, 9:17]

                np.testing.assert_array_equal(data[4:12, 9:17], rdata)

                rh = fits[-1].read_header()
                check_header(header, rh)


def _check_shape(expected_data, rdata):
    mess = 'Data are not the same (Expected shape: %s, actual shape: %s.' % (
        expected_data.shape,
        rdata.shape,
    )
    np.testing.assert_array_equal(expected_data, rdata, mess)


@pytest.mark.parametrize("with_nan", [False, True])
def test_read_flip_axis_slice(with_nan):
    """
    Test reading a slice when the slice's start is less than the slice's stop.
    """

    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            dtype = np.float32
            data = np.arange(100 * 200, dtype=dtype).reshape(100, 200)
            if with_nan:
                data[3, 13] = np.nan
            fits.write_image(data)
            hdu = fits[-1]
            rdata = hdu[:, 130:70]

            # Expanded by two to emulate adding one to the start value, and
            # adding one to the calculated dimension.
            expected_data = data[:, 130:70:-1]

            _check_shape(expected_data, rdata)

            rdata = hdu[:, 130:70:-6]
            expected_data = data[:, 130:70:-6]
            _check_shape(expected_data, rdata)

            # Expanded by two to emulate adding one to the start value, and
            # adding one to the calculated dimension.
            expected_data = data[:, 130:70:-6]
            _check_shape(expected_data, rdata)

            # Positive step integer with start > stop will return an empty
            # array
            rdata = hdu[:, 90:60:4]
            expected_data = np.empty(0, dtype=dtype)
            _check_shape(expected_data, rdata)

            # Negative step integer with start < stop will return an empty
            # array.
            rdata = hdu[:, 60:90:-4]
            expected_data = np.empty(0, dtype=dtype)
            _check_shape(expected_data, rdata)


@pytest.mark.parametrize("with_nan", [False, True])
def test_image_slice_striding(with_nan):
    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            # note mixing up byte orders a bit
            for dtype in DTYPES:
                data = np.arange(16 * 20, dtype=dtype).reshape(16, 20)
                if "f" in dtype and with_nan:
                    data[3, 13] = np.nan
                header = {'DTYPE': dtype, 'NBYTES': data.dtype.itemsize}
                fits.write_image(data, header=header)

                rdata = fits[-1][4:16:4, 2:20:2]
                expected_data = data[4:16:4, 2:20:2]
                assert rdata.shape == expected_data.shape, (
                    "Shapes differ with dtype %s" % dtype
                )
                np.testing.assert_array_equal(
                    expected_data, rdata, "images with dtype %s" % dtype
                )


@pytest.mark.parametrize("with_nan", [False, True])
def test_read_ignore_scaling(with_nan):
    """
    Test the flag to ignore scaling when reading an HDU.
    """
    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')

        with FITS(fname, 'rw') as fits:
            dtype = 'i2'
            data = np.arange(10 * 20, dtype=dtype).reshape(10, 20)
            if "f" in dtype and with_nan:
                data[3, 13] = np.nan
            header = {
                'DTYPE': dtype,
                'BITPIX': 16,
                'NBYTES': data.dtype.itemsize,
                'BZERO': 9.33,
                'BSCALE': 3.281,
            }

            fits.write_image(data, header=header)
            hdu = fits[-1]

            rdata = hdu.read()
            assert rdata.dtype == np.float32, 'Wrong dtype.'

            hdu.ignore_scaling = True
            rdata = hdu[:, :]
            assert rdata.dtype == dtype, 'Wrong dtype when ignoring.'
            np.testing.assert_array_equal(
                data, rdata, err_msg='Wrong unscaled data.'
            )

            rh = fits[-1].read_header()
            check_header(header, rh)

            hdu.ignore_scaling = False
            rdata = hdu[:, :]
            assert rdata.dtype == np.float32, 'Wrong dtype when not ignoring.'
            np.testing.assert_array_equal(
                data.astype(np.float32),
                rdata,
                err_msg='Wrong scaled data returned.',
            )


@pytest.mark.parametrize(
    "compress_kws",
    [
        {},
        {
            "compress": "RICE",
            "tile_dims": (3, 1, 2),
            "qlevel": 2048,
            "dither_seed": 10,
        },
        {
            "compress": "GZIP",
            "tile_dims": (3, 1, 2),
            "qlevel": 0,
            "dither_seed": 10,
        },
    ],
)
@pytest.mark.parametrize("with_nan", [False, True])
@pytest.mark.parametrize("fname", ["mem://", "test.fits"])
@pytest.mark.parametrize("sx", [0, 6, 9])
@pytest.mark.parametrize("sy", [0, 3, 4])
@pytest.mark.parametrize("sz", [0, 2, 5])
def test_image_write_subset_3d(sx, sy, sz, fname, with_nan, compress_kws):
    rng = np.random.RandomState(seed=10)
    img = np.arange(300).reshape(6, 5, 10).astype(np.float32)
    img2 = (rng.normal(size=30).reshape(3, 2, 5) * 1000).astype(np.float32)
    if with_nan:
        img2[0, 1, 2] = np.nan

    if compress_kws and (sx > 5 or sy > 3 or sz > 3):
        pytest.skip(reason="tile-compressed fits images cannot be resized!")

    with tempfile.TemporaryDirectory() as tmpdir:
        if "mem://" not in fname:
            fpth = os.path.join(tmpdir, fname)
        else:
            fpth = fname

        with FITS(fpth, "rw") as fits:
            fits.write(img, **compress_kws)
            if compress_kws:
                fits[1].write(img2, start=[sz, sy, sx])
                img_final = fits[1].read()
            else:
                fits[0].write(img2, start=[sz, sy, sx])
                img_final = fits[0].read()

        if (
            "compress" in compress_kws
            and compress_kws.get("qlevel", np.inf) != 0
        ):
            np.testing.assert_allclose(
                img_final[
                    sz : sz + img2.shape[0],
                    sy : sy + img2.shape[1],
                    sx : sx + img2.shape[2],
                ],
                img2,
            )
        else:
            np.testing.assert_array_equal(
                img_final[
                    sz : sz + img2.shape[0],
                    sy : sy + img2.shape[1],
                    sx : sx + img2.shape[2],
                ],
                img2,
            )


@pytest.mark.parametrize(
    "compress_kws",
    [
        {},
        {
            "compress": "RICE",
            "tile_dims": (5, 2),
            "qlevel": 128,
            "dither_seed": 10,
        },
        {"compress": "GZIP", "tile_dims": (5, 2), "qlevel": 0},
    ],
)
@pytest.mark.parametrize("with_nan_base_img", [False, True])
@pytest.mark.parametrize("with_nan", [False, True])
@pytest.mark.parametrize(
    "fname",
    [
        "mem://",
        "test.fits",
    ],
)
@pytest.mark.parametrize("sx", [0, 1, 9])
@pytest.mark.parametrize("sy", [0, 1, 9])
@pytest.mark.parametrize("xnan", [0, 1, 9])
@pytest.mark.parametrize("ynan", [0, 1, 9])
def test_image_write_subset_2d(
    sx, sy, fname, with_nan, compress_kws, with_nan_base_img, xnan, ynan
):
    rng = np.random.RandomState(seed=10)
    img = np.arange(100).reshape(10, 10)
    nse = rng.normal(size=100).reshape(10, 10)
    img = (img + 1e-4 * nse).reshape(10, 10).astype(np.float32)
    img2 = (10 + rng.normal(size=6).reshape(3, 2)).astype(np.float32)
    if with_nan_base_img:
        img[ynan, xnan] = np.nan
    if with_nan:
        img2[1, 0] = np.nan

    if compress_kws and (sx > 8 or sy > 7):
        pytest.skip(reason="tile-compressed fits images cannot be resized!")

    if compress_kws and (sx == 9 or sy == 9):
        pytest.skip(reason="tile-compressed fits images cannot be resized!")

    # these test cases have the subset image img2 overlapping two
    # different compressed image tiles which causes a bug when
    # combined with one of the tiles changing its compression type
    # due to an edge case in the compression algorithm
    partial_overlap_str = f"{xnan}-{ynan}-{sx}-{sy}"
    partial_overlap_str_cases = [
        "0-0-0-1",
        "0-0-1-0",
        "0-0-1-1",
        "0-1-1-0",
        "0-1-1-1",
        "1-0-0-1",
        "1-0-1-1",
    ]
    if (
        with_nan
        and with_nan_base_img
        and partial_overlap_str in partial_overlap_str_cases
        and not cfitsio_is_bundled()
        and compress_kws
        and compress_kws.get("qlevel", 0) > 0
    ):
        pytest.xfail(
            reason=(
                "Non-bundled cfitsio libraries have a bug for "
                "overwriting tile-compressed images in an edge case. "
                "See https://github.com/HEASARC/cfitsio/pull/101."
            ),
        )

    with tempfile.TemporaryDirectory() as tmpdir:
        if "mem://" not in fname:
            fpth = os.path.join(tmpdir, fname)
        else:
            fpth = fname

        with FITS(fpth, "rw") as fits:
            fits.write(img, **compress_kws)

            if compress_kws:
                img_final = fits[1].read()
            else:
                img_final = fits[0].read()

            np.testing.assert_allclose(
                img,
                img_final,
                atol=1e-3,
                rtol=0.2,
            )

            if compress_kws:
                fits[1].write(img2, start=[sy, sx])
            else:
                fits[0].write(img2, start=[sy, sx])

            if compress_kws:
                img_final = fits[1].read()
            else:
                img_final = fits[0].read()

            if compress_kws:
                img_final_slice = fits[1][
                    sy : sy + img2.shape[0], sx : sx + img2.shape[1]
                ]
            else:
                img_final_slice = fits[0][
                    sy : sy + img2.shape[0], sx : sx + img2.shape[1]
                ]

        if (
            "compress" in compress_kws
            and compress_kws.get("qlevel", np.inf) != 0
        ):
            np.testing.assert_allclose(
                img_final[sy : sy + img2.shape[0], sx : sx + img2.shape[1]],
                img2,
                atol=0,
                rtol=0.2,
            )
        else:
            np.testing.assert_array_equal(
                img_final[sy : sy + img2.shape[0], sx : sx + img2.shape[1]],
                img2,
            )

        np.testing.assert_array_equal(
            img_final[sy : sy + img2.shape[0], sx : sx + img2.shape[1]],
            img_final_slice,
        )


@pytest.mark.parametrize("with_nan", [False, True])
@pytest.mark.parametrize("fname", ["mem://", "test.fits"])
@pytest.mark.parametrize("sx", [0, 13, 99])
def test_image_write_subset_1d(sx, fname, with_nan):
    rng = np.random.RandomState(seed=10)
    img = np.arange(100)
    img2 = (rng.normal(size=6) * 1000).astype(np.int_)
    if with_nan:
        img = img.astype(np.float32)
        img2 = img2.astype(np.float32)
        img2[5] = np.nan

    for _sx in [sx, [sx]]:
        with tempfile.TemporaryDirectory() as tmpdir:
            if "mem://" not in fname:
                fpth = os.path.join(tmpdir, fname)
            else:
                fpth = fname

            with FITS(fpth, "rw") as fits:
                fits.write(img)
                fits[0].write(img2, start=_sx)
                img_final = fits[0].read()

            np.testing.assert_array_equal(
                img_final[sx : sx + img2.shape[0]],
                img2,
            )


@pytest.mark.parametrize("fname", ["mem://", "test.fits"])
@pytest.mark.parametrize(
    "shape,reshape",
    [
        ((6, 5, 10), (10, 12, 23)),
        ((1,), (10,)),
        ((6, 5), (10, 12)),
        ((6, 5, 10), (3, 2, 7)),
        ((10,), (3,)),
        ((10, 5), (12, 2)),
    ],
)
def test_image_reshape(shape, reshape, fname):
    img = np.arange(int(np.prod(shape))).reshape(shape)

    with tempfile.TemporaryDirectory() as tmpdir:
        if "mem://" not in fname:
            fpth = os.path.join(tmpdir, fname)
        else:
            fpth = fname

        with FITS(fpth, "rw") as fits:
            fits.write(img)
            fits[0].reshape(reshape)
            img_final = fits[0].read()

        nel = img.ravel().shape[0]
        nel_final = img_final.ravel().shape[0]
        min_nel = min(nel, nel_final)
        assert np.array_equal(
            img_final.ravel()[:min_nel],
            img.ravel()[:min_nel],
        )
        if nel_final > nel:
            assert np.array_equal(
                img_final.ravel()[nel:],
                np.zeros(nel_final - nel),
            )


@pytest.mark.parametrize("fname", ["mem://", "test.fits"])
@pytest.mark.parametrize(
    "dims",
    [
        ((1,)),
        (
            (
                2,
                3,
            )
        ),
        (
            4,
            5,
            6,
        ),
    ],
)
def test_image_write_subset_raises(dims, fname):
    ndims = len(dims)
    rng = np.random.RandomState(seed=10)
    img = np.arange(int(np.prod(dims))).reshape(dims)
    exdims = dims + (5,)
    img2 = (
        rng.normal(size=int(np.prod(exdims))).reshape(exdims) * 1000
    ).astype(np.int_)

    with tempfile.TemporaryDirectory() as tmpdir:
        if "mem://" not in fname:
            fpth = os.path.join(tmpdir, fname)
        else:
            fpth = fname

        with FITS(fpth, "rw") as fits:
            fits.write(img)
            with pytest.raises(ValueError) as err:
                fits[0].write(img2, start=0)
            assert (
                "the input image must have the same number of dimensions"
                in str(err.value)
            )

    with tempfile.TemporaryDirectory() as tmpdir:
        if "mem://" not in fname:
            fpth = os.path.join(tmpdir, fname)
        else:
            fpth = fname

        with FITS(fpth, "rw") as fits:
            fits.write(img)
            if ndims > 1:
                with pytest.raises(ValueError) as err:
                    fits[0].write(img2[..., 0], start=9999)
                assert (
                    "the start keyword must have the same number of dimensions"
                    in str(err.value)
                )
            else:
                fits[0].write(img2[..., 0], start=9999)

    with tempfile.TemporaryDirectory() as tmpdir:
        if "fpth" not in fname:
            fpth = os.path.join(tmpdir, fname)
        else:
            fpth = fname

        with FITS("mem://", "rw") as fits:
            fits.write(img)
            if ndims > 1:
                fits[0].write(img2[..., :-1, 0], start=1)
            else:
                fits[0].write(img2[..., 0], start=1)


def test_image_read_write_ulonglong():
    with tempfile.TemporaryDirectory() as tmpdir:
        fname = os.path.join(tmpdir, 'test.fits')
        with FITS(fname, 'rw') as fits:
            data = np.arange(5 * 20, dtype='u8').reshape(5, 20)
            header = {'DTYPE': 'u8', 'NBYTES': data.dtype.itemsize}
            if CFITSIO_VERSION < 3.45:
                with pytest.raises(TypeError) as e:
                    fits.write_image(data, header=header)
                assert (
                    "Unsigned 8 byte integer images are not supported "
                    "by the FITS standard" in str(e.value)
                )
            else:
                fits.write_image(data, header=header)
                rdata = fits[-1].read()

                compare_array(data, rdata, "images")

                rh = fits[-1].read_header()
                check_header(header, rh)

        if CFITSIO_VERSION >= 3.45:
            with FITS(fname) as fits:
                assert not fits[0].is_compressed(), 'not compressed'