File: flow_meter.py

package info (click to toggle)
python-fluids 0.1.73-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 6,092 kB
  • sloc: python: 39,174; f90: 1,033; makefile: 48
file content (1895 lines) | stat: -rw-r--r-- 66,776 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
# -*- coding: utf-8 -*-
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.'''

from __future__ import division
from math import cos, sin, tan, atan, pi, radians, exp, acos, log10
import numpy as np
from fluids.friction import friction_factor
from fluids.core import Froude_densimetric
from scipy.optimize import newton, brenth
from scipy.constants import g, inch

__all__ = ['C_Reader_Harris_Gallagher',
           'differential_pressure_meter_solver',
           'differential_pressure_meter_dP',
           'flow_meter_discharge', 'orifice_expansibility',
           'discharge_coefficient_to_K', 'K_to_discharge_coefficient',
           'dP_orifice', 'velocity_of_approach_factor', 
           'flow_coefficient', 'nozzle_expansibility',
           'C_long_radius_nozzle', 'C_ISA_1932_nozzle', 'C_venturi_nozzle',
           'orifice_expansibility_1989', 'dP_venturi_tube',
           'diameter_ratio_cone_meter', 'diameter_ratio_wedge_meter',
           'cone_meter_expansibility_Stewart', 'dP_cone_meter',
           'C_wedge_meter_Miller', 'C_wedge_meter_ISO_5167_6_2017',
           'dP_wedge_meter',
           'C_Reader_Harris_Gallagher_wet_venturi_tube',
           'dP_Reader_Harris_Gallagher_wet_venturi_tube',
           'differential_pressure_meter_C_epsilon',
           'differential_pressure_meter_beta'
           ]


CONCENTRIC_ORIFICE = 'concentric'
ECCENTRIC_ORIFICE = 'eccentric'
SEGMENTAL_ORIFICE = 'segmental'
CONDITIONING_4_HOLE_ORIFICE = 'Rosemount 4 hole self conditioing'
ORIFICE_HOLE_TYPES = [CONCENTRIC_ORIFICE, ECCENTRIC_ORIFICE, SEGMENTAL_ORIFICE,
                      CONDITIONING_4_HOLE_ORIFICE]

ORIFICE_CORNER_TAPS = 'corner'
ORIFICE_FLANGE_TAPS = 'flange'
ORIFICE_D_AND_D_2_TAPS = 'D and D/2'



ISO_5167_ORIFICE = 'ISO 5167 orifice'

LONG_RADIUS_NOZZLE = 'long radius nozzle'
ISA_1932_NOZZLE = 'ISA 1932 nozzle'
VENTURI_NOZZLE = 'venuri nozzle'

AS_CAST_VENTURI_TUBE = 'as cast convergent venturi tube'
MACHINED_CONVERGENT_VENTURI_TUBE = 'machined convergent venturi tube'
ROUGH_WELDED_CONVERGENT_VENTURI_TUBE = 'rough welded convergent venturi tube'

CONE_METER = 'cone meter'
WEDGE_METER = 'wedge meter'
__all__.extend(['ISO_5167_ORIFICE', 'LONG_RADIUS_NOZZLE', 'ISA_1932_NOZZLE',
                'VENTURI_NOZZLE', 'AS_CAST_VENTURI_TUBE', 
                'MACHINED_CONVERGENT_VENTURI_TUBE',
                'ROUGH_WELDED_CONVERGENT_VENTURI_TUBE', 'CONE_METER',
                'WEDGE_METER'])


def flow_meter_discharge(D, Do, P1, P2, rho, C, expansibility=1.0):
    r'''Calculates the flow rate of an orifice plate based on the geometry
    of the plate, measured pressures of the orifice, and the density of the
    fluid.
    
    .. math::
        m = \left(\frac{\pi D_o^2}{4}\right) C \frac{\sqrt{2\Delta P \rho_1}}
        {\sqrt{1 - \beta^4}}\cdot \epsilon
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]
    P1 : float
        Static pressure of fluid upstream of orifice at the cross-section of
        the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of orifice at the cross-section of
        the pressure tap, [Pa]
    rho : float
        Density of fluid at `P1`, [kg/m^3]
    C : float
        Coefficient of discharge of the orifice, [-]
    expansibility : float, optional
        Expansibility factor (1 for incompressible fluids, less than 1 for
        real fluids), [-]

    Returns
    -------
    m : float
        Mass flow rate of fluid, [kg/s]

    Notes
    -----
    This is formula 1-12 in [1]_ and also [2]_.

    Examples
    --------
    >>> flow_meter_discharge(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, rho=1.1646, 
    ... C=0.5988, expansibility=0.9975)
    0.01120390943807026

    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 2: Orifice Plates.
    '''
    dP = P1 - P2
    beta = Do/D
    return (pi*Do*Do/4.)*C*(2*dP*rho)**0.5/(1.0 - beta**4)**0.5*expansibility


def orifice_expansibility(D, Do, P1, P2, k):
    r'''Calculates the expansibility factor for orifice plate calculations
    based on the geometry of the plate, measured pressures of the orifice, and
    the isentropic exponent of the fluid.
    
    .. math::
        \epsilon = 1 - (0.351 + 0.256\beta^4 + 0.93\beta^8)
        \left[1-\left(\frac{P_2}{P_1}\right)^{1/\kappa}\right]
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]
    P1 : float
        Static pressure of fluid upstream of orifice at the cross-section of
        the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of orifice at the cross-section of
        the pressure tap, [Pa]
    k : float
        Isentropic exponent of fluid, [-]

    Returns
    -------
    expansibility : float, optional
        Expansibility factor (1 for incompressible fluids, less than 1 for
        real fluids), [-]

    Notes
    -----
    This formula was determined for the range of P2/P1 >= 0.80, and for fluids
    of air, steam, and natural gas. However, there is no objection to using
    it for other fluids.

    Examples
    --------
    >>> orifice_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
    0.9974739057343425

    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 2: Orifice Plates.
    '''
    beta = Do/D
    return (1.0 - (0.351 + 0.256*beta**4 + 0.93*beta**8)*(
            1.0 - (P2/P1)**(1./k)))


def orifice_expansibility_1989(D, Do, P1, P2, k):
    r'''Calculates the expansibility factor for orifice plate calculations
    based on the geometry of the plate, measured pressures of the orifice, and
    the isentropic exponent of the fluid.
    
    .. math::
        \epsilon = 1- (0.41 + 0.35\beta^4)\Delta P/\kappa/P_1
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]
    P1 : float
        Static pressure of fluid upstream of orifice at the cross-section of
        the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of orifice at the cross-section of
        the pressure tap, [Pa]
    k : float
        Isentropic exponent of fluid, [-]

    Returns
    -------
    expansibility : float
        Expansibility factor (1 for incompressible fluids, less than 1 for
        real fluids), [-]

    Notes
    -----
    This formula was determined for the range of P2/P1 >= 0.75, and for fluids
    of air, steam, and natural gas. However, there is no objection to using
    it for other fluids.
    
    This is an older formula used to calculate expansibility factors for 
    orifice plates.
    
    In this standard, an expansibility factor formula transformation in terms  
    of the pressure after the orifice is presented as well. This is the more
    standard formulation in terms of the upstream conditions. The other formula
    is below for reference only:
    
    .. math::
        \epsilon_2 = \sqrt{1 + \frac{\Delta P}{P_2}} -  (0.41 + 0.35\beta^4)
        \frac{\Delta P}{\kappa P_2 \sqrt{1 + \frac{\Delta P}{P_2}}}
        
    [2]_ recommends this formulation for wedge meters as well.

    Examples
    --------
    >>> orifice_expansibility_1989(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
    0.9970510687411718

    References
    ----------
    .. [1] American Society of Mechanical Engineers. MFC-3M-1989 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2005.
    .. [2] Miller, Richard W. Flow Measurement Engineering Handbook. 3rd
       edition. New York: McGraw-Hill Education, 1996.
    '''
    return 1.0 - (0.41 + 0.35*(Do/D)**4)*(P1 - P2)/(k*P1)


def C_Reader_Harris_Gallagher(D, Do, rho, mu, m, taps='corner'):
    r'''Calculates the coefficient of discharge of the orifice based on the 
    geometry of the plate, measured pressures of the orifice, mass flow rate
    through the orifice, and the density and viscosity of the fluid.
    
    .. math::
        C = 0.5961 + 0.0261\beta^2 - 0.216\beta^8 + 0.000521\left(\frac{
        10^6\beta}{Re_D}\right)^{0.7}\\
        + (0.0188 + 0.0063A)\beta^{3.5} \left(\frac{10^6}{Re_D}\right)^{0.3} \\
        +(0.043 + 0.080\exp(-10L_1) -0.123\exp(-7L_1))(1-0.11A)\frac{\beta^4}
        {1-\beta^4} \\
        -  0.031(M_2' - 0.8M_2'^{1.1})\beta^{1.3}
        
    .. math::
        M_2' = \frac{2L_2'}{1-\beta}
        
    .. math::
        A = \left(\frac{19000\beta}{Re_{D}}\right)^{0.8}
        
    .. math::
        Re_D = \frac{\rho v D}{\mu}
        
        
    If D < 71.12 mm (2.8 in.):
        
    .. math::
        C += 0.11(0.75-\beta)\left(2.8-\frac{D}{0.0254}\right)
        
    If the orifice has corner taps:
        
    .. math::
        L_1 = L_2' = 0
        
    If the orifice has D and D/2 taps:
        
    .. math::
        L_1 = 1
        
    .. math::
        L_2' = 0.47
    
    If the orifice has Flange taps:
    
    .. math::
        L_1 = L_2' = \frac{0.0254}{D}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]
    rho : float
        Density of fluid at `P1`, [kg/m^3]
    mu : float
        Viscosity of fluid at `P1`, [Pa*s]
    m : float
        Mass flow rate of fluid through the orifice, [kg/s]
    taps : str
        The orientation of the taps; one of 'corner', 'flange', 'D', or 'D/2',
        [-]
        
    Returns
    -------
    C : float
        Coefficient of discharge of the orifice, [-]

    Notes
    -----
    The following limits apply to the orifice plate standard [1]_:
        
    The measured pressure difference for the orifice plate should be under
    250 kPa.
    
    There are roughness limits as well; the roughness should be under 6 
    micrometers, although there are many more conditions to that given in [1]_.
        
    For orifice plates with D and D/2 or corner pressure taps:
        
    * Orifice bore diameter muse be larger than 12.5 mm (0.5 inches)
    * Pipe diameter between 50 mm and 1 m (2 to 40 inches)
    * Beta between 0.1 and 0.75 inclusive
    * Reynolds number larger than 5000 (for :math:`0.10 \le \beta \le 0.56`)
      or for :math:`\beta \ge 0.56, Re_D \ge 16000\beta^2`
      
    For orifice plates with flange pressure taps:

    * Orifice bore diameter muse be larger than 12.5 mm (0.5 inches)
    * Pipe diameter between 50 mm and 1 m (2 to 40 inches)
    * Beta between 0.1 and 0.75 inclusive
    * Reynolds number larger than 5000 and also larger than
      :math:`170000\beta^2 D`.
      
    This is also presented in Crane's TP410 (2009) publication, whereas the
    1999 and 1982 editions showed only a graph for discharge coefficients.
    
    Examples
    --------
    >>> C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, 
    ... m=0.12, taps='flange')
    0.5990326277163659
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 2: Orifice Plates.  
    .. [3] Reader-Harris, M. J., "The Equation for the Expansibility Factor for
       Orifice Plates," Proceedings of FLOMEKO 1998, Lund, Sweden, 1998: 
       209-214.
    .. [4] Reader-Harris, Michael. Orifice Plates and Venturi Tubes. Springer, 
       2015.
    '''
    A_pipe = pi/4.*D*D
    v = m/(A_pipe*rho)
    Re_D = rho*v*D/mu
    
    beta = Do/D
    if taps == 'corner':
        L1, L2_prime = 0.0, 0.0
    elif taps == 'D' or taps == 'D/2':
        L1 = 1.0
        L2_prime = 0.47
    elif taps == 'flange':
        L1 = L2_prime = 0.0254/D
    else:
        raise Exception('Unsupported tap location')
        
    beta2 = beta*beta
    beta4 = beta2*beta2
    beta8 = beta4*beta4
    
    A = (19000.0*beta/Re_D)**0.8
    M2_prime = 2*L2_prime/(1.0 - beta)
    
    delta_C_upstream = ((0.043 + 0.080*exp(-1E1*L1) - 0.123*exp(-7.0*L1))
            *(1.0 - 0.11*A)*beta4/(1.0 - beta4))
    
    # The max part is not in the ISO standard
    delta_C_downstream = (-0.031*(M2_prime - 0.8*M2_prime**1.1)*beta**1.3
                          *(1.0 + 8*max(log10(3700./Re_D), 0.0)))
    
    # C_inf is discharge coefficient with corner taps for infinite Re
    # Cs, slope term, provides increase in discharge coefficient for lower
    # Reynolds numbers.
    
    # max term is not in the ISO standard
    C_inf_C_s = (0.5961 + 0.0261*beta2 - 0.216*beta8 
                 + 0.000521*(1E6*beta/Re_D)**0.7
                 + (0.0188 + 0.0063*A)*beta**3.5*(
                 max((1E6/Re_D)**0.3, 22.7 - 4700.0*(Re_D/1E6))))
    
    C = (C_inf_C_s + delta_C_upstream + delta_C_downstream)
    if D < 0.07112:
        # Limit is 2.8 inches, .1 inches smaller than the internal diameter of
        # a sched. 80 pipe.
        # Suggested to be required not becausue of any effect of small
        # diameters themselves, but because of edge radius differences.
        # max term is given in [4]_ Reader-Harris, Michael book
        delta_C_diameter = 0.011*(0.75 - beta)*max((2.8 - D/0.0254), 0.0)
        C += delta_C_diameter
    
    return C


def discharge_coefficient_to_K(D, Do, C):
    r'''Converts a discharge coefficient to a standard loss coefficient,
    for use in computation of the actual pressure drop of an orifice or other
    device.

    .. math::
        K = \left[\frac{\sqrt{1-\beta^4(1-C^2)}}{C\beta^2} - 1\right]^2
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]
    C : float
        Coefficient of discharge of the orifice, [-]

    Returns
    -------
    K : float
        Loss coefficient with respect to the velocity and density of the fluid
        just upstream of the orifice, [-]

    Notes
    -----
    If expansibility is used in the orifice calculation, the result will not
    match with the specified pressure drop formula in [1]_; it can almost
    be matched by dividing the calculated mass flow by the expansibility factor
    and using that mass flow with the loss coefficient. 
    
    Examples
    --------
    >>> discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512)
    5.2314291729754
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 2: Orifice Plates.
    '''
    beta = Do/D
    beta2 = beta*beta
    beta4 = beta2*beta2
    return ((1.0 - beta4*(1.0 - C*C))**0.5/(C*beta2) - 1.0)**2


def K_to_discharge_coefficient(D, Do, K):
    r'''Converts a standard loss coefficient to a discharge coefficient.
    
    .. math::
        C = \sqrt{\frac{1}{2 \sqrt{K} \beta^{4} + K \beta^{4}}
        - \frac{\beta^{4}}{2 \sqrt{K} \beta^{4} + K \beta^{4}} }
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]
    K : float
        Loss coefficient with respect to the velocity and density of the fluid
        just upstream of the orifice, [-]

    Returns
    -------
    C : float
        Coefficient of discharge of the orifice, [-]

    Notes
    -----
    If expansibility is used in the orifice calculation, the result will not
    match with the specified pressure drop formula in [1]_; it can almost
    be matched by dividing the calculated mass flow by the expansibility factor
    and using that mass flow with the loss coefficient. 
    
    This expression was derived with SymPy, and checked numerically. There were
    three other, incorrect roots.
    
    Examples
    --------
    >>> K_to_discharge_coefficient(D=0.07366, Do=0.05, K=5.2314291729754)
    0.6151200000000001
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 2: Orifice Plates.
    '''
    beta = Do/D
    beta2 = beta*beta
    beta4 = beta2*beta2
    root_K = K**0.5
    common_term = 2.0*root_K*beta4 + K*beta4
    return (-beta4/(common_term) + 1.0/(common_term))**0.5


def dP_orifice(D, Do, P1, P2, C):
    r'''Calculates the non-recoverable pressure drop of an orifice plate based
    on the pressure drop and the geometry of the plate and the discharge 
    coefficient.
    
    .. math::
        \Delta\bar w = \frac{\sqrt{1-\beta^4(1-C^2)}-C\beta^2}
        {\sqrt{1-\beta^4(1-C^2)}+C\beta^2} (P_1 - P_2)
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]
    P1 : float
        Static pressure of fluid upstream of orifice at the cross-section of
        the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of orifice at the cross-section of
        the pressure tap, [Pa]
    C : float
        Coefficient of discharge of the orifice, [-]

    Returns
    -------
    dP : float
        Non-recoverable pressure drop of the orifice plate, [Pa]

    Notes
    -----
    This formula can be well approximated by:
        
    .. math::
        \Delta\bar w = \left(1 - \beta^{1.9}\right)(P_1 - P_2)
        
    The recoverable pressure drop should be recovered by 6 pipe diameters 
    downstream of the orifice plate.
    
    Examples
    --------
    >>> dP_orifice(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0, C=0.61512)
    9069.474705745388
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 2: Orifice Plates.
    '''
    beta = Do/D
    beta2 = beta*beta
    beta4 = beta2*beta2
    dP = P1 - P2
    delta_w = ((1.0 - beta4*(1.0 - C*C))**0.5 - C*beta2)/(
               (1.0 - beta4*(1.0 - C*C))**0.5 + C*beta2)*dP
    return delta_w


def velocity_of_approach_factor(D, Do):
    r'''Calculates a factor for orifice plate design called the `velocity of
    approach`.
    
    .. math::
        \text{Velocity of approach} = \frac{1}{\sqrt{1 - \beta^4}}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice at flow conditions, [m]

    Returns
    -------
    velocity_of_approach : float
        Coefficient of discharge of the orifice, [-]

    Notes
    -----
    
    Examples
    --------
    >>> velocity_of_approach_factor(D=0.0739, Do=0.0222)
    1.0040970074165514
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    '''
    return (1.0 - (Do/D)**4)**-0.5


def flow_coefficient(D, Do, C):
    r'''Calculates a factor for differential pressure flow meter design called 
    the `flow coefficient`. This should not be confused with the flow 
    coefficient often used when discussing valves.
    
    .. math::
        \text{Flow coefficient} = \frac{C}{\sqrt{1 - \beta^4}}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of flow meter characteristic dimension at flow conditions, [m]
    C : float
        Coefficient of discharge of the flow meter, [-]

    Returns
    -------
    flow_coefficient : float
        Differential pressure flow meter flow coefficient, [-]

    Notes
    -----
    This measure is used not just for orifices but for other differential 
    pressure flow meters [2]_.
    
    It is sometimes given the symbol K. It is also equal to the product of the
    diacharge coefficient and the velocity of approach factor [2]_.
    
    Examples
    --------
    >>> flow_coefficient(D=0.0739, Do=0.0222, C=0.6)
    0.6024582044499308
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] Miller, Richard W. Flow Measurement Engineering Handbook. 3rd
       edition. New York: McGraw-Hill Education, 1996.
    '''
    return C*(1.0 - (Do/D)**4)**-0.5


def nozzle_expansibility(D, Do, P1, P2, k, beta=None):
    r'''Calculates the expansibility factor for a nozzle or venturi nozzle,
    based on the geometry of the plate, measured pressures of the orifice, and
    the isentropic exponent of the fluid.
    
    .. math::
        \epsilon = \left\{\left(\frac{\kappa \tau^{2/\kappa}}{\kappa-1}\right)
        \left(\frac{1 - \beta^4}{1 - \beta^4 \tau^{2/\kappa}}\right)
        \left[\frac{1 - \tau^{(\kappa-1)/\kappa}}{1 - \tau}
        \right] \right\}^{0.5}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of orifice of the venturi or nozzle, [m]
    P1 : float
        Static pressure of fluid upstream of orifice at the cross-section of
        the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of orifice at the cross-section of
        the pressure tap, [Pa]
    k : float
        Isentropic exponent of fluid, [-]
    beta : float, optional
        Optional `beta` ratio, which is useful to specify for wedge meters or
        flow meters which have a different beta ratio calculation, [-]

    Returns
    -------
    expansibility : float
        Expansibility factor (1 for incompressible fluids, less than 1 for
        real fluids), [-]

    Notes
    -----
    This formula was determined for the range of P2/P1 >= 0.75.

    Examples
    --------
    >>> nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
    0.9945702344566746

    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 3: Nozzles and Venturi Nozzles.
    '''
    if beta is None:
        beta = Do/D
    beta2 = beta*beta
    beta4 = beta2*beta2
    tau = P2/P1
    term1 = k*tau**(2.0/k )/(k - 1.0)
    term2 = (1.0 - beta4)/(1.0 - beta4*tau**(2.0/k))
    try:
        term3 = (1.0 - tau**((k - 1.0)/k))/(1.0 - tau)
    except ZeroDivisionError:
        '''Obtained with:
            from sympy import *
            tau, k = symbols('tau, k')
            expr = (1 - tau**((k - 1)/k))/(1 - tau)
            limit(expr, tau, 1)
        '''
        term3 = (k - 1.0)/k
    return (term1*term2*term3)**0.5


def C_long_radius_nozzle(D, Do, rho, mu, m):
    r'''Calculates the coefficient of discharge of a long radius nozzle used
    for measuring flow rate of fluid, based on the geometry of the nozzle, 
    mass flow rate through the nozzle, and the density and viscosity of the
    fluid.
    
    .. math::
        C = 0.9965 - 0.00653\beta^{0.5} \left(\frac{10^6}{Re_D}\right)^{0.5}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of long radius nozzle orifice at flow conditions, [m]
    rho : float
        Density of fluid at `P1`, [kg/m^3]
    mu : float
        Viscosity of fluid at `P1`, [Pa*s]
    m : float
        Mass flow rate of fluid through the nozzle, [kg/s]
        
    Returns
    -------
    C : float
        Coefficient of discharge of the long radius nozzle orifice, [-]

    Notes
    -----
    
    Examples
    --------
    >>> C_long_radius_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
    0.9805503704679863
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 3: Nozzles and Venturi Nozzles.
    '''
    A_pipe = pi/4.*D*D
    v = m/(A_pipe*rho)
    Re_D = rho*v*D/mu
    beta = Do/D
    return 0.9965 - 0.00653*beta**0.5*(1E6/Re_D)**0.5


def C_ISA_1932_nozzle(D, Do, rho, mu, m):
    r'''Calculates the coefficient of discharge of an ISA 1932 style nozzle 
    used for measuring flow rate of fluid, based on the geometry of the nozzle, 
    mass flow rate through the nozzle, and the density and viscosity of the
    fluid.
    
    .. math::
        C = 0.9900 - 0.2262\beta^{4.1} - (0.00175\beta^2 - 0.0033\beta^{4.15})
        \left(\frac{10^6}{Re_D}\right)^{1.15}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of nozzle orifice at flow conditions, [m]
    rho : float
        Density of fluid at `P1`, [kg/m^3]
    mu : float
        Viscosity of fluid at `P1`, [Pa*s]
    m : float
        Mass flow rate of fluid through the nozzle, [kg/s]
        
    Returns
    -------
    C : float
        Coefficient of discharge of the nozzle orifice, [-]

    Notes
    -----
    
    Examples
    --------
    >>> C_ISA_1932_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
    0.9635849973250495
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 3: Nozzles and Venturi Nozzles.
    '''
    A_pipe = pi/4.*D*D
    v = m/(A_pipe*rho)
    Re_D = rho*v*D/mu
    beta = Do/D
    C = (0.9900 - 0.2262*beta**4.1
         - (0.00175*beta**2 - 0.0033*beta**4.15)*(1E6/Re_D)**1.15)
    return C


def C_venturi_nozzle(D, Do):
    r'''Calculates the coefficient of discharge of an Venturi style nozzle 
    used for measuring flow rate of fluid, based on the geometry of the nozzle.
    
    .. math::
        C = 0.9858 - 0.196\beta^{4.5}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of nozzle orifice at flow conditions, [m]
        
    Returns
    -------
    C : float
        Coefficient of discharge of the nozzle orifice, [-]

    Notes
    -----
    
    Examples
    --------
    >>> C_venturi_nozzle(D=0.07391, Do=0.0422)
    0.9698996454169576
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 3: Nozzles and Venturi Nozzles.
    '''
    beta = Do/D
    return 0.9858 - 0.198*beta**4.5


# Relative pressure loss as a function of beta reatio for venturi nozzles
# Venturi nozzles should be between 65 mm and 500 mm; there are high and low
# loss ratios , with the high losses corresponding to small diameters,
# low high losses corresponding to large diameters
# Interpolation can be performed.

venturi_tube_betas = np.array(
        [0.299160, 0.299470, 0.312390, 0.319010, 0.326580, 0.337290, 
          0.342020, 0.347060, 0.359030, 0.365960, 0.372580, 0.384870, 
          0.385810, 0.401250, 0.405350, 0.415740, 0.424250, 0.434010, 
          0.447880, 0.452590, 0.471810, 0.473090, 0.493540, 0.499240,
          0.516530, 0.523800, 0.537630, 0.548060, 0.556840, 0.573890,
          0.582350, 0.597820, 0.601560, 0.622650, 0.626490, 0.649480, 
          0.650990, 0.668700, 0.675870, 0.688550, 0.693180, 0.706180, 
          0.713330, 0.723510, 0.749540, 0.749650])
            
venturi_tube_dP_high = np.array(
        [0.164534, 0.164504, 0.163591, 0.163508, 0.163439,
        0.162652, 0.162224, 0.161866, 0.161238, 0.160786,
        0.160295, 0.159280, 0.159193, 0.157776, 0.157467, 
        0.156517, 0.155323, 0.153835, 0.151862, 0.151154, 
        0.147840, 0.147613, 0.144052, 0.143050, 0.140107, 
        0.138981, 0.136794, 0.134737, 0.132847, 0.129303, 
        0.127637, 0.124758, 0.124006, 0.119269, 0.118449,
        0.113605, 0.113269, 0.108995, 0.107109, 0.103688, 
        0.102529, 0.099567, 0.097791, 0.095055, 0.087681, 
        0.087648])
            
venturi_tube_dP_low = np.array(
    [0.089232, 0.089218, 0.088671, 0.088435, 0.088206,
   0.087853, 0.087655, 0.087404, 0.086693, 0.086241,
   0.085813, 0.085142, 0.085102, 0.084446, 0.084202, 
   0.083301, 0.082470, 0.081650, 0.080582, 0.080213, 
   0.078509, 0.078378, 0.075989, 0.075226, 0.072700, 
   0.071598, 0.069562, 0.068128, 0.066986, 0.064658, 
   0.063298, 0.060872, 0.060378, 0.057879, 0.057403, 
   0.054091, 0.053879, 0.051726, 0.050931, 0.049362, 
   0.048675, 0.046522, 0.045381, 0.043840, 0.039913, 
   0.039896])
            
#ratios_average = 0.5*(ratios_high + ratios_low)
D_bound_venturi_tube = np.array([0.065, 0.5])


def dP_venturi_tube(D, Do, P1, P2):
    r'''Calculates the non-recoverable pressure drop of a venturi tube 
    differential pressure meter based on the pressure drop and the geometry of 
    the venturi meter.
    
    .. math::
        \epsilon =  \frac{\Delta\bar w }{\Delta P}
        
    The :math:`\epsilon` value is looked up in a table of values as a function
    of beta ratio and upstream pipe diameter (roughness impact).
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of venturi tube at flow conditions, [m]
    P1 : float
        Static pressure of fluid upstream of venturi tube at the cross-section 
        of the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of venturi tube at the
         cross-section of the pressure tap, [Pa]

    Returns
    -------
    dP : float
        Non-recoverable pressure drop of the venturi tube, [Pa]

    Notes
    -----
    The recoverable pressure drop should be recovered by 6 pipe diameters 
    downstream of the venturi tube.
    
    Note there is some information on the effect of Reynolds number as well
    in [1]_ and [2]_, with a curve showing an increased pressure drop
    from 1E5-6E5 to with a decreasing multiplier from 1.75 to 1; the multiplier
    is 1 for higher Reynolds numbers. This is not currently included in this
    implementation.
    
    Examples
    --------
    >>> dP_venturi_tube(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0)
    1788.5717754177406
    
    References
    ----------
    .. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement 
       Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
    .. [2] ISO 5167-4:2003 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 4: Venturi Tubes.
    '''
    # Effect of Re is not currently included
    beta = Do/D
    epsilon_D65 = np.interp(beta, venturi_tube_betas, venturi_tube_dP_high)
    epsilon_D500 = np.interp(beta, venturi_tube_betas, venturi_tube_dP_low)
    epsilon = np.interp(D, D_bound_venturi_tube, [epsilon_D65, epsilon_D500])
    return epsilon*(P1 - P2)


def diameter_ratio_cone_meter(D, Dc):
    r'''Calculates the diameter ratio `beta` used to characterize a cone 
    flow meter.
    
    .. math::
        \beta = \sqrt{1 - \frac{d_c^2}{D^2}}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Dc : float
        Diameter of the largest end of the cone meter, [m]
        
    Returns
    -------
    beta : float
        Cone meter diameter ratio, [-]

    Notes
    -----
    
    Examples
    --------
    >>> diameter_ratio_cone_meter(D=0.2575, Dc=0.184)
    0.6995709873957624
    
    References
    ----------
    .. [1] Hollingshead, Colter. "Discharge Coefficient Performance of Venturi,
       Standard Concentric Orifice Plate, V-Cone, and Wedge Flow Meters at 
       Small Reynolds Numbers." May 1, 2011. 
       https://digitalcommons.usu.edu/etd/869.
    '''
    D_ratio = Dc/D
    return (1.0 - D_ratio*D_ratio)**0.5


def cone_meter_expansibility_Stewart(D, Dc, P1, P2, k):
    r'''Calculates the expansibility factor for a cone flow meter,
    based on the geometry of the cone meter, measured pressures of the orifice, 
    and the isentropic exponent of the fluid. Developed in [1]_, also shown
    in [2]_.
    
    .. math::
        \epsilon = 1 - (0.649 + 0.696\beta^4) \frac{\Delta P}{\kappa P_1}

    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Dc : float
        Diameter of the largest end of the cone meter, [m]
    P1 : float
        Static pressure of fluid upstream of cone meter at the cross-section of
        the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid at the end of the center of the cone pressure 
        tap, [Pa]
    k : float
        Isentropic exponent of fluid, [-]

    Returns
    -------
    expansibility : float
        Expansibility factor (1 for incompressible fluids, less than 1 for
        real fluids), [-]

    Notes
    -----
    This formula was determined for the range of P2/P1 >= 0.75; the only gas
    used to determine the formula is air.

    Examples
    --------
    >>> cone_meter_expansibility_Stewart(D=1, Dc=0.9, P1=1E6, P2=8.5E5, k=1.2)
    0.9157343

    References
    ----------
    .. [1] Stewart, D. G., M. Reader-Harris, and NEL Dr RJW Peters. "Derivation
       of an Expansibility Factor for the V-Cone Meter." In Flow Measurement 
       International Conference, Peebles, Scotland, UK, 2001.
    .. [2] ISO 5167-5:2016 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 5: Cone meters.
    '''
    dP = P1 - P2
    beta = diameter_ratio_cone_meter(D, Dc)
    return 1.0 - (0.649 + 0.696*beta**4)*dP/(k*P1)


def dP_cone_meter(D, Dc, P1, P2):
    r'''Calculates the non-recoverable pressure drop of a cone meter
    based on the measured pressures before and at the cone end, and the 
    geometry of the cone meter according to [1]_.
    
    .. math::
        \Delta \bar \omega = (1.09 - 0.813\beta)\Delta P
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Dc : float
        Diameter of the largest end of the cone meter, [m]
    P1 : float
        Static pressure of fluid upstream of cone meter at the cross-section of
        the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid at the end of the center of the cone pressure 
        tap, [Pa]

    Returns
    -------
    dP : float
        Non-recoverable pressure drop of the orifice plate, [Pa]

    Notes
    -----
    The recoverable pressure drop should be recovered by 6 pipe diameters 
    downstream of the cone meter.
    
    Examples
    --------
    >>> dP_cone_meter(1, .7, 1E6, 9.5E5)
    25470.093437973323
    
    References
    ----------
    .. [1] ISO 5167-5:2016 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running
       Full -- Part 5: Cone meters.
    '''
    dP = P1 - P2
    beta = diameter_ratio_cone_meter(D, Dc)
    return (1.09 - 0.813*beta)*dP


def diameter_ratio_wedge_meter(D, H):
    r'''Calculates the diameter ratio `beta` used to characterize a wedge 
    flow meter as given in [1]_ and [2]_.
    
    .. math::
        \beta = \left(\frac{1}{\pi}\left\{\arccos\left[1 - \frac{2H}{D}
        \right] - 2 \left[1 - \frac{2H}{D}
        \right]\left(\frac{H}{D} - \left[\frac{H}{D}\right]^2
        \right)^{0.5}\right\}\right)^{0.5}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    H : float
        Portion of the diameter of the clear segment of the pipe up to the 
        wedge blocking flow; the height of the pipe up to the wedge, [m]
    
    Returns
    -------
    beta : float
        Wedge meter diameter ratio, [-]

    Notes
    -----
    
    Examples
    --------
    >>> diameter_ratio_wedge_meter(D=0.2027, H=0.0608)
    0.5022531424646643
    
    References
    ----------
    .. [1] Hollingshead, Colter. "Discharge Coefficient Performance of Venturi,
       Standard Concentric Orifice Plate, V-Cone, and Wedge Flow Meters at 
       Small Reynolds Numbers." May 1, 2011. 
       https://digitalcommons.usu.edu/etd/869.
    .. [2] IntraWedge WEDGE FLOW METER Type: IWM. January 2011.
       http://www.intra-automation.com/download.php?file=pdf/products/technical_information/en/ti_iwm_en.pdf
    '''
    H_D = H/D
    t0 = 1.0 - 2.0*H_D
    t1 = acos(t0)
    t2 = 2.0*(t0)
    t3 = (H_D - H_D*H_D)**0.5
    t4 = t1 - t2*t3
    return (1./pi*t4)**0.5


def C_wedge_meter_Miller(D, H):
    r'''Calculates the coefficient of discharge of an wedge flow meter
    used for measuring flow rate of fluid, based on the geometry of the 
    differential pressure flow meter.
    
    For half-inch lines:
        
    .. math::
        C = 0.7883 + 0.107(1 - \beta^2)
    
    For 1 to 1.5 inch lines:
        
    .. math::
        C = 0.6143 + 0.718(1 - \beta^2)
        
    For 1.5 to 24 inch lines:
        
    .. math::
        C = 0.5433 + 0.2453(1 - \beta^2)
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    H : float
        Portion of the diameter of the clear segment of the pipe up to the 
        wedge blocking flow; the height of the pipe up to the wedge, [m]
        
    Returns
    -------
    C : float
        Coefficient of discharge of the wedge flow meter, [-]

    Notes
    -----
    There is an ISO standard being developed to cover wedge meters as of 2018.
    
    Wedge meters can have varying angles; 60 and 90 degree wedge meters have
    been reported. Tap locations 1 or 2 diameters (upstream and downstream),
    and 2D upstream/1D downstream have been used. Some wedges are sharp;
    some are smooth. [2]_ gives some experimental values.
    
    Examples
    --------
    >>> C_wedge_meter_Miller(D=0.1524, H=0.3*0.1524)
    0.7267069372687651
    
    References
    ----------
    .. [1] Miller, Richard W. Flow Measurement Engineering Handbook. 3rd 
       edition. New York: McGraw-Hill Education, 1996.
    .. [2] Seshadri, V., S. N. Singh, and S. Bhargava. "Effect of Wedge Shape 
       and Pressure Tap Locations on the Characteristics of a Wedge Flowmeter."
       IJEMS Vol.01(5), October 1994.
    '''
    beta = diameter_ratio_wedge_meter(D, H)
    if D <= 0.7*inch:
        # suggested limit 0.5 inch for this equation
        C = 0.7883 + 0.107*(1 - beta*beta)
    elif D <= 1.4*inch:
        # Suggested limit is under 1.5 inches
        C = 0.6143 + 0.718*(1 - beta*beta)
    else:
        C = 0.5433 + 0.2453*(1 - beta*beta)
    return C


def C_wedge_meter_ISO_5167_6_2017(D, H):
    r'''Calculates the coefficient of discharge of an wedge flow meter
    used for measuring flow rate of fluid, based on the geometry of the 
    differential pressure flow meter according to the ISO 5167-6 standard
    (draft 2017).
            
    .. math::
        C = 0.77 - 0.09\beta   
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    H : float
        Portion of the diameter of the clear segment of the pipe up to the 
        wedge blocking flow; the height of the pipe up to the wedge, [m]
        
    Returns
    -------
    C : float
        Coefficient of discharge of the wedge flow meter, [-]

    Notes
    -----    
    This standard applies for wedge meters in line sizes between 50 and 600 mm;
    and height ratios between 0.2 and 0.6. The range of allowable Reynolds 
    numbers is large; between 1E4 and 9E6. The uncertainty of the flow 
    coefficient is approximately 4%. Usually a 10:1 span of flow can be 
    measured accurately. The discharge and entry length of the meters must be
    at least half a pipe diameter. The wedge angle must be 90 degrees, plus or
    minus two degrees.
    
    The orientation of the wedge meter does not change the accuracy of this 
    model. 
    
    There should be a straight run of 10 pipe diameters before the wedge meter
    inlet, and two of the same pipe diameters after it.
    
    Examples
    --------
    >>> C_wedge_meter_ISO_5167_6_2017(D=0.1524, H=0.3*0.1524)
    0.724792059539853
    
    References
    ----------
    .. [1] ISO/DIS 5167-6 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running 
       Full -- Part 6: Wedge Meters.
    '''
    beta = diameter_ratio_wedge_meter(D, H)
    return 0.77 - 0.09*beta


def dP_wedge_meter(D, H, P1, P2):
    r'''Calculates the non-recoverable pressure drop of a wedge meter
    based on the measured pressures before and at the wedge meter, and the 
    geometry of the wedge meter according to [1]_.
    
    .. math::
        \Delta \bar \omega = (1.09 - 0.79\beta)\Delta P
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    H : float
        Portion of the diameter of the clear segment of the pipe up to the 
        wedge blocking flow; the height of the pipe up to the wedge, [m]
    P1 : float
        Static pressure of fluid upstream of wedge meter at the cross-section 
        of the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid at the end of the wedge meter pressure tap, [
        Pa]

    Returns
    -------
    dP : float
        Non-recoverable pressure drop of the wedge meter, [Pa]

    Notes
    -----
    The recoverable pressure drop should be recovered by 5 pipe diameters 
    downstream of the wedge meter.
    
    Examples
    --------
    >>> dP_wedge_meter(1, .7, 1E6, 9.5E5)
    20344.849697483587
    
    References
    ----------
    .. [1] ISO/DIS 5167-6 - Measurement of Fluid Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits Running 
       Full -- Part 6: Wedge Meters.
    '''
    dP = P1 - P2
    beta = diameter_ratio_wedge_meter(D, H)
    return (1.09 - 0.79*beta)*dP


def C_Reader_Harris_Gallagher_wet_venturi_tube(mg, ml, rhog, rhol, D, Do, H=1):
    r'''Calculates the coefficient of discharge of the wet gas venturi tube 
    based on the  geometry of the tube, mass flow rates of liquid and vapor
    through the tube, the density of the liquid and gas phases, and an 
    adjustable coefficient `H`.
    
    .. math::
        C = 1 - 0.0463\exp(-0.05Fr_{gas, th}) \cdot \min\left(1, 
        \sqrt{\frac{X}{0.016}}\right)
        
    .. math::
        Fr_{gas, th} = \frac{Fr_{\text{gas, densionetric }}}{\beta^{2.5}}
        
    .. math::
        \phi = \sqrt{1 + C_{Ch} X + X^2}
        
    .. math::
        C_{Ch} = \left(\frac{\rho_l}{\rho_{1,g}}\right)^n + 
        \left(\frac{\rho_{1, g}}{\rho_{l}}\right)^n
        
    .. math::
        n = \max\left[0.583 - 0.18\beta^2 - 0.578\exp\left(\frac{-0.8 
        Fr_{\text{gas, densiometric}}}{H}\right),0.392 - 0.18\beta^2 \right]
            
    .. math::
        X = \left(\frac{m_l}{m_g}\right) \sqrt{\frac{\rho_{1,g}}{\rho_l}}
        
    .. math::
        {Fr_{\text{gas, densiometric}}} = \frac{v_{gas}}{\sqrt{gD}}
        \sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
        =  \frac{4m_g}{\rho_{1,g} \pi D^2 \sqrt{gD}}
        \sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
        
    Parameters
    ----------
    mg : float
        Mass flow rate of gas through the venturi tube, [kg/s]
    ml : float
        Mass flow rate of liquid through the venturi tube, [kg/s]
    rhog : float
        Density of gas at `P1`, [kg/m^3]
    rhol : float
        Density of liquid at `P1`, [kg/m^3]
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of venturi tube at flow conditions, [m]
    H : float, optional
        A surface-tension effect coefficient used to adjust for different 
        fluids, (1 for a hydrocarbon liquid, 1.35 for water, 0.79 for water in 
        steam) [-]

    Returns
    -------
    C : float
        Coefficient of discharge of the wet gas venturi tube flow meter
        (includes flow rate of gas ONLY), [-]

    Notes
    -----
    This model has more error than single phase differential pressure meters.
    The model was first published in [1]_, and became ISO 11583 later.
    
    The limits of this correlation according to [2]_ are as follows:
        
    .. math::
        0.4 \le \beta \le 0.75
        
    .. math::
        0 < X \le 0.3
        
    .. math::
        Fr_{gas, th} > 3
        
    .. math::
        \frac{\rho_g}{\rho_l} > 0.02
        
    .. math::
        D \ge 50 \text{ mm}
    
    Examples
    --------
    >>> C_Reader_Harris_Gallagher_wet_venturi_tube(mg=5.31926, ml=5.31926/2, 
    ... rhog=50.0, rhol=800., D=.1, Do=.06, H=1)
    0.9754210845876333
    
    References
    ----------
    .. [1] Reader-harris, Michael, and Tuv Nel. An Improved Model for 
       Venturi-Tube Over-Reading in Wet Gas, 2009. 
    .. [2] ISO/TR 11583:2012 Measurement of Wet Gas Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits.
    '''
    V = 4*mg/(rhog*pi*D**2)
    Frg =  Froude_densimetric(V, L=D, rho1=rhol, rho2=rhog, heavy=False)
    beta = Do/D
    beta2 = beta*beta
    Fr_gas_th = Frg*beta**-2.5
    
    n = max(0.583 - 0.18*beta2 - 0.578*exp(-0.8*Frg/H), 
            0.392 - 0.18*beta2)
    
    C_Ch = (rhol/rhog)**n + (rhog/rhol)**n
    X =  ml/mg*(rhog/rhol)**0.5
    OF = (1.0 + C_Ch*X + X*X)**0.5
    
    C = 1.0 - 0.0463*exp(-0.05*Fr_gas_th)*min(1.0, (X/0.016)**0.5)
    return C


def dP_Reader_Harris_Gallagher_wet_venturi_tube(D, Do, P1, P2, ml, mg, rhol, 
                                                rhog, H=1):
    r'''Calculates the non-recoverable pressure drop of a wet gas venturi 
    nozzle based on the pressure drop and the geometry of the venturi nozzle,
    the mass flow rates of liquid and gas through it, the densities of the
    vapor and liquid phase, and an adjustable coefficient `H`.
    
    .. math::
        Y = \frac{\Delta \bar \omega}{\Delta P} - 0.0896 - 0.48\beta^9
        
    .. math::
        Y_{max} = 0.61\exp\left[-11\frac{\rho_{1,g}}{\rho_l}
        - 0.045 \frac{Fr_{gas}}{H}\right]
        
    .. math::
        \frac{Y}{Y_{max}} = 1 - \exp\left[-35 X^{0.75} \exp
        \left( \frac{-0.28Fr_{gas}}{H}\right)\right]
            
    .. math::
        X = \left(\frac{m_l}{m_g}\right) \sqrt{\frac{\rho_{1,g}}{\rho_l}}
        
    .. math::
        {Fr_{\text{gas, densiometric}}} = \frac{v_{gas}}{\sqrt{gD}}
        \sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
        =  \frac{4m_g}{\rho_{1,g} \pi D^2 \sqrt{gD}}
        \sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    Do : float
        Diameter of venturi tube at flow conditions, [m]
    P1 : float
        Static pressure of fluid upstream of venturi tube at the cross-section 
        of the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of venturi tube at the cross-
        section of the pressure tap, [Pa]
    ml : float
        Mass flow rate of liquid through the venturi tube, [kg/s]
    mg : float
        Mass flow rate of gas through the venturi tube, [kg/s]
    rhol : float
        Density of liquid at `P1`, [kg/m^3]
    rhog : float
        Density of gas at `P1`, [kg/m^3]
    H : float, optional
        A surface-tension effect coefficient used to adjust for different 
        fluids, (1 for a hydrocarbon liquid, 1.35 for water, 0.79 for water in 
        steam) [-]

    Returns
    -------
    C : float
        Coefficient of discharge of the wet gas venturi tube flow meter
        (includes flow rate of gas ONLY), [-]

    Notes
    -----
    The model was first published in [1]_, and became ISO 11583 later.
    
    Examples
    --------
    >>> dP_Reader_Harris_Gallagher_wet_venturi_tube(D=.1, Do=.06, H=1, 
    ... P1=6E6, P2=6E6-5E4, ml=5.31926/2, mg=5.31926, rhog=50.0, rhol=800.,)
    16957.43843129572
    
    References
    ----------
    .. [1] Reader-harris, Michael, and Tuv Nel. An Improved Model for 
       Venturi-Tube Over-Reading in Wet Gas, 2009. 
    .. [2] ISO/TR 11583:2012 Measurement of Wet Gas Flow by Means of Pressure 
       Differential Devices Inserted in Circular Cross-Section Conduits.
    '''
    dP = P1 - P2
    beta = Do/D
    X =  ml/mg*(rhog/rhol)**0.5

    V = 4*mg/(rhog*pi*D**2)
    Frg =  Froude_densimetric(V, L=D, rho1=rhol, rho2=rhog, heavy=False)

    Y_ratio = 1.0 - exp(-35.0*X**0.75*exp(-0.28*Frg/H))
    Y_max = 0.61*exp(-11.0*rhog/rhol - 0.045*Frg/H)
    Y = Y_max*Y_ratio
    rhs = -0.0896 - 0.48*beta**9
    dw = dP*(Y - rhs)
    return dw


# Venturi tube loss coefficients as a function of Re
as_cast_convergent_venturi_Res = [4E5, 6E4, 1E5, 1.5E5]
as_cast_convergent_venturi_Cs = [0.957, 0.966, 0.976, 0.982]

machined_convergent_venturi_Res = [5E4, 1E5, 2E5, 3E5, 
                                   7.5E5, # 5E5 to 1E6
                                   1.5E6, # 1E6 to 2E6
                                   5E6] # 2E6 to 1E8
machined_convergent_venturi_Cs = [0.970, 0.977, 0.992, 0.998, 0.995, 1.000, 1.010]

rough_welded_convergent_venturi_Res = [4E4, 6E4, 1E5]
rough_welded_convergent_venturi_Cs = [0.96, 0.97, 0.98]

as_cast_convergent_entrance_machined_venturi_Res = [1E4, 6E4, 1E5, 1.5E5,
                                                    3.5E5, # 2E5 to 5E5
                                                    3.2E6] # 5E5 to 3.2E6
as_cast_convergent_entrance_machined_venturi_Cs = [0.963, 0.978, 0.98, 0.987, 0.992, 0.995]


CONE_METER_C = 0.82
ROUGH_WELDED_CONVERGENT_VENTURI_TUBE_C = 0.985
MACHINED_CONVERGENT_VENTURI_TUBE_C = 0.995
AS_CAST_VENTURI_TUBE_C = 0.984


beta_simple_meters = set([ISO_5167_ORIFICE, LONG_RADIUS_NOZZLE, 
                          ISA_1932_NOZZLE, VENTURI_NOZZLE,
                          AS_CAST_VENTURI_TUBE, 
                          MACHINED_CONVERGENT_VENTURI_TUBE, 
                          ROUGH_WELDED_CONVERGENT_VENTURI_TUBE])


def differential_pressure_meter_beta(D, D2, meter_type):
    r'''Calculates the beta ratio of a differential pressure meter.
        
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    D2 : float
        Diameter of orifice, or venturi meter orifice, or flow tube orifice,
        or cone meter end diameter, or wedge meter fluid flow height, [m]
    meter_type : str
        One of ('ISO 5167 orifice', 'long radius nozzle', 'ISA 1932 nozzle', 
        'venuri nozzle', 'as cast convergent venturi tube', 
        'machined convergent venturi tube', 
        'rough welded convergent venturi tube', 'cone meter',
        'wedge meter'), [-]

    Returns
    -------
    beta : float
        Differential pressure meter diameter ratio, [-]

    Notes
    -----
    
    Examples
    --------
    >>> differential_pressure_meter_beta(D=0.2575, D2=0.184, 
    ... meter_type='cone meter')
    0.6995709873957624
    '''
    if meter_type in beta_simple_meters:
        beta = D2/D      
    elif meter_type == CONE_METER:
        beta = diameter_ratio_cone_meter(D=D, Dc=D2)
    elif meter_type == WEDGE_METER:
        beta = diameter_ratio_wedge_meter(D=D, H=D2)
    return beta


def differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho, mu, k, 
                                          meter_type, taps=None):
    r'''Calculates the discharge coefficient and expansibility of a flow
    meter given the mass flow rate, the upstream pressure, the second
    pressure value, and the orifice diameter for a differential
    pressure flow meter based on the geometry of the meter, measured pressures 
    of the meter, and the density, viscosity, and isentropic exponent of the 
    fluid. 
    
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    D2 : float
        Diameter of orifice, or venturi meter orifice, or flow tube orifice,
        or cone meter end diameter, or wedge meter fluid flow height, [m]
    m : float
        Mass flow rate of fluid through the flow meter, [kg/s]
    P1 : float
        Static pressure of fluid upstream of differential pressure meter at the
        cross-section of the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of differential pressure meter or 
        at the prescribed location (varies by type of meter) [Pa]
    rho : float
        Density of fluid at `P1`, [kg/m^3]
    mu : float
        Viscosity of fluid at `P1`, [Pa*s]
    k : float
        Isentropic exponent of fluid, [-]
    meter_type : str
        One of ('ISO 5167 orifice', 'long radius nozzle', 'ISA 1932 nozzle', 
        'venuri nozzle', 'as cast convergent venturi tube', 
        'machined convergent venturi tube', 
        'rough welded convergent venturi tube', 'cone meter',
        'wedge meter'), [-]
    taps : str, optional
        The orientation of the taps; one of 'corner', 'flange', 'D', or 'D/2';
        applies for orifice meters only, [-]
        
    Returns
    -------
    C : float
        Coefficient of discharge of the specified flow meter type at the
        specified conditions, [-]
    expansibility : float
        Expansibility factor (1 for incompressible fluids, less than 1 for
        real fluids), [-]

    Notes
    -----
    This function should be called by an outer loop when solving for a 
    variable.
    
    Examples
    --------
    >>> differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0, 
    ... P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
    ... meter_type='ISO 5167 orifice', taps='D')
    (0.6151252900244296, 0.9711026966676307)
    '''
    if meter_type == ISO_5167_ORIFICE:
        C = C_Reader_Harris_Gallagher(D=D, Do=D2, rho=rho, mu=mu, m=m, taps=taps)
        epsilon = orifice_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
    elif meter_type == LONG_RADIUS_NOZZLE:
        epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
        C = C_long_radius_nozzle(D=D, Do=D2, rho=rho, mu=mu, m=m)
    elif meter_type == ISA_1932_NOZZLE:
        epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
        C = C_ISA_1932_nozzle(D=D, Do=D2, rho=rho, mu=mu, m=m)
    elif meter_type == VENTURI_NOZZLE:
        epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
        C = C_venturi_nozzle(D=D, Do=D2)     
    
    elif meter_type == AS_CAST_VENTURI_TUBE:
        epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
        C = AS_CAST_VENTURI_TUBE_C    
    elif meter_type == MACHINED_CONVERGENT_VENTURI_TUBE:
        epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
        C = MACHINED_CONVERGENT_VENTURI_TUBE_C
    elif meter_type == ROUGH_WELDED_CONVERGENT_VENTURI_TUBE:
        epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
        C = ROUGH_WELDED_CONVERGENT_VENTURI_TUBE_C
        
    elif meter_type == CONE_METER:
        epsilon = cone_meter_expansibility_Stewart(D=D, Dc=D2, P1=P1, P2=P2, k=k)
        C = CONE_METER_C
    elif meter_type == WEDGE_METER:
        beta = diameter_ratio_wedge_meter(D=D, H=D2)
        epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P1, k=k, beta=beta)
        C = C_wedge_meter_ISO_5167_6_2017(D=D, H=D2)
    return C, epsilon


def differential_pressure_meter_solver(D, rho, mu, k, D2=None, P1=None, P2=None, 
                                       m=None, meter_type=ISO_5167_ORIFICE, 
                                       taps=None):
    r'''Calculates either the mass flow rate, the upstream pressure, the second
    pressure value, or the orifice diameter for a differential
    pressure flow meter based on the geometry of the meter, measured pressures 
    of the meter, and the density, viscosity, and isentropic exponent of the 
    fluid. This solves an equation iteratively to obtain the correct flow rate.
    
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    rho : float
        Density of fluid at `P1`, [kg/m^3]
    mu : float
        Viscosity of fluid at `P1`, [Pa*s]
    k : float
        Isentropic exponent of fluid, [-]
    D2 : float, optional
        Diameter of orifice, or venturi meter orifice, or flow tube orifice,
        or cone meter end diameter, or wedge meter fluid flow height, [m]
    P1 : float, optional
        Static pressure of fluid upstream of differential pressure meter at the
        cross-section of the pressure tap, [Pa]
    P2 : float, optional
        Static pressure of fluid downstream of differential pressure meter or 
        at the prescribed location (varies by type of meter) [Pa]
    m : float, optional
        Mass flow rate of fluid through the flow meter, [kg/s]
    meter_type : str, optional
        One of ('ISO 5167 orifice', 'long radius nozzle', 'ISA 1932 nozzle', 
        'venuri nozzle', 'as cast convergent venturi tube', 
        'machined convergent venturi tube', 
        'rough welded convergent venturi tube', 'cone meter',
        'wedge meter'), [-]
    taps : str, optional
        The orientation of the taps; one of 'corner', 'flange', 'D', or 'D/2';
        applies for orifice meters only, [-]
        
    Returns
    -------
    ans : float
        One of `m`, the mass flow rate of the fluid; `P1`, the pressure 
        upstream of the flow meter; `P2`, the second pressure
        tap's value; and `D2`, the diameter of the measuring device; units
        of respectively, kg/s, Pa, Pa, or m

    Notes
    -----
    See the appropriate functions for the documentation for the formulas and
    references used in each method.
    
    The solvers make some assumptions about the range of values answers may be
    in.
    
    Note that the solver for the upstream pressure uses the provided values of
    density, viscosity and isentropic exponent; whereas these values all
    depend on pressure (albeit to a small extent). An outer loop should be
    added with pressure-dependent values calculated in it for maximum accuracy.
    
    It would be possible to solve for the upstream pipe diameter, but there is
    no use for that functionality.
    
    Examples
    --------
    >>> differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, 
    ... P2=183000.0, rho=999.1, mu=0.0011, k=1.33, 
    ... meter_type='ISO 5167 orifice', taps='D')
    7.702338035732168
    
    >>> differential_pressure_meter_solver(D=0.07366, m=7.702338, P1=200000.0, 
    ... P2=183000.0, rho=999.1, mu=0.0011, k=1.33, 
    ... meter_type='ISO 5167 orifice', taps='D')
    0.04999999990831885
    '''
    if m is None:
        def to_solve(m):
            epsilon, C = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho, 
                                                          mu, k, meter_type, 
                                                          taps=taps)
            m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho, 
                                        C=C, expansibility=epsilon)
            return m - m_calc
        return newton(to_solve, 2.81)
    elif D2 is None:
        def to_solve(D2):
            epsilon, C = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho, 
                                                          mu, k, meter_type, 
                                                          taps=taps)
            m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho, 
                                        C=C, expansibility=epsilon)
            return m - m_calc    
        return brenth(to_solve, D*(1-1E-9), D*5E-3)
    elif P2 is None:
        def to_solve(P2):
            epsilon, C = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho, 
                                                          mu, k, meter_type, 
                                                          taps=taps)
            m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho, 
                                        C=C, expansibility=epsilon)
            return m - m_calc    
        return brenth(to_solve, P1*(1-1E-9), P1*0.5)
    elif P1 is None:
        def to_solve(P1):
            epsilon, C = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho, 
                                                          mu, k, meter_type, 
                                                          taps=taps)
            m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho, 
                                        C=C, expansibility=epsilon)
            return m - m_calc    
        return brenth(to_solve, P2*(1+1E-9), P2*1.4)
    else:
        raise Exception('Solver is capable of solving for one of P2, D2, or m only.')
    

def differential_pressure_meter_dP(D, D2, P1, P2, C=None, 
                                   meter_type=ISO_5167_ORIFICE):
    r'''Calculates either the non-recoverable pressure drop of a differential
    pressure flow meter based on the geometry of the meter, measured pressures 
    of the meter, and for most models the meter discharge coefficient.
    
    Parameters
    ----------
    D : float
        Upstream internal pipe diameter, [m]
    D2 : float
        Diameter of orifice, or venturi meter orifice, or flow tube orifice,
        or cone meter end diameter, or wedge meter fluid flow height, [m]
    P1 : float
        Static pressure of fluid upstream of differential pressure meter at the
        cross-section of the pressure tap, [Pa]
    P2 : float
        Static pressure of fluid downstream of differential pressure meter or 
        at the prescribed location (varies by type of meter) [Pa]
    C : float, optional
        Coefficient of discharge (used only in orifice plates, and venturi
        nozzles), [-]
    meter_type : str, optional
        One of ('ISO 5167 orifice', 'long radius nozzle', 'ISA 1932 nozzle', 
        'as cast convergent venturi tube', 
        'machined convergent venturi tube', 
        'rough welded convergent venturi tube', 'cone meter', 'cone meter'), 
        [-]
        
    Returns
    -------
    dP : float
        Non-recoverable pressure drop of the differential pressure flow
        meter, [Pa]

    Notes
    -----
    See the appropriate functions for the documentation for the formulas and
    references used in each method.
    
    Wedge meters, and venturi nozzles do not have standard formulas available
    for pressure drop computation.
        
    Examples
    --------
    >>> differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, 
    ... P2=183000.0, meter_type='as cast convergent venturi tube')
    1788.5717754177406
    '''
    if meter_type == ISO_5167_ORIFICE:
        dP = dP_orifice(D=D, Do=D2, P1=P1, P2=P2, C=C)

    elif meter_type == LONG_RADIUS_NOZZLE:
        dP = dP_orifice(D=D, Do=D2, P1=P1, P2=P2, C=C)
    elif meter_type == ISA_1932_NOZZLE:
        dP = dP_orifice(D=D, Do=D2, P1=P1, P2=P2, C=C)
    elif meter_type == VENTURI_NOZZLE:
        raise Exception(NotImplemented)
    
    elif meter_type == AS_CAST_VENTURI_TUBE:
        dP = dP_venturi_tube(D=D, Do=D2, P1=P1, P2=P2)
    elif meter_type == MACHINED_CONVERGENT_VENTURI_TUBE:
        dP = dP_venturi_tube(D=D, Do=D2, P1=P1, P2=P2)
    elif meter_type == ROUGH_WELDED_CONVERGENT_VENTURI_TUBE:
        dP = dP_venturi_tube(D=D, Do=D2, P1=P1, P2=P2)
        
    elif meter_type == CONE_METER:
        dP = dP_cone_meter(D=D, Dc=D2, P1=P1, P2=P2)
    elif meter_type == WEDGE_METER:
        dP = dP_wedge_meter(D=D, H=D2, P1=P1, P2=P2)
    return dP