1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
|
# -*- coding: utf-8 -*-
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.'''
from __future__ import division
from math import log
from collections import namedtuple
from scipy.interpolate import interp1d, interp2d
from scipy.constants import hp
import os
from io import open
__all__ = ['VFD_efficiency', 'CSA_motor_efficiency', 'motor_efficiency_underloaded',
'Corripio_pump_efficiency', 'Corripio_motor_efficiency',
'specific_speed', 'specific_diameter', 'speed_synchronous', 'nema_sizes',
'nema_sizes_hp', 'motor_round_size', 'nema_min_P', 'nema_high_P', 'plug_types',
'voltages_1_phase_residential', 'voltages_3_phase', 'frequencies',
'residential_power', 'industrial_power', 'current_ideal']
folder = os.path.join(os.path.dirname(__file__), 'data')
def Corripio_pump_efficiency(Q):
r'''Estimates pump efficiency using the method in Corripio (1982)
as shown in [1]_ and originally in [2]_. Estimation only
.. math::
\eta_P = -0.316 + 0.24015\ln(Q) - 0.01199\ln(Q)^2
Parameters
----------
Q : float
Volumetric flow rate, [m^3/s]
Returns
-------
efficiency : float
Pump efficiency, [-]
Notes
-----
For Centrifugal pumps only.
Range is 50 to 5000 GPM, but input variable is in metric.
Values above this range and below this range will go negative,
although small deviations are acceptable.
Example 16.5 in [1]_.
Examples
--------
>>> Corripio_pump_efficiency(461./15850.323)
0.7058888670951621
References
----------
.. [1] Seider, Warren D., J. D. Seader, and Daniel R. Lewin. Product and
Process Design Principles: Synthesis, Analysis, and Evaluation.
2 edition. New York: Wiley, 2003.
.. [2] Corripio, A.B., K.S. Chrien, and L.B. Evans, "Estimate Costs of
Centrifugal Pumps and Electric Motors," Chem. Eng., 89, 115-118,
February 22 (1982).
'''
Q *= 15850.323
return -0.316 + 0.24015*log(Q) - 0.01199*log(Q)**2
def Corripio_motor_efficiency(P):
r'''Estimates motor efficiency using the method in Corripio (1982)
as shown in [1]_ and originally in [2]_. Estimation only.
.. math::
\eta_M = 0.8 + 0.0319\ln(P_B) - 0.00182\ln(P_B)^2
Parameters
----------
P : float
Power, [W]
Returns
-------
efficiency : float
Motor efficiency, [-]
Notes
-----
Example 16.5 in [1]_.
Examples
--------
>>> Corripio_motor_efficiency(137*745.7)
0.9128920875679222
References
----------
.. [1] Seider, Warren D., J. D. Seader, and Daniel R. Lewin. Product and
Process Design Principles: Synthesis, Analysis, and Evaluation.
2 edition. New York: Wiley, 2003.
.. [2] Corripio, A.B., K.S. Chrien, and L.B. Evans, "Estimate Costs of
Centrifugal Pumps and Electric Motors," Chem. Eng., 89, 115-118,
February 22 (1982).
'''
P = P/745.69987
return 0.8 + 0.0319*log(P) - 0.00182*log(P)**2
#print [Corripio_motor_efficiency(137*745.7)]
VFD_efficiencies = [[0.31, 0.77, 0.86, 0.9, 0.91, 0.93, 0.94],
[0.35, 0.8, 0.88, 0.91, 0.92, 0.94, 0.95],
[0.41, 0.83, 0.9, 0.93, 0.94, 0.95, 0.96],
[0.47, 0.86, 0.93, 0.94, 0.95, 0.96, 0.97],
[0.5, 0.88, 0.93, 0.95, 0.95, 0.96, 0.97],
[0.46, 0.86, 0.92, 0.95, 0.95, 0.96, 0.97],
[0.51, 0.87, 0.92, 0.95, 0.95, 0.96, 0.97],
[0.47, 0.86, 0.93, 0.95, 0.96, 0.97, 0.97],
[0.55, 0.89, 0.94, 0.95, 0.96, 0.97, 0.97],
[0.61, 0.91, 0.95, 0.96, 0.96, 0.97, 0.97],
[0.61, 0.91, 0.95, 0.96, 0.96, 0.97, 0.97]]
VFD_efficiency_interp = interp2d([0.016, 0.125, 0.25, 0.42, 0.5, 0.75, 1],
[3, 5, 10, 20, 30, 50, 60, 75, 100, 200, 400],
VFD_efficiencies)
def VFD_efficiency(P, load=1):
r'''Returns the efficiency of a Variable Frequency Drive according to [1]_.
These values are generic, and not standardized as minimum values.
Older VFDs often have much worse performance.
Parameters
----------
P : float
Power, [W]
load : float, optional
Fraction of motor's rated electrical capacity being used
Returns
-------
efficiency : float
VFD efficiency, [-]
Notes
-----
The use of a VFD does change the characteristics of a pump curve's
efficiency, but this has yet to be quantified. The effect is small.
This value should be multiplied by the product of the pump and motor
efficiency to determine the overall efficiency.
Efficiency table is in units of hp, so a conversion is performed internally.
If load not specified, assumed 1 - where maximum efficiency occurs.
Table extends down to 3 hp and up to 400 hp; values outside these limits
are rounded to the nearest known value. Values between standardized sizes
are interpolated linearly. Load values extend down to 0.016.
The table used is for Pulse Width Modulation (PWM) VFDs.
Examples
--------
>>> VFD_efficiency(10*hp)
0.96
>>> VFD_efficiency(100*hp, load=0.2)
0.92
References
----------
.. [1] GoHz.com. Variable Frequency Drive Efficiency.
http://www.variablefrequencydrive.org/vfd-efficiency
'''
P = P/hp
if P < 3:
P = 3
elif P > 400:
P = 400
if load < 0.016:
load = 0.016
return round(float(VFD_efficiency_interp(load, P)), 4)
nema_sizes_hp = [.25, 1/3., .5, .75, 1, 1.5, 2, 3, 4, 5, 5.5, 7.5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500]
'''list: all NEMA motor sizes in increasing order, in horsepower.
'''
nema_sizes = [i*hp for i in nema_sizes_hp]
'''list: all NEMA motor sizes in increasing order, in Watts.
'''
def motor_round_size(P):
r'''Rounds up the power for a motor to the nearest NEMA standard power.
The returned power is always larger or equal to the input power.
Parameters
----------
P : float
Power, [W]
Returns
-------
P_actual : float
Actual power, equal to or larger than input [W]
Notes
-----
An exception is raised if the power required is larger than any of
the NEMA sizes. Larger motors are available, but are unstandardized.
Examples
--------
>>> motor_round_size(1E5)
111854.98073734052
References
----------
.. [1] Natural Resources Canada. Electric Motors (1 to 500 HP/0.746 to
375 kW). As modified 2015-12-17.
https://www.nrcan.gc.ca/energy/regulations-codes-standards/products/6885
'''
for P_actual in nema_sizes:
if P_actual >= P:
return P_actual
raise Exception('Required power is larger than can be provided with one motor')
nema_high_P = [1, 1.5, 2, 3, 4, 5, 5.5, 7.5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 175, 200]
nema_high_full_open_2p = [0.77, 0.84, 0.855, 0.855, 0.865, 0.865, 0.865, 0.885, 0.895, 0.902, 0.91, 0.917, 0.917, 0.924, 0.93, 0.936, 0.936, 0.936, 0.941, 0.941, 0.95, 0.95]
nema_high_full_open_4p = [0.855, 0.865, 0.865, 0.895, 0.895, 0.895, 0.895, 0.91, 0.917, 0.93, 0.93, 0.936, 0.941, 0.941, 0.945, 0.95, 0.95, 0.954, 0.954, 0.958, 0.958, 0.958]
nema_high_full_open_6p = [0.825, 0.865, 0.875, 0.885, 0.895, 0.895, 0.895, 0.902, 0.917, 0.917, 0.924, 0.93, 0.936, 0.941, 0.941, 0.945, 0.945, 0.95, 0.95, 0.954, 0.954, 0.954]
nema_high_full_closed_2p = [0.77, 0.84, 0.855, 0.865, 0.885, 0.885, 0.885, 0.895, 0.902, 0.91, 0.91, 0.917, 0.917, 0.924, 0.93, 0.936, 0.936, 0.941, 0.95, 0.95, 0.954, 0.954]
nema_high_full_closed_4p = [0.855, 0.865, 0.865, 0.895, 0.895, 0.895, 0.895, 0.917, 0.917, 0.924, 0.93, 0.936, 0.936, 0.941, 0.945, 0.95, 0.954, 0.954, 0.954, 0.958, 0.962, 0.962]
nema_high_full_closed_6p = [0.825, 0.875, 0.885, 0.895, 0.895, 0.895, 0.895, 0.91, 0.91, 0.917, 0.917, 0.93, 0.93, 0.941, 0.941, 0.945, 0.945, 0.95, 0.95, 0.958, 0.958, 0.958]
nema_high_full_open_2p_i = interp1d(nema_high_P, nema_high_full_open_2p)
nema_high_full_open_4p_i = interp1d(nema_high_P, nema_high_full_open_4p)
nema_high_full_open_6p_i = interp1d(nema_high_P, nema_high_full_open_6p)
nema_high_full_closed_2p_i = interp1d(nema_high_P, nema_high_full_closed_2p)
nema_high_full_closed_4p_i = interp1d(nema_high_P, nema_high_full_closed_4p)
nema_high_full_closed_6p_i = interp1d(nema_high_P, nema_high_full_closed_6p)
nema_min_P = [1, 1.5, 2, 3, 4, 5, 5.5, 7.5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500]
nema_min_full_open_2p = [0.755, 0.825, 0.84, 0.84, 0.84, 0.855, 0.855, 0.875, 0.885, 0.895, 0.902, 0.91, 0.91, 0.917, 0.924, 0.93, 0.93, 0.93, 0.936, 0.936, 0.945, 0.945, 0.945, 0.95, 0.95, 0.954, 0.958, 0.958]
nema_min_full_open_4p = [0.825, 0.84, 0.84, 0.865, 0.865, 0.875, 0.875, 0.885, 0.895, 0.91, 0.91, 0.917, 0.924, 0.93, 0.93, 0.936, 0.941, 0.941, 0.945, 0.95, 0.95, 0.95, 0.954, 0.954, 0.954, 0.954, 0.958, 0.958]
nema_min_full_open_6p = [0.8, 0.84, 0.855, 0.865, 0.865, 0.875, 0.875, 0.885, 0.902, 0.902, 0.91, 0.917, 0.924, 0.93, 0.93, 0.936, 0.936, 0.941, 0.941, 0.945, 0.945, 0.945, 0.954, 0.954, 0.954, 0.954, 0.954, 0.954]
nema_min_full_open_8p = [0.74, 0.755, 0.855, 0.865, 0.865, 0.875, 0.875, 0.885, 0.895, 0.895, 0.902, 0.902, 0.91, 0.91, 0.917, 0.924, 0.936, 0.936, 0.936, 0.936, 0.936, 0.936, 0.945, 0.945, 0.945, 0.945, 0.945, 0.945]
nema_min_full_closed_2p = [0.755, 0.825, 0.84, 0.855, 0.855, 0.875, 0.875, 0.885, 0.895, 0.902, 0.902, 0.91, 0.91, 0.917, 0.924, 0.93, 0.93, 0.936, 0.945, 0.945, 0.95, 0.95, 0.954, 0.954, 0.954, 0.954, 0.954, 0.954]
nema_min_full_closed_4p = [0.825, 0.84, 0.84, 0.875, 0.875, 0.875, 0.875, 0.895, 0.895, 0.91, 0.91, 0.924, 0.924, 0.93, 0.93, 0.936, 0.941, 0.945, 0.945, 0.95, 0.95, 0.95, 0.95, 0.954, 0.954, 0.954, 0.954, 0.958]
nema_min_full_closed_6p = [0.8, 0.855, 0.865, 0.875, 0.875, 0.875, 0.875, 0.895, 0.895, 0.902, 0.902, 0.917, 0.917, 0.93, 0.93, 0.936, 0.936, 0.941, 0.941, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95]
nema_min_full_closed_8p = [0.74, 0.77, 0.825, 0.84, 0.84, 0.855, 0.855, 0.855, 0.885, 0.885, 0.895, 0.895, 0.91, 0.91, 0.917, 0.917, 0.93, 0.93, 0.936, 0.936, 0.941, 0.941, 0.945, 0.945, 0.945, 0.945, 0.945, 0.945]
nema_min_full_open_2p_i = interp1d(nema_min_P, nema_min_full_open_2p)
nema_min_full_open_4p_i = interp1d(nema_min_P, nema_min_full_open_4p)
nema_min_full_open_6p_i = interp1d(nema_min_P, nema_min_full_open_6p)
nema_min_full_open_8p_i = interp1d(nema_min_P, nema_min_full_open_8p)
nema_min_full_closed_2p_i = interp1d(nema_min_P, nema_min_full_closed_2p)
nema_min_full_closed_4p_i = interp1d(nema_min_P, nema_min_full_closed_4p)
nema_min_full_closed_6p_i = interp1d(nema_min_P, nema_min_full_closed_6p)
nema_min_full_closed_8p_i = interp1d(nema_min_P, nema_min_full_closed_8p)
def CSA_motor_efficiency(P, closed=False, poles=2, high_efficiency=False):
r'''Returns the efficiency of a NEMA motor according to [1]_.
These values are standards, but are only for full-load operation.
Parameters
----------
P : float
Power, [W]
closed : bool, optional
Whether or not the motor is enclosed
poles : int, optional
The number of poles of the motor
high_efficiency : bool, optional
Whether or not to look up the high-efficiency value
Returns
-------
efficiency : float
Guaranteed full-load motor efficiency, [-]
Notes
-----
Criteria for being required to meet the high-efficiency standard is:
* Designed for continuous operation
* Operates by three-phase induction
* Is a squirrel-cage or cage design
* Is NEMA type A, B, or C with T or U frame; or IEC design N or H
* Is designed for single-speed operation
* Has a nominal voltage of less than 600 V AC
* Has a nominal frequency of 60 Hz or 50/60 Hz
* Has 2, 4, or 6 pole construction
* Is either open or closed
Pretty much every motor is required to meet the low-standard efficiency
table, however.
Several low-efficiency standard high power values were added to allow for
easy programming; values are the last listed efficiency in the table.
Examples
--------
>>> CSA_motor_efficiency(100*hp)
0.93
>>> CSA_motor_efficiency(100*hp, closed=True, poles=6, high_efficiency=True)
0.95
References
----------
.. [1] Natural Resources Canada. Electric Motors (1 to 500 HP/0.746 to
375 kW). As modified 2015-12-17.
https://www.nrcan.gc.ca/energy/regulations-codes-standards/products/6885
'''
P = P/hp
if high_efficiency:
if closed:
if poles == 2:
efficiency = nema_high_full_closed_2p_i(P)
elif poles == 4:
efficiency = nema_high_full_closed_4p_i(P)
elif poles == 6:
efficiency = nema_high_full_closed_6p_i(P)
else:
if poles == 2:
efficiency = nema_high_full_open_2p_i(P)
elif poles == 4:
efficiency = nema_high_full_open_4p_i(P)
elif poles == 6:
efficiency = nema_high_full_open_6p_i(P)
else:
if closed:
if poles == 2:
efficiency = nema_min_full_closed_2p_i(P)
elif poles == 4:
efficiency = nema_min_full_closed_4p_i(P)
elif poles == 6:
efficiency = nema_min_full_closed_6p_i(P)
elif poles == 8:
efficiency = nema_min_full_closed_8p_i(P)
else:
if poles == 2:
efficiency = nema_min_full_open_2p_i(P)
elif poles == 4:
efficiency = nema_min_full_open_4p_i(P)
elif poles == 6:
efficiency = nema_min_full_open_6p_i(P)
elif poles == 8:
efficiency = nema_min_full_open_8p_i(P)
return round(float(efficiency), 4)
# Test high efficiency:
#print([CSA_motor_efficiency(k*hp, high_efficiency=False, closed=i, poles=j) for i in [True, False] for j in [2, 4, 6, 8] for k in nema_min_P])
_to_1 = [0.015807118828266818, 4.3158627514876216, -8.5612097969025438, 8.2040355039147386, -3.0147603718043068]
_to_5 = [0.015560190519232379, 4.5699731811493152, -7.6800154569463883, 5.4701698738380813, -1.3630071852989643]
_to_10 = [0.059917274403963446, 6.356781885851186, -17.099192527703369, 20.707077651470666, -9.2215133149377841]
_to_25 = [0.29536141765389839, 4.9918188632064329, -13.785081664656504, 16.908273659093812, -7.5816775136809609]
_to_60 = [0.46934299949154384, 4.0298663805446004, -11.632822556859477, 14.616967043793032, -6.6284514347522245]
_to_infty = [0.68235730304242914, 2.4402956771025748, -6.8306770996860182, 8.2108432911172713, -3.5629309804411577]
_efficiency_lists = [_to_1, _to_5, _to_10, _to_25, _to_60, _to_infty]
_efficiency_ones = [0.9218102, 0.64307597, 0.61724113, 0.61569791, 0.6172238, 0.40648294]
def motor_efficiency_underloaded(P, load=0.5):
r'''Returns the efficiency of a motor operating under its design power
according to [1]_.These values are generic; manufacturers usually list 4
points on their product information, but full-scale data is hard to find
and not regulated.
Parameters
----------
P : float
Power, [W]
load : float, optional
Fraction of motor's rated electrical capacity being used
Returns
-------
efficiency : float
Motor efficiency, [-]
Notes
-----
If the efficiency returned by this function is unattractive, use a VFD.
The curves used here are polynomial fits to [1]_'s graph, and curves were
available for the following motor power ranges:
0-1 hp, 1.5-5 hp, 10 hp, 15-25 hp, 30-60 hp, 75-100 hp
If above the upper limit of one range, the next value is returned.
Examples
--------
>>> motor_efficiency_underloaded(1*hp)
0.8705179600980149
>>> motor_efficiency_underloaded(10.1*hp, .1)
0.6728425932357025
References
----------
.. [1] Washington State Energy Office. Energy-Efficient Electric Motor
Selection Handbook. 1993.
'''
P = P/hp
if P <=1:
i = 0
elif P <= 5:
i = 1
elif P <= 10:
i = 2
elif P <= 25:
i = 3
elif P <= 60:
i = 4
else:
i = 5
if load > _efficiency_ones[i]:
return 1
else:
cs = _efficiency_lists[i]
return cs[0] + cs[1]*load + cs[2]*load**2 + cs[3]*load**3 + cs[4]*load**4
def specific_speed(Q, H, n=3600.):
r'''Returns the specific speed of a pump operating at a specified Q, H,
and n.
.. math::
n_S = \frac{n\sqrt{Q}}{H^{0.75}}
Parameters
----------
Q : float
Flow rate, [m^3/s]
H : float
Head generated by the pump, [m]
n : float, optional
Speed of pump [rpm]
Returns
-------
nS : float
Specific Speed, [rpm*m^0.75/s^0.5]
Notes
-----
Defined at the BEP, with maximum fitting diameter impeller, at a given
rotational speed.
Examples
--------
Example from [1]_.
>>> specific_speed(0.0402, 100, 3550)
22.50823182748925
References
----------
.. [1] HI 1.3 Rotodynamic Centrifugal Pumps for Design and Applications
'''
return n*Q**0.5/H**0.75
def specific_diameter(Q, H, D):
r'''Returns the specific diameter of a pump operating at a specified Q, H,
and D.
.. math::
D_s = \frac{DH^{1/4}}{\sqrt{Q}}
Parameters
----------
Q : float
Flow rate, [m^3/s]
H : float
Head generated by the pump, [m]
D : float
Pump impeller diameter [m]
Returns
-------
Ds : float
Specific diameter, [m^0.25/s^0.5]
Notes
-----
Used in certain pump sizing calculations.
Examples
--------
>>> specific_diameter(Q=0.1, H=10., D=0.1)
0.5623413251903491
References
----------
.. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
Eighth Edition. McGraw-Hill Professional, 2007.
'''
return D*H**0.25/Q**0.5
def speed_synchronous(f, poles=2, phase=3):
r'''Returns the synchronous speed of a synchronous motor according to [1]_.
.. math::
N_s = \frac{120 f \cdot\text{phase}}{\text{poles}}
Parameters
----------
f : float
Line frequency, [Hz]
poles : int, optional
The number of poles of the motor
phase : int, optional
Line AC phase
Returns
-------
Ns : float
Speed of synchronous motor, [rpm]
Notes
-----
Synchronous motors have no slip. Large synchronous motors are not
self-starting.
Examples
--------
>>> speed_synchronous(50, poles=12)
1500.0
>>> speed_synchronous(60, phase=1)
3600.0
References
----------
.. [1] All About Circuits. Synchronous Motors. Chapter 13 - AC Motors
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/synchronous-motors/
'''
return 120.*f*phase/poles
def current_ideal(P, V, phase=3, PF=1):
r'''Returns the current drawn by a motor of power `P` operating at voltage
`V`, with line AC of phase `phase` and power factor `PF` according to [1]_.
Single-phase power:
.. math::
I = \frac{P}{V \cdot \text{PF}}
3-phase power:
.. math::
I = \frac{P}{V \cdot \text{PF} \sqrt{3}}
Parameters
----------
P : float
Power, [W]
V : float
Voltage, [V]
phase : int, optional
Line AC phase, either 1 or 3
PF : float, optional
Power factor of motor
Returns
-------
I : float
Power drawn by motor, [A]
Notes
-----
Does not include power used by the motor's fan, or startor, or internal
losses. These are all significant.
Examples
--------
>>> current_ideal(V=120, P=1E4, PF=1, phase=1)
83.33333333333333
References
----------
.. [1] Electrical Construction, and Maintenance. "Calculating Single- and
3-Phase Parameters." April 1, 2008.
http://ecmweb.com/basics/calculating-single-and-3-phase-parameters.
'''
if phase not in [1, 3]:
raise Exception('Only 1 and 3 phase power supported')
if phase == 3:
return P/(V*3**0.5*PF)
else:
return P/(V*PF)
with open(os.path.join(folder, 'residential power.csv'), encoding='utf-8') as f:
residential_power_raw = f.read()
with open(os.path.join(folder, '3 phase power.csv'), encoding='utf-8') as f:
industrial_power_raw = f.read()
residential_power = {}
industrial_power = {}
residential_power_data = namedtuple('residential_power_data', ['plugs', 'voltage', 'freq', 'country'])
industrial_power_data = namedtuple('industrial_power_data', ['voltage', 'freq', 'country'])
for line in residential_power_raw.split('\n')[1:]:
country, code, plugs, voltage, freq = line.split('\t')
plugs = plugs.replace(' ', '').split(',')
residential_power[code] = residential_power_data(plugs, int(voltage), int(freq), country)
for line in industrial_power_raw.split('\n')[1:]:
code, country, voltage, freq = line.split('\t')
voltage = [int(i) for i in voltage.replace(' ', '').split(',')]
industrial_power[code] = industrial_power_data(voltage, int(freq), country)
plug_types = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N']
voltages_1_phase_residential = [100, 110, 115, 120, 127, 220, 230, 240]
voltages_3_phase = [120, 190, 200, 208, 220, 230, 240, 277, 380, 400, 415, 440, 480]
frequencies = [50, 60]
# https://www.grainger.com/content/supplylink-v-belt-maintenance-key-to-electric-motor-efficiency
# Source of values for v belt, notched, and synchronous
# Technology assessment: energy-efficient belt transmissions
# Source of cogged value, their range is 95-98
V_BELT = 'V'
COGGED_V_BELT = 'cogged'
NOTCHED_BELT = 'notched'
SYNCHRONOUS_BELT = 'synchronous'
belt_efficiencies = {V_BELT: 0.95,
NOTCHED_BELT: 0.97,
COGGED_V_BELT: 0.965,
SYNCHRONOUS_BELT: 0.98}
DEEP_GROOVE_BALL = "Deep groove ball"
ANGULAR_CONTACT_BALL_SINGLE_ROW = "Angular contact ball Single row"
ANGULAR_CONTACT_BALL_DOUBLE_ROW = "Angular contact ball Double row"
FOUR_POINT_CONTACT_BALL = "Four point contact ball"
SELF_ALIGNING_BALL = "Self aligning ball"
CYLINDRICAL_ROLLER_WITH_CAGE = "Cylindrical roller with cage"
CYLINDRICAL_ROLLER_FULL_COMPLEMENT = "Cylindrical roller full complement"
NEEDLE_ROLLER = "Needle roller"
TAPER_ROLLER = "Taper roller"
SPHERICAL_ROLLER = "Spherical roller"
THRUST_BALL = "Thrust ball"
CYLINDRICAL_ROLLER_THRUST = "Cylindrical roller thrust"
NEEDLE_ROLLER_THRUST = "Needle roller thrust"
SPHERICAL_ROLLER_THRUST = "Spherical roller thrust"
bearing_friction_factors = {DEEP_GROOVE_BALL: 0.0015,
ANGULAR_CONTACT_BALL_SINGLE_ROW: 0.002,
ANGULAR_CONTACT_BALL_DOUBLE_ROW: 0.0024,
FOUR_POINT_CONTACT_BALL: 0.0024,
SELF_ALIGNING_BALL: 0.001,
CYLINDRICAL_ROLLER_WITH_CAGE: 0.0011,
CYLINDRICAL_ROLLER_FULL_COMPLEMENT: 0.002,
NEEDLE_ROLLER: 0.0025,
TAPER_ROLLER: 0.0018,
SPHERICAL_ROLLER: 0.0018,
THRUST_BALL: 0.0013,
CYLINDRICAL_ROLLER_THRUST: 0.005,
NEEDLE_ROLLER_THRUST: 0.005,
SPHERICAL_ROLLER_THRUST: 0.0018}
# In mm, diameter of fans -> convert to SI
fan_diameters = [125, 132, 140, 150, 160, 170, 180, 190, 200, 212, 224, 236, 250, 265, 280, 300, 315, 335, 355, 375, 400, 425, 450, 475, 500, 530, 560, 600, 630, 670, 710, 750, 800, 850, 900, 950, 1000]
fan_diameters = [i*1E-3 for i in fan_diameters]
FEG90 = [42.5, 44.8, 47.2, 50.1, 52.7, 55.2, 57.4, 59.4, 61.3, 63.3, 65.2, 66.9, 68.6, 70.3, 71.8, 73.5, 74.6, 75.9, 77, 77.9, 78.9, 79.7, 80.4, 81, 81.5, 81.9, 82.3, 82.7, 83, 83.3, 83.5, 83.7, 83.8, 84, 84.1, 84.1, 84.1]
FEG85 = [40.1, 42.3, 44.6, 47.3, 49.8, 52.1, 54.2, 56.1, 57.9, 59.8, 61.6, 63.1, 64.8, 66.4, 67.8, 69.4, 70.4, 71.7, 72.7, 73.6, 74.5, 75.3, 75.9, 76.5, 76.9, 77.4, 77.7, 78.1, 78.4, 78.6, 78.8, 79, 79.1, 79.3, 79.3, 79.4, 79.4]
FEG80 = [37.8, 39.9, 42.1, 44.7, 47, 49.2, 51.1, 53, 54.6, 56.5, 58.1, 59.6, 61.2, 62.7, 64, 65.5, 66.5, 67.6, 68.6, 69.5, 70.3, 71.1, 71.7, 72.2, 72.6, 73, 73.4, 73.8, 74, 74.2, 74.4, 74.6, 74.7, 74.8, 74.9, 75, 75]
FEG75 = [35.7, 37.7, 39.8, 42.2, 44.4, 46.4, 48.3, 50, 51.6, 53.3, 54.9, 56.3, 57.8, 59.2, 60.4, 61.8, 62.8, 63.9, 64.8, 65.6, 66.4, 67.1, 67.7, 68.1, 68.5, 68.9, 69.3, 69.6, 69.8, 70.1, 70.3, 70.4, 70.5, 70.6, 70.7, 70.8, 70.8]
FEG71 = [33.7, 35.6, 37.5, 39.8, 41.9, 43.8, 45.6, 47.2, 48.7, 50.3, 51.8, 53.1, 54.5, 55.9, 57, 58.4, 59.3, 60.3, 61.2, 61.9, 62.7, 63.3, 63.9, 64.3, 64.7, 65.1, 65.4, 65.7, 65.9, 66.1, 66.3, 66.5, 66.6, 66.7, 66.8, 66.8, 66.8]
FEG67 = [31.8, 33.6, 35.4, 37.6, 39.5, 41.4, 43, 44.6, 46, 47.5, 48.9, 50.2, 51.5, 52.7, 53.8, 55.1, 55.9, 56.9, 57.7, 58.4, 59.2, 59.8, 60.3, 60.7, 61.1, 61.4, 61.7, 62.1, 62.2, 62.4, 62.6, 62.7, 62.9, 63, 63, 63.1, 63.1]
FEG63 = [30.1, 31.7, 33.4, 35.5, 37.3, 39, 40.6, 42.1, 43.4, 44.8, 46.2, 47.3, 48.6, 49.8, 50.8, 52, 52.8, 53.7, 54.5, 55.2, 55.9, 56.5, 56.9, 57.3, 57.7, 58, 58.3, 58.6, 58.8, 59, 59.1, 59.2, 59.4, 59.4, 59.5, 59.5, 59.6]
FEG60 = [28.4, 29.9, 31.6, 33.5, 35.2, 36.9, 38.3, 39.7, 41, 42.3, 43.6, 44.7, 45.9, 47, 48, 49.1, 49.9, 50.7, 51.5, 52.1, 52.8, 53.3, 53.8, 54.1, 54.5, 54.8, 55, 55.3, 55.5, 55.7, 55.8, 55.9, 56, 56.1, 56.2, 56.2, 56.2]
FEG56 = [26.8, 28.2, 29.8, 31.6, 33.3, 34.8, 36.2, 37.5, 38.7, 40, 41.1, 42.2, 43.3, 44.4, 45.3, 46.4, 47.1, 47.9, 48.6, 49.2, 49.8, 50.3, 50.7, 51.1, 51.4, 51.7, 51.9, 52.2, 52.4, 52.5, 52.7, 52.8, 52.9, 53, 53, 53.1, 53.1]
FEG53 = [25.3, 26.7, 28.1, 29.8, 31.4, 32.9, 34.2, 35.4, 36.5, 37.7, 38.8, 39.8, 40.9, 41.9, 42.8, 43.8, 44.4, 45.2, 45.9, 46.4, 47, 47.5, 47.9, 48.2, 48.5, 48.8, 49, 49.3, 49.4, 49.6, 49.7, 49.8, 49.9, 50, 50.1, 50.1, 50.1]
FEG50 = [23.9, 25.2, 26.6, 28.2, 29.7, 31, 32.3, 33.4, 34.5, 35.6, 36.7, 37.6, 38.6, 39.5, 40.4, 41.3, 42, 42.7, 43.3, 43.8, 44.4, 44.8, 45.2, 45.5, 45.8, 46.1, 46.3, 46.5, 46.7, 46.8, 47, 47, 47.1, 47.2, 47.3, 47.3, 47.3]
fan_bare_shaft_efficiencies = {'FEG90': FEG90,
'FEG85': FEG85,
'FEG80': FEG80,
'FEG75': FEG75,
'FEG71': FEG71,
'FEG67': FEG67,
'FEG63': FEG63,
'FEG60': FEG60,
'FEG56': FEG56,
'FEG53': FEG53,
'FEG50': FEG50}
# TODO convert efficiencies to fractions
'''for key, values in fan_bare_shaft_efficiencies.items():
plt.plot(fan_diameters, values, label=key)
plt.legend()
plt.show()'''
FMEG_axial_powers = [125.0, 300.0, 1000.0, 2500.0, 5000.0, 8000.0, 10000.0, 20000.0, 60000.0, 160000.0, 300000.0, 375000.0, 500000.0]
FMEG27 = [15, 17.4, 20.7, 23.2, 25.1, 26.4, 27, 27.5, 28.3, 29.1, 29.6, 29.7, 30]
FMEG31 = [19, 21.4, 24.7, 27.2, 29.1, 30.4, 31, 31.5, 32.3, 33.1, 33.6, 33.7, 34]
FMEG35 = [23, 25.4, 28.7, 31.2, 33.1, 34.4, 35, 35.5, 36.3, 37.1, 37.6, 37.7, 38]
FMEG39 = [27, 29.4, 32.7, 35.2, 37.1, 38.4, 39, 39.5, 40.3, 41.1, 41.6, 41.7, 42]
FMEG42 = [30, 32.4, 35.7, 38.2, 40.1, 41.4, 42, 42.5, 43.3, 44.1, 44.6, 44.7, 45]
FMEG46 = [34, 36.4, 39.7, 42.2, 44.1, 45.4, 46, 46.5, 47.3, 48.1, 48.6, 48.7, 49]
FMEG50 = [38, 40.4, 43.7, 46.2, 48.1, 49.4, 50, 50.5, 51.3, 52.1, 52.6, 52.7, 53]
FMEG53 = [41, 43.4, 46.7, 49.2, 51.1, 52.4, 53, 53.5, 54.3, 55.1, 55.6, 55.7, 56]
FMEG55 = [43, 45.4, 48.7, 51.2, 53.1, 54.4, 55, 55.5, 56.3, 57.1, 57.6, 57.7, 58]
FMEG58 = [46, 48.4, 51.7, 54.2, 56.1, 57.4, 58, 58.5, 59.3, 60.1, 60.6, 60.7, 61]
FMEG60 = [48, 50.4, 53.7, 56.2, 58.1, 59.4, 60, 60.5, 61.3, 62.1, 62.6, 62.7, 63]
FMEG62 = [50, 52.4, 55.7, 58.2, 60.1, 61.4, 62, 62.5, 63.3, 64.1, 64.6, 64.7, 65]
FMEG64 = [52, 54.4, 57.7, 60.2, 62.1, 63.4, 64, 64.5, 65.3, 66.1, 66.6, 66.7, 67]
FMEG66 = [54, 56.4, 59.7, 62.2, 64.1, 65.4, 66, 66.5, 67.3, 68.1, 68.6, 68.7, 69]
fan_driven_axial_efficiencies = {'FMEG27': FMEG27,
'FMEG31': FMEG31,
'FMEG35': FMEG35,
'FMEG39': FMEG39,
'FMEG42': FMEG42,
'FMEG46': FMEG46,
'FMEG50': FMEG50,
'FMEG53': FMEG53,
'FMEG55': FMEG55,
'FMEG58': FMEG58,
'FMEG60': FMEG60,
'FMEG62': FMEG62,
'FMEG64': FMEG64,
'FMEG66': FMEG66}
FMEG_centrifugal_backward_powers = FMEG_axial_powers
FMEG35 = [15, 19, 24.5, 28.7, 31.8, 34, 35, 35.7, 36.9, 38, 38.7, 38.9, 39.2]
FMEG39 = [19, 23, 28.5, 32.7, 35.8, 38, 39, 39.7, 40.9, 42, 42.7, 42.9, 43.2]
FMEG42 = [22, 26, 31.5, 35.7, 38.8, 41, 42, 42.7, 43.9, 45, 45.7, 45.9, 46.2]
FMEG46 = [26, 30, 35.5, 39.7, 42.8, 45, 46, 46.7, 47.9, 49, 49.7, 49.9, 50.2]
FMEG50 = [30, 34, 39.5, 43.7, 46.8, 49, 50, 50.7, 51.9, 53, 53.7, 53.9, 54.2]
FMEG53 = [33, 37, 42.5, 46.7, 49.8, 52, 53, 53.7, 54.9, 56, 56.7, 56.9, 57.2]
FMEG55 = [35, 39, 44.5, 48.7, 51.8, 54, 55, 55.7, 56.9, 58, 58.7, 58.9, 59.2]
FMEG58 = [38, 42, 47.5, 51.7, 54.8, 57, 58, 58.7, 59.9, 61, 61.7, 61.9, 62.2]
FMEG60 = [40, 44, 49.5, 53.7, 56.8, 59, 60, 60.7, 61.9, 63, 63.7, 63.9, 64.2]
FMEG62 = [42, 46, 51.5, 55.7, 58.8, 61, 62, 62.7, 63.9, 65, 65.7, 65.9, 66.2]
FMEG64 = [44, 48, 53.5, 57.7, 60.8, 63, 64, 64.7, 65.9, 67, 67.7, 67.9, 68.2]
FMEG66 = [46, 50, 55.5, 59.7, 62.8, 65, 66, 66.7, 67.9, 69, 69.7, 69.9, 70.2]
FMEG68 = [48, 52, 57.5, 61.7, 64.8, 67, 68, 68.7, 69.9, 71, 71.7, 71.9, 72.2]
FMEG70 = [50, 54, 59.5, 63.7, 66.8, 69, 70, 70.7, 71.9, 73, 73.7, 73.9, 74.2]
FMEG72 = [52, 56, 61.5, 65.7, 68.8, 71, 72, 72.7, 73.9, 75, 75.7, 75.9, 76.2]
FMEG74 = [54, 58, 63.5, 67.7, 70.8, 73, 74, 74.7, 75.9, 77, 77.7, 77.9, 78.2]
FMEG76 = [56, 60, 65.5, 69.7, 72.8, 75, 76, 76.7, 77.9, 79, 79.7, 79.9, 80.2]
fan_centrifugal_backward_efficiencies = {'FMEG35': FMEG35,
'FMEG39': FMEG39,
'FMEG42': FMEG42,
'FMEG46': FMEG46,
'FMEG50': FMEG50,
'FMEG53': FMEG53,
'FMEG55': FMEG55,
'FMEG55': FMEG55,
'FMEG58': FMEG58,
'FMEG60': FMEG60,
'FMEG62': FMEG62,
'FMEG64': FMEG64,
'FMEG66': FMEG66,
'FMEG68': FMEG68,
'FMEG70': FMEG70,
'FMEG72': FMEG72,
'FMEG74': FMEG74,
'FMEG76': FMEG76}
FMEG_cross_flow_powers = [130.0, 300.0, 500.0, 800.0, 1000.0, 2000.0, 3000.0,
4000.0, 5000.0, 8000.0, 10000.0, 16000.0, 22000.0]
FMEG08 = [3, 4, 4.6, 5.1, 5.4, 6.2, 6.7, 7, 7.2, 7.8, 8, 8, 8]
FMEG11 = [6, 7, 7.6, 8.1, 8.4, 9.2, 9.7, 10, 10.2, 10.8, 11, 11, 11]
FMEG14 = [9, 10, 10.6, 11.1, 11.4, 12.2, 12.7, 13, 13.2, 13.8, 14, 14, 14]
FMEG19 = [14, 15, 15.6, 16.1, 16.4, 17.2, 17.7, 18, 18.2, 18.8, 19, 19, 19]
FMEG23 = [18, 19, 19.6, 20.1, 20.4, 21.2, 21.7, 22, 22.2, 22.8, 23, 23, 23]
FMEG28 = [23, 24, 24.6, 25.1, 25.4, 26.2, 26.7, 27, 27.2, 27.8, 28, 28, 28]
FMEG32 = [27, 28, 28.6, 29.1, 29.4, 30.2, 30.7, 31, 31.2, 31.8, 32, 32, 32]
fan_crossflow_efficiencies = {'FMEG08': FMEG08,
'FMEG11': FMEG11,
'FMEG14': FMEG14,
'FMEG19': FMEG19,
'FMEG23': FMEG23,
'FMEG28': FMEG28,
'FMEG32': FMEG32}
'''Convert the efficiencies of:
* Bare shafts
* Centrifugal backward bladed mixed flow fans
* Cross flow driven fans
* Driven forward curved radial centrifugal fans
to fractions, instead of percents.
'''
for d in (fan_bare_shaft_efficiencies, fan_driven_axial_efficiencies, fan_centrifugal_backward_efficiencies, fan_crossflow_efficiencies):
for values in d.values():
for i in range(len(values)):
values[i] = values[i]*1E-2
|