1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
A Python structured logger for Fluentd/Fluent Bit
=================================================
Many web/mobile applications generate huge amount of event logs (c,f.
login, logout, purchase, follow, etc). To analyze these event logs could
be really valuable for improving the service. However, the challenge is
collecting these logs easily and reliably.
`Fluentd <https://github.com/fluent/fluentd>`__ and `Fluent Bit <https://fluentbit.io/>`__ solves that problem by
having: easy installation, small footprint, plugins, reliable buffering,
log forwarding, etc.
**fluent-logger-python** is a Python library, to record the events from
Python application.
Requirements
------------
- Python 3.7+
- ``msgpack``
- **IMPORTANT**: Version 0.8.0 is the last version supporting Python 2.6, 3.2 and 3.3
- **IMPORTANT**: Version 0.9.6 is the last version supporting Python 2.7 and 3.4
- **IMPORTANT**: Version 0.10.0 is the last version supporting Python 3.5 and 3.6
Installation
------------
This library is distributed as 'fluent-logger' python package. Please
execute the following command to install it.
.. code:: sh
$ pip install fluent-logger
Configuration
-------------
Fluentd daemon must be launched with a tcp source configuration:
::
<source>
type forward
port 24224
</source>
To quickly test your setup, add a matcher that logs to the stdout:
::
<match app.**>
type stdout
</match>
Usage
-----
FluentSender Interface
~~~~~~~~~~~~~~~~~~~~~~
`sender.FluentSender` is a structured event logger for Fluentd.
By default, the logger assumes fluentd daemon is launched locally. You
can also specify remote logger by passing the options.
.. code:: python
from fluent import sender
# for local fluent
logger = sender.FluentSender('app')
# for remote fluent
logger = sender.FluentSender('app', host='host', port=24224)
For sending event, call `emit` method with your event. Following example will send the event to
fluentd, with tag 'app.follow' and the attributes 'from' and 'to'.
.. code:: python
# Use current time
logger.emit('follow', {'from': 'userA', 'to': 'userB'})
# Specify optional time
cur_time = int(time.time())
logger.emit_with_time('follow', cur_time, {'from': 'userA', 'to':'userB'})
To send events with nanosecond-precision timestamps (Fluent 0.14 and up),
specify `nanosecond_precision` on `FluentSender`.
.. code:: python
# Use nanosecond
logger = sender.FluentSender('app', nanosecond_precision=True)
logger.emit('follow', {'from': 'userA', 'to': 'userB'})
logger.emit_with_time('follow', time.time(), {'from': 'userA', 'to': 'userB'})
You can detect an error via return value of `emit`. If an error happens in `emit`, `emit` returns `False` and get an error object using `last_error` method.
.. code:: python
if not logger.emit('follow', {'from': 'userA', 'to': 'userB'}):
print(logger.last_error)
logger.clear_last_error() # clear stored error after handled errors
If you want to shutdown the client, call `close()` method.
.. code:: python
logger.close()
Event-Based Interface
~~~~~~~~~~~~~~~~~~~~~
This API is a wrapper for `sender.FluentSender`.
First, you need to call ``sender.setup()`` to create global `sender.FluentSender` logger
instance. This call needs to be called only once, at the beginning of
the application for example.
Initialization code of Event-Based API is below:
.. code:: python
from fluent import sender
# for local fluent
sender.setup('app')
# for remote fluent
sender.setup('app', host='host', port=24224)
Then, please create the events like this. This will send the event to
fluentd, with tag 'app.follow' and the attributes 'from' and 'to'.
.. code:: python
from fluent import event
# send event to fluentd, with 'app.follow' tag
event.Event('follow', {
'from': 'userA',
'to': 'userB'
})
`event.Event` has one limitation which can't return success/failure result.
Other methods for Event-Based Interface.
.. code:: python
sender.get_global_sender # get instance of global sender
sender.close # Call FluentSender#close
Handler for buffer overflow
~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can inject your own custom proc to handle buffer overflow in the event of connection failure. This will mitigate the loss of data instead of simply throwing data away.
.. code:: python
import msgpack
from io import BytesIO
def overflow_handler(pendings):
unpacker = msgpack.Unpacker(BytesIO(pendings))
for unpacked in unpacker:
print(unpacked)
logger = sender.FluentSender('app', host='host', port=24224, buffer_overflow_handler=overflow_handler)
You should handle any exception in handler. fluent-logger ignores exceptions from ``buffer_overflow_handler``.
This handler is also called when pending events exist during `close()`.
Python logging.Handler interface
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This client-library also has ``FluentHandler`` class for Python logging
module.
.. code:: python
import logging
from fluent import handler
custom_format = {
'host': '%(hostname)s',
'where': '%(module)s.%(funcName)s',
'type': '%(levelname)s',
'stack_trace': '%(exc_text)s'
}
logging.basicConfig(level=logging.INFO)
l = logging.getLogger('fluent.test')
h = handler.FluentHandler('app.follow', host='host', port=24224, buffer_overflow_handler=overflow_handler)
formatter = handler.FluentRecordFormatter(custom_format)
h.setFormatter(formatter)
l.addHandler(h)
l.info({
'from': 'userA',
'to': 'userB'
})
l.info('{"from": "userC", "to": "userD"}')
l.info("This log entry will be logged with the additional key: 'message'.")
You can also customize formatter via logging.config.dictConfig
.. code:: python
import logging.config
import yaml
with open('logging.yaml') as fd:
conf = yaml.load(fd)
logging.config.dictConfig(conf['logging'])
You can inject your own custom proc to handle buffer overflow in the event of connection failure. This will mitigate the loss of data instead of simply throwing data away.
.. code:: python
import msgpack
from io import BytesIO
def overflow_handler(pendings):
unpacker = msgpack.Unpacker(BytesIO(pendings))
for unpacked in unpacker:
print(unpacked)
A sample configuration ``logging.yaml`` would be:
.. code:: python
logging:
version: 1
formatters:
brief:
format: '%(message)s'
default:
format: '%(asctime)s %(levelname)-8s %(name)-15s %(message)s'
datefmt: '%Y-%m-%d %H:%M:%S'
fluent_fmt:
'()': fluent.handler.FluentRecordFormatter
format:
level: '%(levelname)s'
hostname: '%(hostname)s'
where: '%(module)s.%(funcName)s'
handlers:
console:
class : logging.StreamHandler
level: DEBUG
formatter: default
stream: ext://sys.stdout
fluent:
class: fluent.handler.FluentHandler
host: localhost
port: 24224
tag: test.logging
buffer_overflow_handler: overflow_handler
formatter: fluent_fmt
level: DEBUG
none:
class: logging.NullHandler
loggers:
amqp:
handlers: [none]
propagate: False
conf:
handlers: [none]
propagate: False
'': # root logger
handlers: [console, fluent]
level: DEBUG
propagate: False
Asynchronous Communication
~~~~~~~~~~~~~~~~~~~~~~~~~~
Besides the regular interfaces - the event-based one provided by ``sender.FluentSender`` and the python logging one
provided by ``handler.FluentHandler`` - there are also corresponding asynchronous versions in ``asyncsender`` and
``asynchandler`` respectively. These versions use a separate thread to handle the communication with the remote fluentd
server. In this way the client of the library won't be blocked during the logging of the events, and won't risk going
into timeout if the fluentd server becomes unreachable. Also it won't be slowed down by the network overhead.
The interfaces in ``asyncsender`` and ``asynchandler`` are exactly the same as those in ``sender`` and ``handler``, so it's
just a matter of importing from a different module.
For instance, for the event-based interface:
.. code:: python
from fluent import asyncsender as sender
# for local fluent
sender.setup('app')
# for remote fluent
sender.setup('app', host='host', port=24224)
# do your work
...
# IMPORTANT: before program termination, close the sender
sender.close()
or for the python logging interface:
.. code:: python
import logging
from fluent import asynchandler as handler
custom_format = {
'host': '%(hostname)s',
'where': '%(module)s.%(funcName)s',
'type': '%(levelname)s',
'stack_trace': '%(exc_text)s'
}
logging.basicConfig(level=logging.INFO)
l = logging.getLogger('fluent.test')
h = handler.FluentHandler('app.follow', host='host', port=24224, buffer_overflow_handler=overflow_handler)
formatter = handler.FluentRecordFormatter(custom_format)
h.setFormatter(formatter)
l.addHandler(h)
l.info({
'from': 'userA',
'to': 'userB'
})
l.info('{"from": "userC", "to": "userD"}')
l.info("This log entry will be logged with the additional key: 'message'.")
...
# IMPORTANT: before program termination, close the handler
h.close()
**NOTE**: please note that it's important to close the sender or the handler at program termination. This will make
sure the communication thread terminates and it's joined correctly. Otherwise the program won't exit, waiting for
the thread, unless forcibly killed.
Circular queue mode
+++++++++++++++++++
In some applications it can be especially important to guarantee that the logging process won't block under *any*
circumstance, even when it's logging faster than the sending thread could handle (*backpressure*). In this case it's
possible to enable the `circular queue` mode, by passing `True` in the `queue_circular` parameter of
``asyncsender.FluentSender`` or ``asynchandler.FluentHandler``. By doing so the thread doing the logging won't block
even when the queue is full, the new event will be added to the queue by discarding the oldest one.
**WARNING**: setting `queue_circular` to `True` will cause loss of events if the queue fills up completely! Make sure
that this doesn't happen, or it's acceptable for your application.
Testing
-------
Testing can be done using `pytest <https://docs.pytest.org>`__.
.. code:: sh
$ pytest tests
Release
-------
.. code:: sh
$ # Download dist.zip for release from GitHub Action artifact.
$ unzip -d dist dist.zip
$ pipx twine upload dist/*
Contributors
------------
Patches contributed by `those
people <https://github.com/fluent/fluent-logger-python/contributors>`__.
License
-------
Apache License, Version 2.0
|