File: __init__.py

package info (click to toggle)
python-fluids 1.0.22-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 12,980 kB
  • sloc: python: 53,243; f90: 1,033; javascript: 49; makefile: 47
file content (4673 lines) | stat: -rw-r--r-- 223,534 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
# -*- coding: utf-8 -*-
# type: ignore
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018, 2019, 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicensse, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

from __future__ import division
from math import (sin, exp, pi, fabs, copysign, log, isinf, acos, cos, sin,
                  atan2, asinh, sqrt, gamma)
from cmath import sqrt as csqrt, log as clog
import sys
from fluids.numerics.arrays import (solve as py_solve, inv, dot, norm2, inner_product, eye,
                     array_as_tridiagonals, tridiagonals_as_array,
                     solve_tridiagonal, subset_matrix)

from fluids.numerics.special import (py_hypot, py_cacos, py_catan, py_catanh, 
                                     trunc_exp, trunc_log)


__all__ = ['isclose', 'horner', 'horner_and_der', 'horner_and_der2',
           'horner_and_der3', 'quadratic_from_f_ders', 'chebval', 'interp',
           'linspace', 'logspace', 'cumsum', 'diff', 'basic_damping',
           'is_poly_negative', 'is_poly_positive',
           'implementation_optimize_tck', 'tck_interp2d_linear',
           'bisect', 'ridder', 'brenth', 'newton', 'secant', 'halley',
           'one_sided_secant',
           'splev', 'bisplev', 'derivative', 'jacobian', 'hessian',
           'normalize', 'oscillation_checker',
           'IS_PYPY', 'roots_cubic', 'roots_quartic', 'newton_system',
           'broyden2', 'basic_damping', 'solve_2_direct', 'solve_3_direct',
           'solve_4_direct', 'sincos', 'horner_and_der4',
           'lambertw', 'ellipe', 'gamma', 'gammaincc', 'erf',
           'i1', 'i0', 'k1', 'k0', 'iv', 'mean', 'polylog2', 'roots_quadratic',
           'numpy', 'nquad', 'catanh', 'factorial',
           'polyint_over_x', 'horner_log', 'polyint', 'zeros', 'full',
           'chebder', 'chebint', 'exp_cheb',
           'polyder', 'make_damp_initial', 'quadratic_from_points',
           'OscillationError', 'UnconvergedError', 'caching_decorator',
           'NoSolutionError', 'SamePointError', 'NotBoundedError',
           'damping_maintain_sign', 'oscillation_checking_wrapper',
           'trunc_exp', 'trunc_log', 'fit_integral_linear_extrapolation',
           'fit_integral_over_T_linear_extrapolation',
           'poly_fit_integral_value', 'poly_fit_integral_over_T_value',
           'evaluate_linear_fits', 'evaluate_linear_fits_d',
           'evaluate_linear_fits_d2',
           'best_bounding_bounds', 'newton_minimize', 'array_as_tridiagonals',
           'tridiagonals_as_array', 'solve_tridiagonal', 'subset_matrix',
           'assert_close', 'assert_close1d', 'assert_close2d', 'assert_close3d',
           'assert_close4d', 'translate_bound_func', 'translate_bound_jac',
           'translate_bound_f_jac', 'curve_fit',
           'quad', 'quad_adaptive', 'stable_poly_to_unstable',
           
           'std', 'min_max_ratios', 'detect_outlier_normal',
           'max_abs_error', 'max_abs_rel_error', 'max_squared_error',
           'max_squared_rel_error', 'mean_abs_error', 'mean_abs_rel_error', 
           'mean_squared_error', 'mean_squared_rel_error',

           # Complex number math missing in micropython
           'cacos', 'catan',
           'deflate_cubic_real_roots', 'fit_minimization_targets',

           'root', 'minimize', 'fsolve', 'differential_evolution',
           'lmder', 'lmfit', 'horner_backwards', 'exp_horner_backwards',
           'horner_backwards_ln_tau', 'exp_horner_backwards_ln_tau', 
           'exp_horner_backwards_ln_tau_and_der', 'exp_horner_backwards_ln_tau_and_der2',
           'exp_poly_ln_tau_coeffs2', 'exp_poly_ln_tau_coeffs3',
           'exp_horner_backwards_and_der', 'exp_horner_backwards_and_der2',
           'exp_horner_backwards_and_der3',
           'horner_backwards_ln_tau_and_der', 'horner_backwards_ln_tau_and_der2',
           'horner_backwards_ln_tau_and_der3',
           
           'horner_domain', 'polynomial_offset_scale', 'horner_stable',
           'horner_stable_and_der', 'horner_stable_and_der2', 
           'horner_stable_and_der3', 'horner_stable_and_der4',
           'exp_horner_stable', 'exp_horner_stable_and_der', 
           'exp_horner_stable_and_der2', 'exp_horner_stable_and_der3',
           'exp_cheb_and_der', 'exp_cheb_and_der2', 'exp_cheb_and_der3',
           'chebval_ln_tau', 'chebval_ln_tau_and_der',
           'chebval_ln_tau_and_der2', 'chebval_ln_tau_and_der3',
           'horner_stable_ln_tau', 'horner_stable_ln_tau_and_der', 
           'horner_stable_ln_tau_and_der2', 'horner_stable_ln_tau_and_der3',
           'exp_cheb_ln_tau', 'exp_cheb_ln_tau_and_der', 'exp_cheb_ln_tau_and_der2',
           'exp_horner_stable_ln_tau', 'exp_horner_stable_ln_tau_and_der', 
           'exp_horner_stable_ln_tau_and_der2',
           ]

from fluids.numerics import doubledouble
from fluids.numerics.doubledouble import *
__all__.extend(doubledouble.__all__)


__numba_additional_funcs__ = ['py_bisplev', 'py_splev', 'binary_search',
                              'py_lambertw', '_lambertw_err', 'newton_err',
                              'norm2', 'py_solve', 'func_35_splev', 'func_40_splev',
                              'quad_adaptive', 'fixed_quad_Gauss_Kronrod',
                              'halley_compat_numba',
                              ]
nan = float("nan")
inf = float("inf")




SKIP_DEPENDENCIES = False # for testing

class FakePackage(object):
    pkg = None
    def __getattr__(self, name):
        raise ImportError('%s in not installed and required by this feature' %(self.pkg))

    def __init__(self, pkg):
        self.pkg = pkg

version_components = sys.version.split('.')
PY_MAJOR, PY_MINOR = int(version_components[0]), int(version_components[1])
PY37 = (PY_MAJOR, PY_MINOR) >= (3, 7)

try:
    # The right way imports the platform module which costs to ms to load!
    # implementation = platform.python_implementation()
    IS_PYPY = 'PyPy' in sys.version
except AttributeError:
    IS_PYPY = False

# Hacks for numba - allow the module to run in different ways
try:
    IS_PYPY = FORCE_PYPY
except:
    pass
try:
    array_if_needed
except:
    array_if_needed = lambda x: x

try:
    is_micropython = sys.implementation.name == 'micropython'
    if is_micropython:
        IS_PYPY = True
except:
    is_micropython = False

try:
    is_ironpython =  sys.implementation.name == 'ironpython'
    if is_ironpython:
        IS_PYPY = True
except:
    is_ironpython = False

if is_micropython:
    hypot = py_hypot


def sincos(x):
    return sin(x), cos(x)

try:
    if IS_PYPY:

        def sincos(x):
            # fast implementation based of cephes and go
            PI4A = 7.85398125648498535156e-1
            PI4B = 3.77489470793079817668e-8
            PI4C = 2.69515142907905952645e-15
            M4PI = 1.273239544735162542821171882678754627704620361328125 #// 4/pi
            sinSign, cosSign = False, False
            if x < 0:
                x = -x
                sinSign = True

            j = int(x * M4PI)
            y = float(j)

            if j&1 == 1:
                j += 1
                y += 1
            j &= 7
            if j > 3:
                j -= 4
                sinSign, cosSign = not sinSign, not cosSign
            if j > 1:
                cosSign = not cosSign
            z = ((x - y*PI4A) - y*PI4B) - y*PI4C
            zz = z * z
            cos = 1.0 - 0.5*zz + zz*zz*((((((-1.13585365213876817300E-11*zz)+2.08757008419747316778E-9)
                                           *zz+-2.75573141792967388112E-7)*zz+2.48015872888517045348E-5)
                                         *zz+-1.38888888888730564116E-3)*zz+4.16666666666665929218E-2)
            sin = z + z*zz*((((((1.58962301576546568060E-10*zz)+-2.50507477628578072866E-8)*zz+2.75573136213857245213E-6)
                              *zz+-1.98412698295895385996E-4)*zz+8.33333333332211858878E-3)*zz+-1.66666666666666307295E-1)
            if j == 1 or j == 2:
                sin, cos = cos, sin
            if cosSign :
                cos = -cos
            if sinSign:
                sin = -sin
            return sin, cos
except:
    pass

try:
    from cmath import acos as cacos, atan as catan, atanh as catanh, isclose as cisclose
except:
    cacos = py_cacos
    catan = py_catan
    catanh = py_catanh

_wraps = None
def my_wraps():
    global _wraps
    if _wraps is not None:
        return _wraps
    from functools import wraps
    _wraps = wraps
    return _wraps


#IS_PYPY = True # for testing

if not SKIP_DEPENDENCIES:
    try:
        # Regardless of actual interpreter, fall back to pure python implementations
        # if scipy and numpy are not available.
        import numpy
        np = numpy
    except ImportError:
        # Allow a fake numpy to be imported, but will raise an excption on any use
        numpy = FakePackage('numpy')
        IS_PYPY = True
else:
    numpy = FakePackage('numpy')
    IS_PYPY = True

IS_PYPY_OR_SKIP_DEPENDENCIES = IS_PYPY or SKIP_DEPENDENCIES
np = numpy

try:
    scalar_types = (float, int, np.float64, np.float32, np.float16, np.float128,
                    np.int8, np.int16, np.int32, np.int64)
except:
    scalar_types = (float, int)
#IS_PYPY = True

try:
    from sys import float_info
    epsilon = float_info.epsilon
except:
    # Probably micropython
    epsilon = 2.220446049250313e-16

one_epsilon_larger = 1.0 + epsilon
one_epsilon_smaller = 1.0 - epsilon
zero_epsilon_smaller = 0.0 - epsilon

one_10_epsilon_larger = 1.0 + epsilon*10.0
one_10_epsilon_smaller = 1.0 - epsilon*10.0

one_100_epsilon_larger = 1.0 + epsilon*100.0
one_100_epsilon_smaller = 1.0 - epsilon*100.0

one_1000_epsilon_larger = 1.0 + epsilon*1000.0
one_1000_epsilon_smaller = 1.0 - epsilon*1000.0

_iter = 100
_xtol = 1e-12
_rtol = epsilon*2.0

third = 1.0/3.0
sixth = 1.0/6.0
ninth = 1.0/9.0
twelfth = 1.0/12.0
two_thirds = 2.0/3.0
four_thirds = 4.0/3.0

root_three = 1.7320508075688772 # sqrt(3.0)
one_27 = 1.0/27.0
complex_factor = 0.8660254037844386j # (sqrt(3)*0.5j)

def roots_quadratic(a, b, c):
    if a == 0.0:
        return (-c/b, )
    D = b*b - 4.0*a*c
    a_inv_2 = 0.5/a
    if D < 0.0:
        D = sqrt(-D)
        x1 = (-b + D*1.0j)*a_inv_2
        x2 = (-b - D*1.0j)*a_inv_2
    else:
        D = sqrt(D)
        x1 = (D - b)*a_inv_2
        x2 = -(b + D)*a_inv_2
    return (x1, x2)


def roots_cubic_a1(b, c, d):
    # Output from mathematica
    t1 = b*b
    t2 = t1*b
    t4 = c*b
    t9 = c*c
    t16 = d*d
    t19 = csqrt(12.0*t9*c + 12.0*t2*d - 54.0*t4*d - 3.0*t1*t9 + 81.0*t16)
    t22 = (-8.0*t2 + 36.0*t4 - 108.0*d + 12.0*t19)**third
    root1 = t22*sixth - 6.0*(c*third - t1*ninth)/t22 - b*third
    t28 = (c*third - t1*ninth)/t22
    t101 = -t22*twelfth + 3.0*t28 - b*third
    t102 =  root_three*(t22*sixth + 6.0*t28)

    root2 = t101 + 0.5j*t102
    root3 = t101 - 0.5j*t102

    return [root1, root2, root3]


def roots_cubic_a2(a, b, c, d):
    # Output from maple
    t2 = a*a
    t3 = d*d
    t10 = c*c
    t14 = b*b
    t15 = t14*b
    t20 = csqrt(-18.0*a*b*c*d + 4.0*a*t10*c + 4.0*t15*d - t14*t10 + 27.0*t2*t3)
    t31 = (36.0*c*b*a + 12.0*root_three*t20*a - 108.0*d*t2 - 8.0*t15)**third
    t32 = 1.0/a
    root1 = t31*t32*sixth - two_thirds*(3.0*a*c - t14)*t32/t31 - b*t32*third
    t33 = t31*t32
    t40 = (3.0*a*c - t14)*t32/t31

    t50 = -t33*twelfth + t40*third - b*t32*third
    t51 = 0.5j*root_three *(t33*sixth + two_thirds*t40)
    root2 = t50 + t51
    root3 = t50 - t51
    return [root1, root2, root3]


def roots_cubic(a, b, c, d):
    r'''Cubic equation solver based on a variety of sources, algorithms, and
    numerical tools. It seems evident after some work that no analytical
    solution using floating points will ever have high-precision results
    for all cases of inputs. Some other solvers, such as NumPy's roots
    which uses eigenvalues derived using some BLAS, seem to provide bang-on
    answers for all values coefficients. However, they can be quite slow - and
    where possible there is still a need for analytical solutions to obtain
    15-35x speed, such as when using PyPy.

    A particular focus of this routine is where a=1, b is a small number in the
    range -10 to 10 - a common occurrence in cubic equations of state.

    Parameters
    ----------
    a : float
        Coefficient of x^3, [-]
    b : float
        Coefficient of x^2, [-]
    c : float
        Coefficient of x, [-]
    d : float
        Added coefficient, [-]

    Returns
    -------
    roots : tuple(float)
        The evaluated roots of the polynomial, 1 value when a and b are zero,
        two values when a is zero, and three otherwise, [-]

    Notes
    -----
    For maximum speed, provide Python floats. Compare the speed with numpy via:

    %timeit roots_cubic(1.0, 100.0, 1000.0, 10.0)
    %timeit np.roots([1.0, 100.0, 1000.0, 10.0])

    %timeit roots_cubic(1.0, 2.0, 3.0, 4.0)
    %timeit np.roots([1.0, 2.0, 3.0, 4.0])

    The speed is ~15-35 times faster; or using PyPy, 240-370 times faster.

    Examples
    --------
    >>> roots_cubic(1.0, 100.0, 1000.0, 10.0)
    (-0.0100100190, -88.731288, -11.25870159)

    References
    ----------
    .. [1] "Solving Cubic Equations." Accessed January 5, 2019.
       http://www.1728.org/cubic2.htm.

    '''
    '''
    Notes
    -----
    Known issue is inputs that look like
    1, -0.999999999978168, 1.698247818501352e-11, -8.47396642608142e-17
    Errors grown unbound, starting when b is -.99999 and close to 1.
    '''
    if a == 0.0:
        if b == 0.0:
            return (-d/c, )
        D = c*c - 4.0*b*d
        b_inv_2 = 0.5/b
        if D < 0.0:
            D = sqrt(-D)
            x1 = (-c + D*1.0j)*b_inv_2
            x2 = (-c - D*1.0j)*b_inv_2
        else:
            D = sqrt(D)
            x1 = (D - c)*b_inv_2
            x2 = -(c + D)*b_inv_2
        return (x1, x2)
    a_inv = 1.0/a
    a_inv2 = a_inv*a_inv
    bb = b*b
    '''Herbie modifications for f:
    c*a_inv - b_a*b_a*third
    '''

    b_a = b*a_inv
    b_a2 = b_a*b_a
    f = c*a_inv - b_a2*third
#    f = (3.0*c*a_inv - bb*a_inv2)*third
    g = ((2.0*(bb*b) * a_inv2*a_inv) - (9.0*b*c)*(a_inv2) + (27.0*d*a_inv))*one_27
#    g = (((2.0/(a/b))/((a/b) * (a/b)) + d*27.0/a) - (9.0/a*b)*c/a)/27.0

    h = (0.25*(g*g) + (f*f*f)*one_27)
#    print(f, g, h)
    '''h has no savings on precision - 0.4 error to 0.2.
    '''
#    print(f, g, h, 'f, g, h')
    if h == 0.0 and g == 0.0 and f == 0.0:
        if d/a >= 0.0:
            x = -((d*a_inv)**(third))
        else:
            x = (-d*a_inv)**(third)
        return (x, x, x)
    elif h > 0.0:
        # Happy with these formulas - double doubles should be fast.
        # No complex numbers are needed here.
#        print('basic')
        # 1 real root, 2 imag
        root_h = sqrt(h)
        R = -0.5*g + root_h

        # It is possible to save one of the power of thirds!
        if R >= 0.0:
            S = R**third
        else:
            S = -((-R)**third)
        T = -(0.5*g) - root_h
        if T >= 0.0:
            U = (T**(third))
        else:
            U = -(((-T)**(third)))

        SU = S + U
        b_3a = b*(third*a_inv)
        t1 = -0.5*SU - b_3a
        t2 = (S - U)*complex_factor
        x1 = SU - b_3a
        # x1 is OK actually in some tests? the issue is x2, x3?
        x2 = t1 + t2
        x3 = t1 - t2

    else:
#    elif h <= 0.0:
        t2 = a*a
        t3 = d*d
        t10 = c*c
        t14 = b*b
        t15 = t14*b

        '''This method is inaccurate when choice_term is too small; but still
        more accurate than the other method.
        '''
        choice_term = -18.0*a*b*c*d + 4.0*a*t10*c + 4.0*t15*d - t14*t10 + 27.0*t2*t3
        if (abs(choice_term) > 1e-12 or abs(b + 1.0) < 1e-7):
#            print('mine')
            t32 = 1.0/a
            t20 = csqrt(choice_term)
            t31 = (36.0*c*b*a + 12.0*root_three*t20*a - 108.0*d*t2 - 8.0*t15)**third
            t33 = t31*t32
            t32_t31 = t32/t31

            x1 = (t33*sixth - two_thirds*(3.0*a*c - t14)*t32_t31 - b*t32*third).real
            t40 = (3.0*a*c - t14)*t32_t31

            t50 = -t33*twelfth + t40*third - b*t32*third
            t51 = 0.5j*root_three*(t33*sixth + two_thirds*t40)
            x2 = (t50 + t51).real
            x3 = (t50 - t51).real
        else:
#            print('other')
            # 3 real roots
            # example is going in here
            i = sqrt(((g*g)*0.25) - h)
            j = i**third # There was a saving for j but it was very weird with if statements!
            '''Clamied nothing saved for k.
            '''
            k = acos(-0.5*g/i)
#            L = -j

#            N, M = sincos(k*third)
#            N *= root_three
            k_third = k*third
            M = cos(k_third)
            N = root_three*sin(k_third)
            P = -b_a*third

            # Direct formula for x1
            x1 = 2.0*j*M + P
            x2 = P - j*(M + N)
            x3 = P - j*(M - N)
    return (x1, x2, x3)


def roots_quartic(a, b, c, d, e):
    # There is no divide by zero check. A should be 1 for best numerical results
    # Multiple order of magnitude differences still can cause problems
    # Like  [1, 0.0016525874561771799, 106.8665062954208, 0.0032802613917246727, 0.16036091315844248]
    x0 = 1.0/a
    x1 = b*x0
    x2 = -x1*0.25
    x3 = c*x0
    x4 = b*b*x0*x0
    x5 = -two_thirds*x3 + 0.25*x4
    x6 = x3 - 0.375*x4
    x6_2 = x6*x6
    x7 = x6_2*x6
    x8 = d*x0
    x9 = x1*(-0.5*x3 + 0.125*x4)
    x10 = (x8 + x9)*(x8 + x9)
    x11 = e*x0
    x12 = x1*(x1*(-0.0625*x3 + 0.01171875*x4) + 0.25*x8) # 0.01171875 = 3/256
    x13 = x6*(x11 - x12)
    x14 = -.125*x10 + x13*third - x7/108.0
    x15 = 2.0*(x14 + 0.0j)**(third)
    x16 = csqrt(-x15 + x5)
    x17 = 0.5*x16
    x18 = -x17 + x2
    x19 = -four_thirds*x3
    x20 = 0.5*x4
    x21 = x15 + x19 + x20
    x22 = 2.0*x8 + 2.0*x9
    x23 = x22/x16
    x24 = csqrt(x21 + x23)*0.5
    x25 = -x11 + x12 - twelfth*x6_2
    x27 = (0.0625*x10 - x13*sixth + x7/216.0 + csqrt(0.25*x14*x14 + one_27*x25*x25*x25))**(third)
    x28 = 2.0*x27
    x29 = two_thirds*x25/(x27)
    x30 = csqrt(x28 - x29 + x5)
    x31 = 0.5*x30
    x32 = x2 - x31
    x33 = x19 + x20 - x28 + x29
    x34 = x22/x30
    x35 = csqrt(x33 + x34)*0.5
    x36 = x17 + x2
    x37 = csqrt(x21 - x23)*0.5
    x38 = x2 + x31
    x39 = csqrt(x33 - x34)*0.5
    return ((x32 - x35), (x32 + x35), (x38 - x39), (x38 + x39))

def mean(data):
    # Much faster than the statistics.mean module
    return sum(data)/len(data)

def detect_outlier_normal(data, cutoff=3):
    std_val = std(data)
    mean_val = mean(data)
    
    low = mean_val - std_val*cutoff
    high = mean_val + std_val*cutoff
    outlier_idxs = []
    for i, p in enumerate(data):
        if p < low or p > high:
            outlier_idxs.append(i)
    return outlier_idxs

def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None):
    """Port of numpy's linspace to pure python.

    Does not support dtype, and returns lists of floats.
    """
    num = int(num)
    start = start * 1.
    stop = stop * 1.

    if num <= 0:
        return []
    if endpoint:
        if num == 1:
            return [start]
        step = (stop-start)/float((num-1))
        if num == 1:
            step = nan

        y = [start]
        for _ in range(num-2):
            y.append(y[-1] + step)
        y.append(stop)
    else:
        step = (stop-start)/float(num)
        if num == 1:
            step = nan
        y = [start]
        for _ in range(num-1):
            y.append(y[-1] + step)

    if retstep:
        return y, step
    else:
        return y


def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None):
    y = linspace(start, stop, num=num, endpoint=endpoint)
    for i in range(len(y)):
        y[i] = base**y[i]
#    return [base**yi for yi in y]
    return y


def product(l):
    # Helper in some functions
    tot = 1.0
    for i in l:
        tot *= i
    return tot


def cumsum(a):
    # Does not support multiple dimensions
    base = a[0]
    sums = [base]
    for v in a[1:]:
        base = base + v
        sums.append(base)
    return sums


def diff(a, n=1, axis=-1):
    if n == 0:
        return a
    if n < 0:
        raise ValueError(
            "order must be non-negative but got %s" %(n))
#    nd = 1 # hardcode
    diffs = []
    for i in range(1, len(a)):
        delta = a[i] - a[i-1]
        diffs.append(delta)

    if n > 1:
        return diff(diffs, n-1)
    return diffs



central_diff_weights_precomputed = {
 (1, 3): [-0.5, 0.0, 0.5],
 (1, 5): [0.08333333333333333, -0.6666666666666666, 0.0, 0.6666666666666666, -0.08333333333333333],
 (1, 7): [-0.016666666666666666, 0.15, -0.75, 0.0, 0.75, -0.15, 0.016666666666666666],
 (1, 9): [0.0035714285714285713, -0.0380952380952381, 0.2, -0.8, 0.0, 0.8, -0.2, 0.0380952380952381,
          -0.0035714285714285713],
 (1, 11): [-0.0007936507936507937, 0.00992063492063492, -0.05952380952380952, 0.23809523809523808, -0.8333333333333334,
           0.0, 0.8333333333333334, -0.23809523809523808, 0.05952380952380952, -0.00992063492063492,
           0.0007936507936507937],
 (1, 13): [0.00018037518037518038, -0.0025974025974025974, 0.017857142857142856, -0.07936507936507936,
           0.26785714285714285, -0.8571428571428571, 0.0, 0.8571428571428571, -0.26785714285714285, 0.07936507936507936,
           -0.017857142857142856, 0.0025974025974025974, -0.00018037518037518038],
 (1, 15): [-4.1625041625041625e-05, 0.0006798756798756799, -0.005303030303030303, 0.026515151515151516,
           -0.09722222222222222, 0.2916666666666667, -0.875, 0.0, 0.875, -0.2916666666666667, 0.09722222222222222,
           -0.026515151515151516, 0.005303030303030303, -0.0006798756798756799, 4.1625041625041625e-05],
 (1, 17): [9.712509712509713e-06, -0.0001776001776001776, 0.001554001554001554, -0.008702408702408702,
           0.03535353535353535, -0.11313131313131314, 0.3111111111111111, -0.8888888888888888, 0.0, 0.8888888888888888,
           -0.3111111111111111, 0.11313131313131314, -0.03535353535353535, 0.008702408702408702, -0.001554001554001554,
           0.0001776001776001776, -9.712509712509713e-06],
 (1, 19): [-2.285296402943462e-06, 4.6277252159605104e-05, -0.00044955044955044955, 0.002797202797202797,
           -0.012587412587412588, 0.044055944055944055, -0.12727272727272726, 0.32727272727272727, -0.9, 0.0, 0.9,
           -0.32727272727272727, 0.12727272727272726, -0.044055944055944055, 0.012587412587412588,
           -0.002797202797202797, 0.00044955044955044955, -4.6277252159605104e-05, 2.285296402943462e-06],
 (2, 3): [1.0, -2.0, 1.0],
 (2, 5): [-0.08333333333333333, 1.3333333333333333, -2.5, 1.3333333333333333, -0.08333333333333333],
 (2, 7): [0.011111111111111112, -0.15, 1.5, -2.7222222222222223, 1.5, -0.15, 0.011111111111111112],
 (2, 9): [-0.0017857142857142857, 0.025396825396825397, -0.2, 1.6, -2.8472222222222223, 1.6, -0.2, 0.025396825396825397,
          -0.0017857142857142857],
 (2, 11): [0.00031746031746031746, -0.00496031746031746, 0.03968253968253968, -0.23809523809523808, 1.6666666666666667,
           -2.9272222222222224, 1.6666666666666667, -0.23809523809523808, 0.03968253968253968, -0.00496031746031746,
           0.00031746031746031746],
 (2, 13): [-6.012506012506013e-05, 0.001038961038961039, -0.008928571428571428, 0.05291005291005291,
           -0.26785714285714285, 1.7142857142857142, -2.9827777777777778, 1.7142857142857142, -0.26785714285714285,
           0.05291005291005291, -0.008928571428571428, 0.001038961038961039, -6.012506012506013e-05],
 (2, 15): [1.1892869035726179e-05, -0.00022662522662522663, 0.0021212121212121214, -0.013257575757575758,
           0.06481481481481481, -0.2916666666666667, 1.75, -3.02359410430839, 1.75, -0.2916666666666667,
           0.06481481481481481, -0.013257575757575758, 0.0021212121212121214, -0.00022662522662522663,
           1.1892869035726179e-05],
 (2, 17): [-2.428127428127428e-06, 5.074290788576503e-05, -0.000518000518000518, 0.003480963480963481,
           -0.017676767676767676, 0.07542087542087542, -0.3111111111111111, 1.7777777777777777, -3.05484410430839,
           1.7777777777777777, -0.3111111111111111, 0.07542087542087542, -0.017676767676767676, 0.003480963480963481,
           -0.000518000518000518, 5.074290788576503e-05, -2.428127428127428e-06],
 (2, 19): [5.078436450985471e-07, -1.1569313039901276e-05, 0.00012844298558584272, -0.0009324009324009324,
           0.005034965034965035, -0.022027972027972027, 0.08484848484848485, -0.32727272727272727, 1.8,
           -3.0795354623330815, 1.8, -0.32727272727272727, 0.08484848484848485, -0.022027972027972027,
           0.005034965034965035, -0.0009324009324009324, 0.00012844298558584272, -1.1569313039901276e-05,
           5.078436450985471e-07],
 (3, 5): [-0.5, 1.0, 0.0, -1.0, 0.5],
 (3, 7): [0.125, -1.0, 1.625, 0.0, -1.625, 1.0, -0.125],
 (3, 9): [-0.029166666666666667, 0.30000000000000004, -1.4083333333333332, 2.033333333333333, 0.0, -2.033333333333333,
          1.4083333333333332, -0.30000000000000004, 0.029166666666666667],
# (3, 11): [0.006779100529100529, -0.08339947089947089, 0.48303571428571435, -1.7337301587301588, 2.3180555555555555,
#           0.0, -2.3180555555555555, 1.7337301587301588, -0.48303571428571435, 0.08339947089947089,
#           -0.006779100529100529],
# (3, 13): [-0.0015839947089947089, 0.02261904761904762, -0.1530952380952381, 0.6572751322751322, -1.9950892857142857,
#           2.527142857142857, 0.0, -2.527142857142857, 1.9950892857142857, -0.6572751322751322, 0.1530952380952381,
#           -0.02261904761904762, 0.0015839947089947089],
# (3, 15): [0.0003724747474747475, -0.006053691678691679, 0.04682990620490621, -0.2305699855699856, 0.8170667989417989,
#           -2.2081448412698412, 2.6869345238095237, 0.0, -2.6869345238095237, 2.2081448412698412, -0.8170667989417989,
#           0.2305699855699856, -0.04682990620490621, 0.006053691678691679, -0.0003724747474747475],
# (3, 17): [-8.810006131434702e-05, 0.0016058756058756059, -0.013982697196982911, 0.07766492766492766,
#           -0.31074104136604136, 0.9613746993746994, -2.384521164021164, 2.81291761148904, 0.0, -2.81291761148904,
#           2.384521164021164, -0.9613746993746994, 0.31074104136604136, -0.07766492766492766, 0.013982697196982911,
#           -0.0016058756058756059, 8.810006131434702e-05],
# (3, 19): [2.0943672729387014e-05, -0.00042319882498453924, 0.00409817266067266, -0.025376055161769447,
#           0.11326917130488559, -0.3904945471195471, 1.0909741462241462, -2.532634817563389, 2.9147457482993198, 0.0,
#           -2.9147457482993198, 2.532634817563389, -1.0909741462241462, 0.3904945471195471, -0.11326917130488559,
#           0.025376055161769447, -0.00409817266067266, 0.00042319882498453924, -2.0943672729387014e-05],
# (4, 5): [1.0, -4.0, 6.0, -4.0, 1.0],
# (4, 7): [-0.16666666666666666, 2.0, -6.5, 9.333333333333334, -6.5, 2.0, -0.16666666666666666],
# (4, 9): [0.029166666666666667, -0.4, 2.8166666666666664, -8.133333333333333, 11.375, -8.133333333333333,
#          2.8166666666666664, -0.4, 0.029166666666666667],
# (4, 11): [-0.005423280423280424, 0.08339947089947089, -0.644047619047619, 3.4674603174603176, -9.272222222222222,
#           12.741666666666665, -9.272222222222222, 3.4674603174603176, -0.644047619047619, 0.08339947089947089,
#           -0.005423280423280424],
# (4, 13): [0.0010559964726631393, -0.018095238095238095, 0.1530952380952381, -0.8763668430335096, 3.9901785714285714,
#           -10.108571428571429, 13.717407407407407, -10.108571428571429, 3.9901785714285714, -0.8763668430335096,
#           0.1530952380952381, -0.018095238095238095, 0.0010559964726631393],
# (5, 7): [-0.5, 2.0, -2.5, 0.0, 2.5, -2.0, 0.5],
# (5, 9): [0.16666666666666669, -1.5, 4.333333333333333, -4.833333333333334, 0.0, 4.833333333333334, -4.333333333333333,
#          1.5, -0.16666666666666669],
# (5, 11): [-0.04513888888888889, 0.5277777777777778, -2.71875, 6.5, -6.729166666666667, 0.0, 6.729166666666667, -6.5,
#           2.71875, -0.5277777777777778, 0.04513888888888889],
# (5, 13): [0.011491402116402117, -0.16005291005291006, 1.033399470899471, -3.9828042328042326, 8.39608134920635,
#           -8.246031746031747, 0.0, 8.246031746031747, -8.39608134920635, 3.9828042328042326, -1.033399470899471,
#           0.16005291005291006, -0.011491402116402117]
 }

def deflate_cubic_real_roots(b, c, d, x0):
    F = b + x0
    G = -d/x0

    D = F*F - 4.0*G
#     if D < 0.0:
#         D = (-D)**0.5
#         x1 = (-F + D*1.0j)*0.5
#         x2 = (-F - D*1.0j)*0.5
#     else:
    if D < 0.0:
        return (0.0, 0.0)
    D = sqrt(D)
    x1 = 0.5*(D - F)#(D - c)*0.5
    x2 = 0.5*(-F - D) #-(c + D)*0.5
    return x1, x2


def central_diff_weights(points, divisions=1):
    # Check the cache
    if (divisions, points) in central_diff_weights_precomputed:
        return central_diff_weights_precomputed[(divisions, points)]

    if points < divisions + 1:
        raise ValueError("Points < divisions + 1, cannot compute")
    if points % 2 == 0:
        raise ValueError("Odd number of points required")
    ho = points >> 1

    x = [[xi] for xi in range(-ho, ho+1)]
    X = []
    for xi in x:
        line = [1.0] + [xi[0]**k for k in range(1, points)]
        X.append(line)
    factor = product(range(1, divisions + 1))
#    from scipy.linalg import inv
    from sympy import Matrix
    # The above coefficients were generated from a routine which used Fractions
    # Additional coefficients cannot reliable be computed with numpy or floating
    # point numbers - the error is too great
    # sympy must be used for reliability
    inverted = [[float(j) for j in i] for i in Matrix(X).inv().tolist()]
    w = [i*factor for i in inverted[divisions]]
#    w = [i*factor for i in (inv(X)[divisions]).tolist()]
    central_diff_weights_precomputed[(divisions, points)] = w
    return w


def derivative(func, x0, dx=1.0, n=1, args=(), order=3, scalar=True,
               lower_limit=None, upper_limit=None, kwargs={}):
    """Reimplementation of SciPy's derivative function, with more cached
    coefficients and without using numpy. If new coefficients not cached are
    needed, they are only calculated once and are remembered.

    Support for vector value functions has also been added.
    """
    if order < n + 1:
        raise ValueError
    if order % 2 == 0:
        raise ValueError
    weights = central_diff_weights(order, n)
    ho = order >> 1
    denominator = 1.0/product([dx]*n)
    if scalar:
        max_x = x0 + (order - 1 - ho)*dx
        if upper_limit is not None and max_x > upper_limit:
            x0 -= (max_x - x0)
        min_x = x0 + -ho*dx
        if lower_limit is not None and min_x < lower_limit:
            x0 += (x0 - min_x)

        tot = 0.0
        for k in range(order):
            if weights[k] != 0.0:
                tot += weights[k]*func(x0 + (k - ho)*dx, *args, **kwargs)
        return tot*denominator
    else:
        numerators = None
        for k in range(order):
            f = func(x0 + (k - ho)*dx, *args, **kwargs)
            if numerators is None:
                N = len(f)
                numerators = [0.0]*N
            for i in range(N):
                numerators[i] += weights[k]*f[i]
        return [num*denominator for num in numerators]




kronrod_weights = {
#    2: [0.1979797979797974, 0.4909090909090922, 0.6222222222222221, 0.4909090909090904, 0.1979797979797974],
#    3: [0.10465622602646653, 0.2684880898683364, 0.4013974147759613, 0.45091653865847436, 0.40139741477596186, 0.26848808986833306, 0.10465622602646701],
#    4: [0.06297737366547282, 0.17005360533572325, 0.26679834045228396, 0.3269491896014517, 0.3464429818901376, 0.32694918960145064, 0.2667983404522837,
#        0.17005360533572333, 0.06297737366547272
#    ],
#    5: [0.042582036751078814, 0.11523331662247298, 0.1868007965564952, 0.2410403392286488, 0.27284980191255903, 0.28298741785749215, 0.2728498019125575,
#        0.24104033922864848, 0.1868007965564929, 0.11523331662247287, 0.04258203675108158
#    ],
#    6: [0.03039615411981852, 0.08369444044690531, 0.1373206046344473, 0.1810719943231391, 0.21320965227196226, 0.23377086411699666, 0.2410725801734652,
#        0.23377086411699363, 0.21320965227196081, 0.1810719943231382, 0.13732060463444687, 0.08369444044690623, 0.030396154119819826
#    ],
#    7: [0.02293532201053038, 0.0630920926299766, 0.10479001032225017, 0.14065325971552478, 0.16900472663927035, 0.19035057806478545, 0.2044329400753001,
#        0.20948214108472712, 0.2044329400752992, 0.1903505780647853, 0.16900472663926686, 0.14065325971552592, 0.10479001032225005, 0.06309209262997834,
#        0.022935322010529363
#    ],
#    8: [0.017822383320711625, 0.04943939500213785, 0.08248229893135677, 0.11164637082684088, 0.13626310925517557, 0.15665260616818655, 0.17207060855521186,
#        0.18140002506803385, 0.18444640574468968, 0.1814000250680349, 0.1720706085552107, 0.1566526061681889, 0.13626310925517285, 0.11164637082683933,
#        0.08248229893135825, 0.04943939500213947, 0.017822383320710476
#    ],
#    9: [0.014304775643840032, 0.03963189516026222, 0.0665181559402729, 0.09079068168872734, 0.11178913468441762, 0.13000140685534053, 0.14523958838436735,
#        0.15641352778848416, 0.16286282744011463, 0.16489601282834765, 0.16286282744011538, 0.15641352778848497, 0.14523958838436518,
#        0.13000140685534053, 0.11178913468441844, 0.09079068168872709, 0.0665181559402743, 0.03963189516026152, 0.01430477564383906
#    ],
    10: [0.011694638867371172, 0.03255816230796458, 0.05475589657435185, 0.07503967481091954, 0.09312545458369915, 0.10938715880229993, 0.12349197626206619,
        0.1347092173114735, 0.1427759385770589, 0.14773910490133732, 0.1494455540029151, 0.14773910490133846, 0.14277593857705978, 0.13470921731147467,
        0.1234919762620664, 0.10938715880229763, 0.09312545458369788, 0.0750396748109198, 0.05475589657435227, 0.03255816230796462, 0.01169463886737192
    ],
#    11: [0.009765441045959541, 0.02715655468210335, 0.045829378564428196, 0.06309742475037379, 0.07866457193222803, 0.092953098596902, 0.1058720744813897,
#        0.11673950246104702, 0.12515879910031777, 0.13128068422980624, 0.13519357279988428, 0.1365777947111174, 0.13519357279988467, 0.1312806842298052,
#        0.12515879910031882, 0.11673950246104742, 0.10587207448139022, 0.09295309859690085, 0.07866457193222773, 0.06309742475037532,
#        0.04582937856442653, 0.027156554682104143, 0.009765441045960747
#    ],
#    12: [0.008257711433166826, 0.023036084038981483, 0.03891523046929862, 0.053697017607756393, 0.06725090705084145, 0.07992027533360162,
#        0.09154946829504902, 0.1016497322790617, 0.11002260497764366, 0.11671205350175794, 0.12162630352394828, 0.12458416453615645,
#        0.12555689390547403, 0.12458416453615662, 0.12162630352394885, 0.11671205350175637, 0.11002260497764366, 0.10164973227906021,
#        0.09154946829504902, 0.07992027533360205, 0.06725090705084015, 0.05369701760775601, 0.038915230469299136, 0.023036084038982187,
#        0.008257711433168356
#    ],
#    13: [0.007087846351247695, 0.019753746382707126, 0.03344358998955114, 0.046279017973829016, 0.05811521042311424, 0.06930363324778273,
#        0.0798059621694777, 0.08916844187754189, 0.09714173487607722, 0.10383060116904075, 0.10926635109528536, 0.11321025917152877, 0.1154887990912863,
#        0.11620961236306047, 0.11548879909128668, 0.11321025917152944, 0.10926635109528575, 0.10383060116903994, 0.09714173487607768,
#        0.08916844187754075, 0.0798059621694761, 0.06930363324778134, 0.05811521042311445, 0.0462790179738303, 0.033443589989552346,
#        0.019753746382705984, 0.007087846351248617
#    ],
#    14: [0.006139558686377161, 0.01714845890993743, 0.02904870126150814, 0.04025059487268863, 0.050691543260464045, 0.06066712586674275,
#        0.07010297900274666, 0.0786557972496211, 0.08618376286946026, 0.09273683001785471, 0.09826492647210357, 0.1026166273213988, 0.10573163984176341,
#        0.10762642111411824, 0.10827006650642954, 0.10762642111411819, 0.10573163984176337, 0.10261662732139956, 0.09826492647210401,
#        0.09273683001785424, 0.08618376286945752, 0.07865579724962145, 0.07010297900274708, 0.060667125866742444, 0.050691543260465384,
#        0.040250594872688804, 0.029048701261508613, 0.01714845890993556, 0.00613955868637814
#    ],
#    15: [0.005377479872922721, 0.015007947329316597, 0.02546084732671451, 0.03534636079137684, 0.044589751324763977, 0.053481524690928775,
#        0.06200956780067099, 0.06985412131872938, 0.07684968075772279, 0.08308050282313152, 0.08856444305621097, 0.09312659817082411,
#        0.09664272698362378, 0.09917359872179198, 0.10076984552387584, 0.10133000701479176, 0.10076984552387498, 0.09917359872179111,
#        0.09664272698362311, 0.09312659817082504, 0.08856444305621132, 0.08308050282313374, 0.07684968075772115, 0.06985412131872824,
#        0.06200956780067089, 0.05348152469092814, 0.04458975132476507, 0.03534636079137597, 0.0254608473267153, 0.01500794732931606,
#        0.005377479872923303
#    ],
#    16: [0.0047427770492463476, 0.01325793068809046, 0.022498859440048875, 0.031260543647380616, 0.03951295120242179, 0.04750621597640688,
#        0.055205633095423194, 0.062358806011834494, 0.06886299519153054, 0.07476982388560004, 0.08005394126371923, 0.08459580379259089,
#        0.08833750257911316, 0.0912920328281922, 0.09343867406092181, 0.09472840124723077, 0.09515421608049866, 0.09472840124722949,
#        0.09343867406092161, 0.09129203282819215, 0.08833750257911213, 0.0845958037925905, 0.08005394126371795, 0.07476982388559944,
#        0.06886299519153126, 0.062358806011835174, 0.05520563309542224, 0.047506215976407244, 0.03951295120242178, 0.031260543647380366,
#        0.02249885944004935, 0.013257930688091162, 0.0047427770492472505
#    ],
#    17: [0.00421897579377578, 0.011785837562288765, 0.020022233953294232, 0.027856722457863144, 0.035249746751878815, 0.04244263020500057,
#        0.04943614182396047, 0.055994044530093004, 0.06200091526823072, 0.06752801671813287, 0.07258989011419156, 0.07705622304620212,
#        0.08083667844081736, 0.08397257199123528, 0.08649053220565191, 0.08830878229760371, 0.08936184586778975, 0.08969642194398147,
#        0.08936184586778813, 0.08830878229760494, 0.08649053220565157, 0.0839725719912349, 0.08083667844081745, 0.07705622304620285,
#        0.07258989011419015, 0.06752801671813129, 0.06200091526822982, 0.05599404453009317, 0.04943614182395916, 0.042442630205000643,
#        0.03524974675187985, 0.027856722457863275, 0.020022233953294787, 0.011785837562289191, 0.004218975793776932
#    ],
#    18: [0.00377351012843988, 0.010554430567545547, 0.01793337620570976, 0.024964402753740674, 0.03163401984884463, 0.0381537583251753,
#        0.044509195165090054, 0.0505075715021042, 0.056072390382993734, 0.061253565791358926, 0.06603995819281894, 0.07033745002422243,
#        0.07409702738131525, 0.0773320701646388, 0.08003001949509578, 0.08214399978333053, 0.08365485143716135, 0.08456933354407732,
#        0.08487813861267707, 0.08456933354407585, 0.08365485143716228, 0.08214399978332948, 0.08003001949509637, 0.07733207016463836,
#        0.07409702738131455, 0.07033745002422402, 0.06603995819281755, 0.06125356579135898, 0.05607239038299394, 0.05050757150210246,
#        0.044509195165090026, 0.03815375832517691, 0.031634019848844154, 0.024964402753740036, 0.017933376205711227, 0.01055443056754483,
#        0.0037735101284401234
#    ],
#    19: [0.0033981531196335965, 0.009499205461711157, 0.016153414369089493, 0.02250869575220442, 0.028544238117114772, 0.03446235286288065,
#        0.04027002324951411, 0.04578597308792263, 0.05092622550624418, 0.05575220103348164, 0.060277411503209075, 0.0644023522619292,
#        0.06805978049813398, 0.07128142476493002, 0.07408407453373855, 0.07640286193981659, 0.07818691068574178, 0.07946568358535473,
#        0.08026621602085142, 0.08054560329299826, 0.08026621602085034, 0.07946568358535418, 0.07818691068574216, 0.07640286193981571,
#        0.07408407453373904, 0.07128142476492985, 0.06805978049813312, 0.06440235226192832, 0.06027741150320817, 0.055752201033481275,
#        0.05092622550624404, 0.04578597308792251, 0.04027002324951481, 0.03446235286288103, 0.028544238117114873, 0.02250869575220419,
#        0.016153414369091356, 0.009499205461710144, 0.0033981531196347167
#    ],
#         87: [0.00016881480210456692, 0.00047314868570756235, 0.0008076859860306628, 0.0011322615841296547, 0.00144806597820222, 0.0017668191481724435, 0.0020903160499537304, 0.002411576726915393, 0.0027285063230227296, 0.0030454007869937876, 0.0033639128646212944, 0.0036808253607571195, 0.003994559817314871, 0.004307345076427869, 0.004620335406184352, 0.004931600306915534, 0.00523996592505234, 0.005546814695915935, 0.00585298027614558, 0.006157129826902876, 0.006458347449208747, 0.0067575841722384, 0.007055469839437327, 0.007351002065619594, 0.007643435225722091, 0.007933469441304792, 0.008221599308725454, 0.008507026852701362, 0.008789124673244655, 0.009068433903060025, 0.00934535574073612, 0.00961922899522448, 0.009889512165959614, 0.010156639610742505, 0.01042094604150296, 0.010681867318519509, 0.010938926800718108, 0.011192484212786687, 0.011442825936038695, 0.011689459907180238, 0.01193196007256122, 0.012170632572570447, 0.01240572822845446, 0.012636810511622156, 0.012863493923529042, 0.013086045502712524, 0.013304689821902624, 0.013519034459386238, 0.013728727196381123, 0.013934006347263819, 0.014135077241799326, 0.0143315833864912, 0.01452320041557479, 0.01471014561481331, 0.014892610489607272, 0.015070268437801156, 0.01524281878982064, 0.015410463680651272, 0.01557338508816692, 0.015731281717590702, 0.01588387332676284, 0.016031351508057137, 0.01617389219804666, 0.016311215832305204, 0.016443059955062258, 0.016569609315104587, 0.016691036698090543, 0.016807081400707274, 0.01691749655723537, 0.017022463108090843, 0.017122153135412682, 0.017216322428248873, 0.017304737826468557, 0.017387579005841453, 0.0174650194618558, 0.017536829459282623, 0.017602787871331006, 0.01766307528646667, 0.017717868485658792, 0.017766950435146724, 0.017810110503721263, 0.01784753209761472, 0.017879396979083733, 0.017905499199739466, 0.017925637157192337, 0.017939998782076135, 0.017948772394930045, 0.017951761607250333, 0.01794877239493056, 0.017939998782076676, 0.01792563715719179, 0.017905499199739282, 0.017879396979084167, 0.017847532097614346, 0.01781011050372197, 0.017766950435146787, 0.017717868485658865, 0.01766307528646623, 0.017602787871330267, 0.017536829459281828, 0.01746501946185603, 0.01738757900584135, 0.017304737826468315, 0.017216322428249966, 0.01712215313541374, 0.017022463108090982, 0.016917496557235175, 0.016807081400708086, 0.016691036698090224, 0.016569609315104577, 0.016443059955061293, 0.016311215832305943, 0.016173892198046793, 0.01603135150805684, 0.015883873326762922, 0.0157312817175899, 0.015573385088166592, 0.015410463680651668, 0.015242818789820901, 0.015070268437801513, 0.01489261048960673, 0.014710145614813493, 0.014523200415575395, 0.014331583386491533, 0.01413507724179865, 0.013934006347263444, 0.013728727196380418, 0.013519034459385928, 0.01330468982190219, 0.013086045502712456, 0.01286349392352816, 0.012636810511621802, 0.012405728228453924, 0.012170632572569789, 0.011931960072561447, 0.011689459907180488, 0.011442825936038951, 0.011192484212786695, 0.010938926800718342, 0.010681867318518458, 0.010420946041502708, 0.01015663961074195, 0.009889512165958998, 0.009619228995224303, 0.009345355740736385, 0.009068433903060022, 0.00878912467324535, 0.008507026852701478, 0.008221599308725935, 0.007933469441304955, 0.00764343522572274, 0.007351002065619289, 0.007055469839437192, 0.006757584172238039, 0.006458347449209268, 0.0061571298269029575, 0.005852980276145424, 0.00554681469591638, 0.005239965925052114, 0.004931600306916382, 0.00462033540618409, 0.004307345076429006, 0.003994559817315303, 0.0036808253607556987, 0.00336391286462138, 0.0030454007869938063, 0.0027285063230224034, 0.0024115767269154683, 0.0020903160499540895, 0.0017668191481723982, 0.0014480659782023144, 0.0011322615841305992, 0.000807685986030332, 0.0004731486857077167, 0.00016881480210494433],
#    300: [1.431338551855931e-05, 4.012227180120215e-05, 6.850298129947514e-05, 9.605899747347381e-05, 0.00012290072040166636, 0.0001500289025800392, 0.00017760205103018156, 0.0002050376837370814, 0.00023216802273282316, 0.00025936376117528543, 0.000286770923337297, 0.0003141263938546069, 0.0003413064333028032, 0.0003685059563224142, 0.0003958282766766556, 0.00042311960183710317, 0.00045029066797970557, 0.00047746412489335334, 0.0005047156371897132, 0.0005319422306222964, 0.0005590766158027022, 0.0005862043554606536, 0.0006133833418229676, 0.0006405386949363323, 0.0006676176085674061, 0.0006946838416537453, 0.0007217832962185991, 0.0007488584417973781, 0.0007758664924472269, 0.0008028571692832445, 0.0008298678975835217, 0.0008568527124189767, 0.0008837760635199613, 0.0009106780294555469, 0.0009375898032692981, 0.0009644735729342993, 0.000991299201423038, 0.0010180998154806211, 0.001044901876521459, 0.0010716735696885908, 0.0010983889275928184, 0.0011250758736232511, 0.0011517571804946123, 0.00117840559504653, 0.0012049984403109213, 0.0012315596269869425, 0.0012581089880280057, 0.0012846228351818792, 0.0013110811414252545, 0.00133750464674385, 0.001363910797264291, 0.0013902787534588901, 0.0014165906596462637, 0.0014428646992844724, 0.0014691163496578206, 0.0014953270906152946, 0.001521480872306304, 0.0015475937814626148, 0.00157367964899441, 0.0015997218734369169, 0.0016257059263124127, 0.001651646149529894, 0.001677554980842586, 0.001703417427928488, 0.0017292202586412138, 0.0017549763445420545, 0.0017806969321644153, 0.0018063683949693567, 0.0018319786165106394, 0.001857539215647843, 0.0018830604109505785, 0.0019085297473710398, 0.0019339360773297323, 0.001959289942067989, 0.0019846006657902662, 0.002009856807725714, 0.002035048068429775, 0.0020601840541859453, 0.0020852733053521944, 0.00211030526669342, 0.002135270386619155, 0.002160177454021052, 0.0021850343177347107, 0.002209831201507028, 0.0022345592175448837, 0.0022592264352258922, 0.002283840089667751, 0.002308391094568184, 0.0023328711548821417, 0.0023572877027127443, 0.002381647425556331, 0.00240594185202409, 0.002430163219323544, 0.002454318391951272, 0.002478413566344175, 0.0025024408222929406, 0.0025263928773852835, 0.00255027608798504, 0.0025740962081959693, 0.0025978458144661396, 0.0026215180600127255, 0.0026451188441838666, 0.0026686535209823115, 0.0026921151165751785, 0.0027154971809750543, 0.0027388052007325915, 0.0027620441665595044, 0.0027852075136901313, 0.002808289155056237, 0.002831294202880455, 0.0028542273168385085, 0.002877082305828928, 0.002899853416015445, 0.0029225454189358694, 0.002945162671626956, 0.002967699325674426, 0.0029901499343276, 0.0030125189580153013, 0.003034810476250164, 0.0030570189560660717, 0.0030791392346825115, 0.00310117548753865, 0.0031231315389228563, 0.0031450021472680554, 0.0031667824132465515, 0.003188476250471062, 0.003210087247886691, 0.0032316104340022714, 0.0032530411546735326, 0.0032743830823033305, 0.003295639588282603, 0.003316805952230262, 0.003337877748850066, 0.0033588584277646333, 0.003379751158776646, 0.003400551455680898, 0.0034212551073882925, 0.0034418653572642383, 0.0034623851879040167, 0.0034828103321097002, 0.0035031367798385575, 0.0035233675830591412, 0.0035435055501479742, 0.0035635466192892535, 0.0035834869696225067, 0.0036033294751299954, 0.003623076781728268, 0.0036427250207152315, 0.003662270549687044, 0.0036817160767749556, 0.0037010640961099225, 0.0037203109210253195, 0.003739453077859395, 0.0037584931198988143, 0.003777433399208016, 0.003796270401119918, 0.003815000811903878, 0.003833627040006793, 0.003852151304287865, 0.0038705702529859497, 0.003888880724274518, 0.003907084990886804, 0.003925185146571497, 0.003943177994202738, 0.003961060516554395, 0.00397883485897057, 0.00399650299750876, 0.004014061882142001, 0.004031508633574408, 0.0040488452773837025, 0.004066073678737227, 0.004083190927833456, 0.0041001942772090185, 0.004117085639660952, 0.004133866775714363, 0.004150534909511804, 0.004167087419841768, 0.00418352611313258, 0.004199852651012914, 0.004216064385826003, 0.004232158817490263, 0.0042481376519647165, 0.004264002457277361, 0.004279750708703243, 0.004295380022593513, 0.004310892009868351, 0.004326288149837712, 0.004341566035873309, 0.004356723396447817, 0.004371761752443555, 0.004386682498963286, 0.004401483343036293, 0.0044161621212866105, 0.004430720269180384, 0.004445159101775619, 0.004459476435677051, 0.004473670212010881, 0.004487741785091177, 0.0045016923937820415, 0.004515519960510983, 0.0045292225275432845, 0.0045428013719821725, 0.004556257660061908, 0.004569589416572178, 0.004582794781821561, 0.004595874959351039, 0.004608831046059929, 0.004621661165914976, 0.004634363554417776, 0.00464693934491508, 0.00465938956802471, 0.004671712443956493, 0.004683906300772354, 0.0046959722047512755, 0.004707911123050588, 0.0047197213694184096, 0.004731401362055238, 0.004742952103059206, 0.004754374498742801, 0.004765666953897418, 0.004776827974631882, 0.004787858501534513, 0.004798759382490675, 0.004809529111038303, 0.004820166279139213, 0.004830671768345388, 0.004841046370347547, 0.004851288665314363, 0.004861397329170941, 0.004871373186717853, 0.004881216975513267, 0.0048909273604094364, 0.004900503099558432, 0.004909944963118174, 0.0049192536364175265, 0.004928427867200543, 0.004937466494252367, 0.004946370235033431, 0.0049551397243954, 0.004963773791329307, 0.004972271353793974, 0.004980633078343443, 0.004988859550960298, 0.004996949680372135, 0.005004902462380824, 0.005012718514281037, 0.0050203983746564115, 0.005027941030594458, 0.00503534555452279, 0.005042612515983653, 0.005049742407509773, 0.005056734293288795, 0.0050635873212702565, 0.0050703020146247325, 0.005076878821053563, 0.0050833168806995, 0.005089615416040483, 0.005095774905126578, 0.005101795751935285, 0.0051076771715272175, 0.0051134184600114575, 0.005119020051454203, 0.0051244823071031915, 0.005129804516003444, 0.005134986047095221, 0.005140027291483333, 0.005144928568571508, 0.005149689240552303, 0.0051543087484908, 0.005158787441443115, 0.005163125597752833, 0.005167322652015288, 0.0051713781168029205, 0.005175292299931676, 0.005179065439366613, 0.0051826970414525384, 0.005186186689737414, 0.005189534651502356, 0.005192741124918436, 0.005195805687514126, 0.005198727993361184, 0.005201508269816953, 0.0052041466757448375, 0.005206642859375407, 0.005208996544935003, 0.00521120792036838, 0.00521327710562835, 0.005215203819244274, 0.005216987855309183, 0.005218629362770544, 0.005220128422976571, 0.005221484824432338, 0.005222698430884936, 0.005223769352611614, 0.005224697632566832, 0.005225483128989441, 0.005226125775143653, 0.005226625642871415, 0.005226982736856913, 0.005227196984904545, 0.005227268389736952, 0.005227196984904609, 0.005226982736857298, 0.005226625642871094, 0.005226125775143343, 0.005225483128989314, 0.005224697632566667, 0.005223769352611394, 0.005222698430885047, 0.005221484824432276, 0.005220128422976045, 0.005218629362770703, 0.005216987855309369, 0.005215203819244113, 0.005213277105628448, 0.005211207920368179, 0.005208996544935323, 0.005206642859375223, 0.005204146675744738, 0.005201508269816841, 0.005198727993361313, 0.005195805687514172, 0.0051927411249182535, 0.00518953465150263, 0.005186186689737238, 0.0051826970414525254, 0.0051790654393667, 0.005175292299931799, 0.005171378116803026, 0.005167322652015363, 0.005163125597752643, 0.005158787441443411, 0.00515430874849076, 0.005149689240552316, 0.005144928568571719, 0.005140027291483478, 0.00513498604709535, 0.005129804516003328, 0.0051244823071030276, 0.005119020051454297, 0.005113418460011166, 0.005107677171526961, 0.005101795751935227, 0.005095774905126261, 0.005089615416040522, 0.005083316880699735, 0.005076878821053743, 0.005070302014624845, 0.0050635873212700805, 0.0050567342932884085, 0.005049742407509847, 0.00504261251598381, 0.005035345554522823, 0.005027941030594158, 0.005020398374656165, 0.005012718514281176, 0.005004902462380897, 0.00499694968037226, 0.0049888595509603095, 0.004980633078343566, 0.004972271353793644, 0.004963773791329042, 0.004955139724395721, 0.004946370235034016, 0.004937466494252536, 0.004928427867200534, 0.004919253636417707, 0.004909944963118104, 0.004900503099558809, 0.0048909273604097105, 0.0048812169755131024, 0.004871373186717716, 0.004861397329170951, 0.004851288665314311, 0.004841046370347232, 0.004830671768345188, 0.004820166279138959, 0.004809529111038251, 0.004798759382490338, 0.0047878585015345716, 0.004776827974631735, 0.004765666953897307, 0.0047543744987427914, 0.004742952103059202, 0.0047314013620551616, 0.004719721369418516, 0.004707911123050433, 0.004695972204750941, 0.0046839063007723, 0.004671712443956289, 0.004659389568024603, 0.004646939344914928, 0.004634363554417283, 0.00462166116591521, 0.004608831046059741, 0.004595874959351329, 0.004582794781821686, 0.004569589416571941, 0.004556257660061593, 0.004542801371981853, 0.0045292225275430625, 0.0045155199605110725, 0.004501692393782684, 0.004487741785091521, 0.0044736702120110345, 0.0044594764356769125, 0.004445159101775285, 0.0044307202691803455, 0.004416162121286692, 0.004401483343036429, 0.004386682498963625, 0.004371761752443638, 0.004356723396447825, 0.004341566035873333, 0.004326288149837637, 0.004310892009868086, 0.00429538002259381, 0.0042797507087033665, 0.004264002457277777, 0.004248137651964907, 0.004232158817490341, 0.004216064385826206, 0.004199852651012641, 0.004183526113132338, 0.004167087419841528, 0.004150534909512119, 0.004133866775714176, 0.004117085639661458, 0.0041001942772092145, 0.00408319092783341, 0.004066073678737072, 0.004048845277383841, 0.004031508633574328, 0.004014061882142042, 0.003996502997508904, 0.003978834858970341, 0.00396106051655424, 0.003943177994202945, 0.003925185146572065, 0.003907084990886625, 0.0038888807242744516, 0.003870570252985675, 0.0038521513042880833, 0.003833627040007188, 0.0038150008119035845, 0.0037962704011200703, 0.003777433399207321, 0.003758493119898556, 0.003739453077858988, 0.0037203109210250346, 0.0037010640961101984, 0.0036817160767748554, 0.0036622705496868126, 0.00364272502071535, 0.0036230767817284986, 0.003603329475130338, 0.0035834869696225024, 0.0035635466192891576, 0.00354350555014782, 0.0035233675830593134, 0.0035031367798384993, 0.003482810332109164, 0.003462385187904296, 0.003441865357264365, 0.0034212551073889708, 0.003400551455680581, 0.0033797511587767763, 0.003358858427764282, 0.003337877748850245, 0.0033168059522300543, 0.00329563958828269, 0.0032743830823032723, 0.0032530411546732876, 0.003231610434001921, 0.0032100872478863954, 0.003188476250471022, 0.0031667824132466152, 0.0031450021472676755, 0.003123131538923296, 0.003101175487538483, 0.003079139234681824, 0.0030570189560658587, 0.0030348104762501467, 0.003012518958015103, 0.0029901499343269566, 0.0029676993256746486, 0.0029451626716272246, 0.0029225454189359683, 0.002899853416015462, 0.0028770823058289967, 0.0028542273168381985, 0.0028312942028804098, 0.002808289155056215, 0.00278520751368993, 0.0027620441665596666, 0.002738805200732458, 0.002715497180975006, 0.0026921151165756846, 0.0026686535209825175, 0.0026451188441835257, 0.0026215180600122068, 0.002597845814466621, 0.0025740962081962533, 0.0025502760879849754, 0.00252639287738533, 0.002502440822293173, 0.0024784135663443014, 0.002454318391950843, 0.0024301632193235606, 0.0024059418520241804, 0.0023816474255563412, 0.0023572877027127643, 0.002332871154882404, 0.0023083910945681076, 0.002283840089667744, 0.0022592264352261303, 0.0022345592175454193, 0.002209831201507626, 0.0021850343177344657, 0.0021601774540208397, 0.0021352703866189507, 0.0021103052666933977, 0.0020852733053521146, 0.002060184054186014, 0.002035048068429977, 0.002009856807725957, 0.0019846006657902758, 0.00195928994206817, 0.0019339360773296312, 0.0019085297473711007, 0.0018830604109507608, 0.0018575392156482725, 0.0018319786165107877, 0.0018063683949691585, 0.00178069693216468, 0.0017549763445423654, 0.0017292202586409347, 0.0017034174279280823, 0.0016775549808421297, 0.001651646149530077, 0.00162570592631277, 0.0015997218734367048, 0.001573679648994387, 0.0015475937814620998, 0.0015214808723062155, 0.0014953270906152233, 0.0014691163496581476, 0.0014428646992844813, 0.0014165906596466105, 0.0013902787534589855, 0.0013639107972643685, 0.0013375046467437846, 0.0013110811414257816, 0.0012846228351825408, 0.0012581089880279953, 0.0012315596269869729, 0.001204998440311574, 0.001178405595046257, 0.0011517571804948782, 0.0011250758736229627, 0.001098388927592197, 0.001071673569688066, 0.0010449018765211608, 0.0010180998154806183, 0.0009912992014234517, 0.0009644735729341865, 0.0009375898032692254, 0.000910678029455875, 0.0008837760635201092, 0.0008568527124191105, 0.0008298678975834106, 0.0008028571692830543, 0.0007758664924465403, 0.0007488584417971681, 0.000721783296218569, 0.0006946838416533995, 0.0006676176085676541, 0.000640538694936538, 0.0006133833418229547, 0.0005862043554614876, 0.000559076615802472, 0.0005319422306224783, 0.0005047156371895406, 0.0004774641248931814, 0.0004502906679796702, 0.00042311960183722124, 0.00039582827667671103, 0.00036850595632271756, 0.00034130643330288764, 0.0003141263938549482, 0.0002867709233374423, 0.0002593637611755845, 0.0002321680227330003, 0.00020503768373677231, 0.00017760205102980336, 0.00015002890258022111, 0.00012290072040175952, 9.605899747384604e-05, 6.850298129895686e-05, 4.012227180096977e-05, 1.4313385518582305e-05],

}

kronrod_points = {
#    2: [-0.9258200997725493, -0.5773502691896243, 4.440892098500626e-16, 0.5773502691896262, 0.9258200997725514],
#    3: [-0.9604912687080189, -0.7745966692414805, -0.4342437493468012, 5.551115123125783e-16, 0.43424374934680354, 0.7745966692414835, 0.9604912687080203],
#    4: [-0.9765602507375716, -0.8611363115940519, -0.6402862174963088, -0.3399810435848555, -3.3306690738754696e-16, 0.3399810435848566, 0.6402862174963104,
#        0.8611363115940526, 0.9765602507375731
#    ],
#    5: [-0.9840853600948419, -0.9061798459386637, -0.7541667265708493, -0.5384693101056838, -0.2796304131617827, -5.551115123125783e-16, 0.2796304131617834,
#        0.5384693101056831, 0.7541667265708492, 0.9061798459386639, 0.9840853600948425
#    ],
#    6: [-0.9887032026126787, -0.9324695142031516, -0.821373340865027, -0.6612093864662647, -0.4631182124753035, -0.23861918608319632, -
#        2.220446049250313e-16, 0.23861918608319654, 0.4631182124753045, 0.6612093864662645, 0.821373340865028, 0.9324695142031519, 0.9887032026126789
#    ],
#    7: [-0.9914553711208121, -0.949107912342757, -0.8648644233597671, -0.7415311855993938, -0.5860872354676903, -0.40584515137739663, -0.20778495500789784,
#        3.3306690738754696e-16, 0.20778495500789873, 0.40584515137739796, 0.5860872354676913, 0.7415311855993948, 0.8648644233597691,
#        0.9491079123427586, 0.9914553711208126
#    ],
#    8: [-0.9933798758817153, -0.9602898564975361, -0.8941209068474557, -0.7966664774136257, -0.6723540709451575, -0.5255324099163289, -0.3607010979281312, -
#        0.18343464249564911, 4.440892098500626e-16, 0.1834346424956501, 0.3607010979281319, 0.5255324099163294, 0.6723540709451585, 0.7966664774136267,
#        0.8941209068474564, 0.9602898564975363, 0.9933798758817162
#    ],
#    9: [-0.9946781606773386, -0.9681602395076251, -0.9149635072496775, -0.8360311073266354, -0.7344867651839325, -0.6133714327005891, -0.475462479112459, -
#        0.3242534234038089, -0.16422356361498636, 3.3306690738754696e-16, 0.16422356361498702, 0.3242534234038096, 0.4754624791124603,
#        0.613371432700591, 0.7344867651839341, 0.8360311073266359, 0.914963507249678, 0.9681602395076261, 0.9946781606773403
#    ],
    10: [-0.9956571630258076, -0.9739065285171714, -0.9301574913557086, -0.8650633666889832, -0.7808177265864168, -0.679409568299023, -0.562757134668605, -
        0.4333953941292482, -0.29439286270146015, -0.14887433898163127, 2.220446049250313e-16, 0.1488743389816316, 0.2943928627014607,
        0.43339539412924755, 0.5627571346686051, 0.6794095682990244, 0.7808177265864169, 0.8650633666889844, 0.9301574913557082, 0.9739065285171717,
        0.9956571630258081
    ],
#    11: [-0.9963696138895425, -0.9782286581460574, -0.9416771085780676, -0.8870625997680958, -0.8160574566562212, -0.7301520055740492, -0.6305995201619655, -
#        0.5190961292068118, -0.39794414095237773, -0.26954315595234524, -0.13611300079936217, -4.440892098500626e-16, 0.13611300079936206,
#        0.2695431559523449, 0.39794414095237773, 0.5190961292068117, 0.6305995201619654, 0.7301520055740492, 0.816057456656221, 0.8870625997680953,
#        0.9416771085780679, 0.978228658146057, 0.9963696138895426
#    ],
#    12: [-0.9969339225295953, -0.9815606342467201, -0.950537795943121, -0.9041172563704741, -0.8435581241611524, -0.7699026741943046, -0.6840598954700551, -
#        0.5873179542866177, -0.4813394504781564, -0.3678314989981798, -0.24850574832046946, -0.12523340851146914, -3.3306690738754696e-16,
#        0.1252334085114689, 0.24850574832046957, 0.36783149899818013, 0.4813394504781572, 0.5873179542866174, 0.6840598954700562, 0.7699026741943048,
#        0.8435581241611532, 0.9041172563704747, 0.9505377959431213, 0.9815606342467192, 0.9969339225295955
#    ],
#    13: [-0.9973661769948244, -0.984183054718588, -0.95755246838608, -0.9175983992229771, -0.8653331602663435, -0.8015780907333098, -0.7269488493206314, -
#        0.64234933944034, -0.5490799579565359, -0.4484927510364468, -0.34183246302180625, -0.23045831595513466, -0.11597108974493386, -
#        3.3306690738754696e-16, 0.11597108974493409, 0.2304583159551351, 0.3418324630218067, 0.44849275103644715, 0.5490799579565372,
#        0.6423493394403403, 0.726948849320632, 0.80157809073331, 0.8653331602663444, 0.917598399222978, 0.9575524683860812, 0.9841830547185881,
#        0.9973661769948249
#    ],
#    14: [-0.9977205937565432, -0.9862838086968115, -0.9631583382788527, -0.9284348836635736, -0.8829146632520561, -0.8272013150697641, -0.7617567525622055, -
#        0.6872929048116849, -0.6047893659409216, -0.5152486363581534, -0.41965589764297806, -0.31911236892788875, -0.21483591853348383, -
#        0.108054948707343, 5.551115123125783e-16, 0.10805494870734478, 0.21483591853348527, 0.3191123689278901, 0.41965589764297917, 0.5152486363581541,
#        0.6047893659409218, 0.6872929048116857, 0.7617567525622057, 0.8272013150697651, 0.8829146632520571, 0.9284348836635736, 0.9631583382788532,
#        0.9862838086968123, 0.9977205937565431
#    ],
#    15: [-0.9980022986933965, -0.9879925180204847, -0.9677390756791384, -0.937273392400706, -0.8972645323440815, -0.8482065834104267, -0.7904185014424661, -
#        0.7244177313601698, -0.6509967412974171, -0.5709721726085399, -0.48508186364023964, -0.3941513470775635, -0.2991800071531687, -
#        0.20119409399743393, -0.1011420669187173, 1.1102230246251565e-16, 0.10114206691871763, 0.20119409399743426, 0.2991800071531686,
#        0.3941513470775634, 0.48508186364023986, 0.570972172608539, 0.6509967412974169, 0.7244177313601701, 0.7904185014424661, 0.8482065834104272,
#        0.897264532344082, 0.937273392400706, 0.9677390756791392, 0.9879925180204855, 0.9980022986933971
#    ],
#    16: [-0.9982392741454447, -0.9894009349916497, -0.9715059509693929, -0.9445750230732326, -0.9091576670123429, -0.8656312023878314, -0.8142402870624446, -
#        0.7554044083550029, -0.6897411066817623, -0.6178762444026438, -0.5404076763521388, -0.45801677765722726, -0.37148378087841594, -
#        0.28160355077925914, -0.18916857901808393, -0.09501250983763732, -2.220446049250313e-16, 0.0950125098376372, 0.18916857901808315,
#        0.2816035507792588, 0.3714837808784164, 0.45801677765722737, 0.5404076763521395, 0.6178762444026438, 0.6897411066817624, 0.7554044083550031,
#        0.8142402870624446, 0.8656312023878316, 0.9091576670123429, 0.9445750230732325, 0.9715059509693925, 0.9894009349916499, 0.9982392741454444
#    ],
#    17: [-0.998432970606058, -0.9905754753144171, -0.9746592569674308, -0.9506755217687672, -0.9190961368038919, -0.8802391537269854, -0.8342740928501335, -
#        0.7815140038968009, -0.722472287372409, -0.6576711592166902, -0.587569212334035, -0.5126905370864765, -0.43368729520979854, -0.3512317634538762, -
#        0.2659465074516818, -0.17848418149584755, -0.08958563942522657, 0.0, 0.0895856394252269, 0.17848418149584822, 0.26594650745168247,
#        0.3512317634538764, 0.43368729520979965, 0.5126905370864772, 0.5875692123340355, 0.6576711592166908, 0.7224722873724099, 0.7815140038968015,
#        0.8342740928501343, 0.8802391537269859, 0.9190961368038917, 0.9506755217687678, 0.974659256967431, 0.9905754753144174, 0.9984329706060581
#    ],
#    18: [-0.998599165412682, -0.9915651684209306, -0.9773103807748602, -0.9558239495713969, -0.927504501573343, -0.8926024664975549, -0.8512493734337165, -
#        0.8037049589725229, -0.7503804817033572, -0.6916870430603526, -0.6280037548638335, -0.5597708310739471, -0.48750904258507766, -
#        0.4117511614628424, -0.3330234227914082, -0.2518862256915051, -0.16893682806654864, -0.08477501304173507, 0.0, 0.0847750130417354,
#        0.1689368280665493, 0.2518862256915053, 0.33302342279140795, 0.41175116146284263, 0.48750904258507877, 0.5597708310739478, 0.6280037548638338,
#        0.6916870430603532, 0.7503804817033577, 0.803704958972523, 0.8512493734337176, 0.8926024664975558, 0.9275045015733433, 0.9558239495713977,
#        0.977310380774861, 0.9915651684209309, 0.9985991654126828
#    ],
#    19: [-0.9987380120803147, -0.9924068438435842, -0.9795723007892643, -0.9602081521348296, -0.9346640001655193, -0.903155903614818, -0.865773542685335, -
#        0.822714656537143, -0.7743288590095345, -0.7209661773352292, -0.6629230657449079, -0.6005453046616815, -0.5342756325305535, -
#        0.46457074137596144, -0.3918512308715205, -0.3165640999636299, -0.23922492831824171, -0.16035864564022484, -0.0804519227440117, -
#        3.3306690738754696e-16, 0.08045192274401136, 0.16035864564022517, 0.23922492831824105, 0.31656409996363, 0.3918512308715202, 0.464570741375961,
#        0.5342756325305533, 0.6005453046616811, 0.6629230657449078, 0.7209661773352294, 0.7743288590095347, 0.8227146565371429, 0.8657735426853352,
#        0.9031559036148178, 0.9346640001655193, 0.9602081521348299, 0.9795723007892634, 0.9924068438435844, 0.9987380120803145
#    ],
#         87: [-0.9999373393176647, -0.999622350432484, -0.998981834567236, -0.9980107215629824, -0.9967203521912877, -0.9951134581379919, -0.9931850143689511, -0.9909336501109647, -0.9883633935160456, -0.985476606068421, -0.9822719826624027, -0.978749341003817, -0.9749114465404709, -0.9707605197472842, -0.9662966427216388, -0.961520436936073, -0.9564344462027763, -0.9510410013893145, -0.945341012434413, -0.9393357199742063, -0.9330277577952324, -0.9264196798912376, -0.9195130155009865, -0.9123095290941232, -0.9048120659287133, -0.8970234547675697, -0.8889457425315686, -0.8805811598520423, -0.8719328161808033, -0.8630038376297071, -0.8537967282834917, -0.8443141443970357, -0.8345594815785893, -0.8245361702557805, -0.8142471292361737, -0.8036954080581786, -0.7928846943811525, -0.7818187205454386, -0.7705007861856665, -0.7589343057213496, -0.7471232552715923, -0.735071660505314, -0.7227831721000328, -0.7102615427114733, -0.6975110271436125, -0.6845359314028241, -0.6713402293006723, -0.6579279856713498, -0.6443037198655162, -0.6304720018972505, -0.6164371014898609, -0.6022033695423357, -0.5877755725413023, -0.5731585255345304, -0.5583567669734248, -0.5433749073022942, -0.5282179401678413, -0.5128909045194527, -0.49739858004223114, -0.4817458096226672, -0.4659377920214407, -0.449979767165285, -0.43387672799250576, -0.417633722072869, -0.4012561295371335, -0.3847493668670974, -0.3681186117187589, -0.3513690879260418, -0.33450633184746614, -0.3175359108501159, -0.30046315821599157, -0.28329344500409226, -0.266032437514764, -0.24868582730667765, -0.2312590736832678, -0.21375766534010188, -0.19618737131686093, -0.17855397985304466, -0.16086304622927927, -0.14312014673100815, -0.12533112522788015, -0.10750183850894302, -0.08963790744155298, -0.07174496550149989, -0.05382890297085785, -0.03589561662680141, -0.017950762293751588, 0.0, 0.017950762293751477, 0.03589561662680074, 0.05382890297085752, 0.071744965501499, 0.08963790744155298, 0.10750183850894268, 0.1253311252278798, 0.14312014673100815, 0.16086304622927938, 0.17855397985304444, 0.19618737131686126, 0.21375766534010154, 0.23125907368326792, 0.2486858273066771, 0.2660324375147639, 0.28329344500409204, 0.30046315821599134, 0.3175359108501157, 0.3345063318474658, 0.3513690879260414, 0.3681186117187585, 0.38474936686709693, 0.4012561295371332, 0.4176337220728691, 0.4338767279925052, 0.4499797671652843, 0.46593779202144003, 0.4817458096226668, 0.49739858004223125, 0.5128909045194523, 0.5282179401678414, 0.5433749073022933, 0.5583567669734248, 0.5731585255345304, 0.5877755725413025, 0.6022033695423353, 0.6164371014898609, 0.6304720018972505, 0.6443037198655157, 0.6579279856713494, 0.671340229300672, 0.6845359314028239, 0.6975110271436127, 0.7102615427114729, 0.7227831721000324, 0.7350716605053138, 0.7471232552715918, 0.7589343057213493, 0.7705007861856658, 0.7818187205454378, 0.7928846943811524, 0.8036954080581777, 0.8142471292361735, 0.8245361702557805, 0.8345594815785895, 0.8443141443970352, 0.8537967282834915, 0.8630038376297067, 0.8719328161808031, 0.8805811598520419, 0.8889457425315681, 0.8970234547675693, 0.9048120659287131, 0.9123095290941229, 0.9195130155009866, 0.9264196798912372, 0.933027757795232, 0.9393357199742057, 0.9453410124344126, 0.9510410013893136, 0.9564344462027765, 0.9615204369360731, 0.9662966427216388, 0.9707605197472843, 0.9749114465404707, 0.9787493410038163, 0.9822719826624021, 0.9854766060684204, 0.988363393516045, 0.9909336501109646, 0.9931850143689511, 0.995113458137992, 0.9967203521912877, 0.9980107215629823, 0.998981834567236, 0.9996223504324843, 0.9999373393176647],
#         300: [-0.9999946872996457, -0.9999679782184366, -0.9999136584901585, -0.9998312829844194, -0.9997217884834974, -0.9995853734488863, -0.9994215723741114, -0.9992302218632736, -0.9990116062590783, -0.9987658603530949, -0.9984928023779717, -0.9981923380734435, -0.9978646126899144, -0.9975097171758793, -0.9971275560703853, -0.996718072051, -0.9962813600745217, -0.9958174891208241, -0.9953264031603122, -0.9948080667630033, -0.9942625517027517, -0.9936899152742682, -0.9930901239339065, -0.9924631568471005, -0.9918090737598455, -0.9911279255509896, -0.990419693459469, -0.9896843673150096, -0.9889220003217568, -0.9881326399103605, -0.9873162780530513, -0.9864729129322606, -0.9856025942467834, -0.9847053677808956, -0.9837812338860811, -0.9828301976412723, -0.9818523070673794, -0.9808476074619001, -0.9798161060814252, -0.9787578139322586, -0.9776727785275657, -0.9765610454590224, -0.9754226279104833, -0.9742575421410374, -0.9730658359415845, -0.9718475557430342, -0.9706027199771077, -0.9693313496680812, -0.9680334934315086, -0.9667091989287729, -0.9653584893488589, -0.9639813901171553, -0.9625779510657028, -0.9611482213733913, -0.9596922286202931, -0.9582100023531643, -0.9567015939075111, -0.9551670541938286, -0.9536064149019075, -0.9520197094793031, -0.9504069909786793, -0.9487683122037178, -0.9471037087320028, -0.9454132177338136, -0.9436968941399522, -0.9419547927700981, -0.9401869529103559, -0.9383934153067652, -0.9365742368903639, -0.9347294745903799, -0.9328591712533739, -0.9309633710773335, -0.929042133086303, -0.9270955163900743, -0.9251235672708156, -0.9231263332721165, -0.9211038755812251, -0.9190562555418369, -0.9169835227643917, -0.9148857280450582, -0.9127629347867887, -0.9106152066064295, -0.9084425963487075, -0.9062451579796027, -0.9040229571561673, -0.901776059796223, -0.8995045218950815, -0.8972084005137191, -0.894887763590253, -0.8925426793619207, -0.8901732068988839, -0.8877794062884896, -0.8853613477675033, -0.8829191019031915, -0.8804527307710444, -0.8779622974209855, -0.8754478743981893, -0.8729095346039717, -0.8703473430544713, -0.8677613657021737, -0.8651516774038297, -0.8625183533931811, -0.8598614615661291, -0.8571810707206511, -0.8544772580226088, -0.8517501010316768, -0.848999670465588, -0.846226037913026, -0.8434292828416308, -0.8406094851262689, -0.8377667182508701, -0.8349010565417854, -0.832012581756866, -0.8291013760716741, -0.8261675156824684, -0.8232110776015575, -0.8202321458616895, -0.8172308049213011, -0.8142071336364427, -0.8111612116546523, -0.8080931252649417, -0.8050029611877987, -0.8018908008875274, -0.7987567265968607, -0.7956008268394583, -0.7924231905743322, -0.7892239018232119, -0.786003045354458, -0.7827607119020659, -0.7794969926375797, -0.7762119740898052, -0.7729057435134399, -0.7695783938260492, -0.7662300183834612, -0.7628607061714925, -0.7594705468820133, -0.7560596355871452, -0.752628067796661, -0.7491759349034655, -0.7457033289874226, -0.7422103472441275, -0.7386970873050263, -0.7351636429201902, -0.7316101085081914, -0.7280365833550897, -0.7244431671799338, -0.7208299560399418, -0.7171970466429054, -0.7135445403305545, -0.709872538873781, -0.706181140586744, -0.7024704444166954, -0.6987405537245666, -0.69499157229575, -0.6912236006508845, -0.6874367399265875, -0.6836310954649563, -0.679806773027049, -0.675963875289201, -0.6721025055269298, -0.6682227710239814, -0.6643247794768312, -0.6604086356663699, -0.6564744449561277, -0.6525223165305882, -0.6485523599800562, -0.6445646821384352, -0.640559390405937, -0.6365365958255456, -0.632496409838541, -0.6284389412798634, -0.6243642995346044, -0.6202725974607572, -0.6161639483065122, -0.612038462855417, -0.6078962524251541, -0.6037374316440418, -0.5995621155219637, -0.5953704167381737, -0.591162448490157, -0.5869383271307362, -0.5826981693851709, -0.5784420897750377, -0.5741702033243279, -0.569882628063465, -0.5655794823857194, -0.5612608826011143, -0.5569269455063359, -0.552577790761474, -0.5482135383794409, -0.5438343064043345, -0.539440213351214, -0.5350313804609139, -0.5306079293166595, -0.5261699796417558, -0.5217176516148028, -0.5172510680075144, -0.512770351923185, -0.5082756247089657, -0.5037670081516556, -0.4992446265030859, -0.4947086043354987, -0.49015906456404057, -0.48559613052787265, -0.4810199279073166, -0.47643058269160643, -0.4718282193075505, -0.4672129625903425, -0.4625849395963533, -0.4579442776790468, -0.45329110272009054, -0.4486255409938984, -0.4439477208796667, -0.43925777104156594, -0.4345558187588534, -0.4298419916878913, -0.42511641947672607, -0.42037923204598227, -0.415630558014791, -0.4108705263637342, -0.4060992679550248, -0.40131691391079194, -0.3965235941318921, -0.39171943886495786, -0.38690458013101003, -0.3820791501980705, -0.3772432801901535, -0.37239710156135253, -0.36754074743549325, -0.36267435117025193, -0.3577980450538263, -0.35291196168878125, -0.3480162352451315, -0.34311100011337237, -0.338196389686529, -0.3332725376562593, -0.3283395791815773, -0.323397649628395, -0.31844688343484195, -0.31348741532192625, -0.30851938137992496, -0.3035429178922302, -0.29855816028200666, -0.29356524423952535, -0.28856430672807254, -0.28355548489008364, -0.27853891507336437, -0.27351473387703384, -0.26848307907865343, -0.2634440886207914, -0.258397899715193, -0.25334464980911076, -0.24828447743519133, -0.2432175212767862, -0.23814391934859436, -0.23306380988500508, -0.22797733211414206, -0.22288462540037246, -0.21778582850010708, -0.21268108037361766, -0.20757052088450112, -0.2024542900179942, -0.1973325272107358, -0.19220537208739352, -0.18707296508667115, -0.1819354467541754, -0.17679295714507726, -0.17164563648674025, -0.16649362573227822, -0.1613370659268425, -0.15617609768225016, -0.15101086176667544, -0.14584149958664194, -0.1406681526257254, -0.13549096199033794, -0.13031006892741814, -0.12512561523562193, -0.1199377427755659, -0.11474659308606205, -0.10955230783063419, -0.10435502913854622, -0.09915489918583553, -0.09395205988140298, -0.08874665324306696, -0.0835388216689601, -0.07832870758870736, -0.07311645321890214, -0.06790220086927956, -0.06268609314491269, -0.05746827266700372, -0.0522488818973752, -0.04702806337524312, -0.04180595985053315, -0.03658271407386193, -0.03135846868977743, -0.026133366404510694, -0.020907550050621282, -0.01568116244584883, -0.010454346354956456, -0.0052272445887175945, 0.0, 0.0052272445887177055, 0.0104543463549569, 0.01568116244584905, 0.020907550050621393, 0.026133366404511027, 0.03135846868977776, 0.036582714073862044, 0.04180595985053359, 0.04702806337524368, 0.052248881897375865, 0.057468272667004605, 0.06268609314491314, 0.0679022008692799, 0.07311645321890248, 0.07832870758870769, 0.08353882166896032, 0.08874665324306752, 0.09395205988140376, 0.09915489918583587, 0.10435502913854666, 0.10955230783063508, 0.1147465930860625, 0.11993774277556657, 0.12512561523562216, 0.13031006892741892, 0.13549096199033805, 0.14066815262572618, 0.14584149958664216, 0.1510108617666761, 0.15617609768225016, 0.16133706592684272, 0.16649362573227855, 0.17164563648674003, 0.17679295714507792, 0.18193544675417572, 0.18707296508667137, 0.1922053720873934, 0.19733252721073624, 0.2024542900179942, 0.20757052088450112, 0.21268108037361744, 0.21778582850010697, 0.22288462540037235, 0.22797733211414206, 0.23306380988500508, 0.23814391934859414, 0.2432175212767861, 0.24828447743519155, 0.25334464980911076, 0.2583978997151932, 0.2634440886207915, 0.2684830790786531, 0.27351473387703407, 0.27853891507336426, 0.2835554848900833, 0.2885643067280719, 0.29356524423952524, 0.2985581602820062, 0.30354291789222965, 0.30851938137992485, 0.3134874153219265, 0.31844688343484184, 0.323397649628395, 0.3283395791815772, 0.33327253765625897, 0.33819638968652843, 0.3431110001133719, 0.34801623524513126, 0.3529119616887808, 0.3577980450538262, 0.3626743511702518, 0.36754074743549336, 0.37239710156135264, 0.3772432801901534, 0.38207915019807037, 0.3869045801310097, 0.39171943886495786, 0.3965235941318921, 0.4013169139107917, 0.4060992679550246, 0.410870526363734, 0.4156305580147909, 0.4203792320459817, 0.42511641947672574, 0.42984199168789106, 0.43455581875885274, 0.4392577710415656, 0.44394772087966616, 0.44862554099389795, 0.45329110272008966, 0.45794427767904666, 0.46258493959635283, 0.4672129625903423, 0.4718282193075505, 0.4764305826916061, 0.4810199279073162, 0.4855961305278721, 0.49015906456404, 0.4947086043354981, 0.49924462650308543, 0.5037670081516556, 0.508275624708965, 0.5127703519231843, 0.517251068007514, 0.5217176516148028, 0.5261699796417558, 0.5306079293166588, 0.5350313804609135, 0.5394402133512137, 0.5438343064043343, 0.5482135383794404, 0.5525777907614735, 0.5569269455063353, 0.5612608826011143, 0.5655794823857192, 0.5698826280634648, 0.5741702033243274, 0.578442089775038, 0.5826981693851705, 0.5869383271307357, 0.5911624484901564, 0.5953704167381735, 0.5995621155219635, 0.6037374316440416, 0.6078962524251535, 0.6120384628554165, 0.6161639483065119, 0.6202725974607567, 0.6243642995346039, 0.6284389412798628, 0.6324964098385406, 0.6365365958255453, 0.6405593904059368, 0.6445646821384348, 0.6485523599800556, 0.6525223165305876, 0.6564744449561274, 0.6604086356663694, 0.6643247794768309, 0.6682227710239813, 0.6721025055269294, 0.6759638752892005, 0.6798067730270486, 0.6836310954649557, 0.687436739926587, 0.6912236006508838, 0.69499157229575, 0.6987405537245661, 0.7024704444166952, 0.706181140586744, 0.7098725388737805, 0.713544540330554, 0.7171970466429054, 0.7208299560399416, 0.7244431671799337, 0.7280365833550895, 0.7316101085081913, 0.7351636429201899, 0.7386970873050263, 0.742210347244127, 0.7457033289874225, 0.7491759349034652, 0.752628067796661, 0.7560596355871447, 0.7594705468820128, 0.7628607061714925, 0.7662300183834609, 0.7695783938260488, 0.7729057435134394, 0.7762119740898051, 0.77949699263758, 0.7827607119020656, 0.7860030453544584, 0.7892239018232124, 0.7924231905743324, 0.7956008268394587, 0.7987567265968609, 0.8018908008875274, 0.8050029611877982, 0.8080931252649417, 0.8111612116546523, 0.8142071336364427, 0.8172308049213008, 0.8202321458616895, 0.8232110776015571, 0.826167515682468, 0.8291013760716742, 0.8320125817568655, 0.8349010565417858, 0.8377667182508699, 0.8406094851262688, 0.8434292828416307, 0.846226037913026, 0.848999670465588, 0.8517501010316768, 0.8544772580226087, 0.8571810707206517, 0.859861461566129, 0.8625183533931813, 0.8651516774038295, 0.8677613657021737, 0.870347343054471, 0.8729095346039718, 0.8754478743981893, 0.8779622974209857, 0.8804527307710446, 0.8829191019031915, 0.8853613477675031, 0.88777940628849, 0.890173206898884, 0.8925426793619202, 0.8948877635902533, 0.8972084005137192, 0.8995045218950817, 0.9017760597962232, 0.9040229571561679, 0.9062451579796031, 0.9084425963487072, 0.9106152066064294, 0.9127629347867888, 0.9148857280450583, 0.9169835227643919, 0.9190562555418367, 0.9211038755812248, 0.9231263332721162, 0.9251235672708154, 0.927095516390074, 0.9290421330863031, 0.9309633710773336, 0.932859171253374, 0.93472947459038, 0.9365742368903638, 0.9383934153067653, 0.940186952910356, 0.9419547927700982, 0.9436968941399521, 0.9454132177338137, 0.9471037087320029, 0.948768312203718, 0.9504069909786793, 0.9520197094793031, 0.9536064149019075, 0.9551670541938287, 0.9567015939075112, 0.9582100023531646, 0.9596922286202932, 0.9611482213733913, 0.9625779510657029, 0.9639813901171553, 0.965358489348859, 0.9667091989287728, 0.9680334934315088, 0.9693313496680812, 0.9706027199771078, 0.9718475557430342, 0.9730658359415845, 0.9742575421410374, 0.9754226279104833, 0.9765610454590226, 0.9776727785275656, 0.9787578139322587, 0.9798161060814253, 0.9808476074619004, 0.9818523070673794, 0.9828301976412724, 0.9837812338860812, 0.9847053677808958, 0.9856025942467834, 0.9864729129322606, 0.9873162780530514, 0.9881326399103604, 0.9889220003217569, 0.9896843673150097, 0.9904196934594691, 0.9911279255509898, 0.9918090737598456, 0.9924631568471006, 0.9930901239339065, 0.9936899152742682, 0.9942625517027519, 0.9948080667630034, 0.9953264031603122, 0.9958174891208242, 0.9962813600745218, 0.9967180720510002, 0.9971275560703854, 0.9975097171758793, 0.9978646126899146, 0.9981923380734435, 0.9984928023779718, 0.998765860353095, 0.9990116062590781, 0.9992302218632736, 0.9994215723741117, 0.9995853734488863, 0.9997217884834975, 0.9998312829844194, 0.9999136584901583, 0.9999679782184367, 0.9999946872996458],

}

legendre_weights = {
#    2: [1.0, 1.0],
#    3: [0.5555555555555557, 0.8888888888888888, 0.5555555555555557],
#    4: [0.3478548451374537, 0.6521451548625462, 0.6521451548625462, 0.3478548451374537],
#    5: [0.23692688505618942, 0.4786286704993662, 0.568888888888889, 0.4786286704993662, 0.23692688505618942],
#    6: [0.17132449237916975, 0.36076157304813894, 0.46791393457269137, 0.46791393457269137, 0.36076157304813894, 0.17132449237916975],
#    7: [0.12948496616887065, 0.2797053914892766, 0.3818300505051183, 0.41795918367346896, 0.3818300505051183, 0.2797053914892766, 0.12948496616887065],
#    8: [0.10122853629037669, 0.22238103445337434, 0.31370664587788705, 0.36268378337836177, 0.36268378337836177, 0.31370664587788705, 0.22238103445337434,
#        0.10122853629037669
#    ],
#    9: [0.08127438836157472, 0.18064816069485712, 0.26061069640293566, 0.3123470770400028, 0.33023935500125967, 0.3123470770400028, 0.26061069640293566,
#        0.18064816069485712, 0.08127438836157472
#    ],
    10: [0.06667134430868807, 0.14945134915058036, 0.219086362515982, 0.2692667193099965, 0.295524224714753, 0.295524224714753, 0.2692667193099965,
        0.219086362515982, 0.14945134915058036, 0.06667134430868807
    ],
#    11: [0.055668567116173164, 0.1255803694649047, 0.18629021092773443, 0.23319376459199068, 0.26280454451024676, 0.2729250867779009, 0.26280454451024676,
#        0.23319376459199068, 0.18629021092773443, 0.1255803694649047, 0.055668567116173164
#    ],
#    12: [0.04717533638651202, 0.10693932599531888, 0.1600783285433461, 0.20316742672306565, 0.23349253653835464, 0.2491470458134027, 0.2491470458134027,
#        0.23349253653835464, 0.20316742672306565, 0.1600783285433461, 0.10693932599531888, 0.04717533638651202
#    ],
#    13: [0.04048400476531588, 0.0921214998377286, 0.13887351021978736, 0.17814598076194552, 0.20781604753688857, 0.22628318026289715, 0.2325515532308739,
#        0.22628318026289715, 0.20781604753688857, 0.17814598076194552, 0.13887351021978736, 0.0921214998377286, 0.04048400476531588
#    ],
#    14: [0.035119460331752374, 0.0801580871597603, 0.12151857068790296, 0.1572031671581934, 0.18553839747793763, 0.20519846372129555, 0.21526385346315766,
#        0.21526385346315766, 0.20519846372129555, 0.18553839747793763, 0.1572031671581934, 0.12151857068790296, 0.0801580871597603,
#        0.035119460331752374
#    ],
#    15: [0.030753241996118647, 0.07036604748810807, 0.10715922046717177, 0.1395706779261539, 0.16626920581699378, 0.18616100001556188, 0.19843148532711125,
#        0.2025782419255609, 0.19843148532711125, 0.18616100001556188, 0.16626920581699378, 0.1395706779261539, 0.10715922046717177, 0.07036604748810807,
#        0.030753241996118647
#    ],
#    16: [0.027152459411754037, 0.062253523938647706, 0.09515851168249259, 0.12462897125553403, 0.14959598881657676, 0.16915651939500262, 0.1826034150449236,
#        0.18945061045506859, 0.18945061045506859, 0.1826034150449236, 0.16915651939500262, 0.14959598881657676, 0.12462897125553403,
#        0.09515851168249259, 0.062253523938647706, 0.027152459411754037
#    ],
#    17: [0.02414830286854952, 0.0554595293739866, 0.08503614831717908, 0.11188384719340365, 0.13513636846852523, 0.15404576107681012, 0.16800410215644995,
#        0.17656270536699253, 0.17944647035620653, 0.17656270536699253, 0.16800410215644995, 0.15404576107681012, 0.13513636846852523,
#        0.11188384719340365, 0.08503614831717908, 0.0554595293739866, 0.02414830286854952
#    ],
#    18: [0.02161601352648413, 0.04971454889496922, 0.07642573025488925, 0.10094204410628699, 0.12255520671147836, 0.14064291467065063, 0.15468467512626521,
#        0.16427648374583273, 0.16914238296314363, 0.16914238296314363, 0.16427648374583273, 0.15468467512626521, 0.14064291467065063,
#        0.12255520671147836, 0.10094204410628699, 0.07642573025488925, 0.04971454889496922, 0.02161601352648413
#    ],
#    19: [0.01946178822972761, 0.04481422676569981, 0.06904454273764107, 0.09149002162244985, 0.11156664554733375, 0.1287539625393362, 0.14260670217360638,
#        0.15276604206585945, 0.15896884339395415, 0.16105444984878345, 0.15896884339395415, 0.15276604206585945, 0.14260670217360638,
#        0.1287539625393362, 0.11156664554733375, 0.09149002162244985, 0.06904454273764107, 0.04481422676569981, 0.01946178822972761
#    ],
#         87: [0.0009691097381757348, 0.0022546907537549384, 0.003539271655388117, 0.004819456238501684, 0.00609346204763528, 0.007359623648817653, 0.008616302838488783, 0.009861877713702014, 0.011094741940560695, 0.012313306030048123, 0.013515999118245947, 0.0147012708872398, 0.015867593518826113, 0.017013463643001287, 0.0181374042653544, 0.01923796666535654, 0.020313732260655384, 0.021363314433802724, 0.022385360318485367, 0.02337855254266003, 0.024341610926167583, 0.025273294130557043, 0.026172401258933563, 0.027037773403735973, 0.02786829514042919, 0.028662895965176235, 0.02942055167462312, 0.03014028568601895, 0.030821170295962166, 0.031462327876150824, 0.032062932004589706, 0.03262220853080143, 0.03313943657366203, 0.03361394945057692, 0.034045135536799345, 0.03443243905378225, 0.03477536078554787, 0.03507345872215154, 0.03532634862941022, 0.03553370454416061, 0.035695259194409426, 0.03581080434383377, 0.03588019106018702, 0.03590332990726553, 0.03588019106018702, 0.03581080434383377, 0.035695259194409426, 0.03553370454416061, 0.03532634862941022, 0.03507345872215154, 0.03477536078554787, 0.03443243905378225, 0.034045135536799345, 0.03361394945057692, 0.03313943657366203, 0.03262220853080143, 0.032062932004589706, 0.031462327876150824, 0.030821170295962166, 0.03014028568601895, 0.02942055167462312, 0.028662895965176235, 0.02786829514042919, 0.027037773403735973, 0.026172401258933563, 0.025273294130557043, 0.024341610926167583, 0.02337855254266003, 0.022385360318485367, 0.021363314433802724, 0.020313732260655384, 0.01923796666535654, 0.0181374042653544, 0.017013463643001287, 0.015867593518826113, 0.0147012708872398, 0.013515999118245947, 0.012313306030048123, 0.011094741940560695, 0.009861877713702014, 0.008616302838488783, 0.007359623648817653, 0.00609346204763528, 0.004819456238501684, 0.003539271655388117, 0.0022546907537549384, 0.0009691097381757348],
#         300: [8.217779368318766e-05, 0.000191285544654933, 0.00030053396541231163, 0.0004097635734033533, 0.0005189512134602094, 0.0006280829779724268, 0.0007371464159049574, 0.0008461294290789873, 0.0009550200344351969, 0.0010638062980465963, 0.001172476313703897, 0.001281018195428937, 0.0013894200749916825, 0.0014976701014677357, 0.0016057564416445678, 0.0017136672808561744, 0.0018213908240185923, 0.0019289152967680268, 0.0020362289466670158, 0.0021433200444213973, 0.002250176885138956, 0.002356787789583519, 0.002463141105430975, 0.0025692252085409055, 0.002675028504212449, 0.002780539428452415, 0.0028857464492311412, 0.0029906380677445906, 0.0030952028196669814, 0.0031994292764019384, 0.003303306046330757, 0.003406821776058694, 0.0035099651516518333, 0.0036127248998770794, 0.0037150897894316927, 0.0038170486321696183, 0.003918590284326712, 0.004019703647735881, 0.004120377671042578, 0.004220601350909488, 0.004320363733222272, 0.0044196539142855205, 0.004518461042012614, 0.004616774317114607, 0.004714582994277626, 0.004811876383340857, 0.004908643850461695, 0.005004874819279474, 0.0051005587720714925, 0.0051956852509013034, 0.005290243858763116, 0.0053842242607182395, 0.0054776161850220466, 0.005570409424251355, 0.005662593836414576, 0.005754159346065033, 0.005845095945399296, 0.005935393695350927, 0.006025042726679271, 0.006114033241045046, 0.006202355512083302, 0.0062899998864659286, 0.00637695678495604, 0.006463216703456925, 0.006548770214047811, 0.006633607966017162, 0.006717720686882713, 0.0068010991834066194, 0.006883734342598478, 0.0069656171327117265, 0.00704673860423293, 0.007127089890856632, 0.007206662210456636, 0.0072854468660452166, 0.007363435246723478, 0.00744061882862333, 0.007516989175837821, 0.00759253794134379, 0.007667256867914979, 0.007741137789022482, 0.007814172629730136, 0.007886353407574561, 0.007957672233438363, 0.008028121312413226, 0.008097692944651201, 0.008166379526205846, 0.008234173549864183, 0.008301067605967079, 0.008367054383218206, 0.008432126669483946, 0.00849627735258214, 0.00855949942105765, 0.0086217859649506, 0.00868313017655067, 0.008743525351140993, 0.008802964887731923, 0.008861442289781127, 0.008918951165904783, 0.008975485230575371, 0.009031038304809223, 0.009085604316841996, 0.009139177302791153, 0.009191751407309061, 0.009243320884222412, 0.009293880097160322, 0.009343423520170318, 0.00939194573832249, 0.009439441448300992, 0.009485905458984029, 0.009531332692011101, 0.009575718182337876, 0.009619057078779164, 0.009661344644538864, 0.009702576257727958, 0.009742747411869234, 0.00978185371639035, 0.00981989089710335, 0.009856854796671895, 0.009892741375065664, 0.009927546710002122, 0.009961266997374775, 0.009993898551669387, 0.010025437806366347, 0.01005588131433098, 0.01008522574818994, 0.010113467900694973, 0.010140604685073598, 0.010166633135366204, 0.010191550406750467, 0.010215353775852252, 0.010238040641043068, 0.010259608522724598, 0.010280055063599757, 0.010299378028930195, 0.010317575306780569, 0.010334644908249447, 0.010350584967686661, 0.010365393742897078, 0.010379069615331337, 0.010391611090262378, 0.010403016796949039, 0.01041328548878585, 0.010422416043439223, 0.010430407462970154, 0.010437258873943282, 0.01044296952752239, 0.010447538799552137, 0.010450966190626462, 0.010453251326142981, 0.010454393956344087, 0.010454393956344087, 0.010453251326142981, 0.010450966190626462, 0.010447538799552137, 0.01044296952752239, 0.010437258873943282, 0.010430407462970154, 0.010422416043439223, 0.01041328548878585, 0.010403016796949039, 0.010391611090262378, 0.010379069615331337, 0.010365393742897078, 0.010350584967686661, 0.010334644908249447, 0.010317575306780569, 0.010299378028930195, 0.010280055063599757, 0.010259608522724598, 0.010238040641043068, 0.010215353775852252, 0.010191550406750467, 0.010166633135366204, 0.010140604685073598, 0.010113467900694973, 0.01008522574818994, 0.01005588131433098, 0.010025437806366347, 0.009993898551669387, 0.009961266997374775, 0.009927546710002122, 0.009892741375065664, 0.009856854796671895, 0.00981989089710335, 0.00978185371639035, 0.009742747411869234, 0.009702576257727958, 0.009661344644538864, 0.009619057078779164, 0.009575718182337876, 0.009531332692011101, 0.009485905458984029, 0.009439441448300992, 0.00939194573832249, 0.009343423520170318, 0.009293880097160322, 0.009243320884222412, 0.009191751407309061, 0.009139177302791153, 0.009085604316841996, 0.009031038304809223, 0.008975485230575371, 0.008918951165904783, 0.008861442289781127, 0.008802964887731923, 0.008743525351140993, 0.00868313017655067, 0.0086217859649506, 0.00855949942105765, 0.00849627735258214, 0.008432126669483946, 0.008367054383218206, 0.008301067605967079, 0.008234173549864183, 0.008166379526205846, 0.008097692944651201, 0.008028121312413226, 0.007957672233438363, 0.007886353407574561, 0.007814172629730136, 0.007741137789022482, 0.007667256867914979, 0.00759253794134379, 0.007516989175837821, 0.00744061882862333, 0.007363435246723478, 0.0072854468660452166, 0.007206662210456636, 0.007127089890856632, 0.00704673860423293, 0.0069656171327117265, 0.006883734342598478, 0.0068010991834066194, 0.006717720686882713, 0.006633607966017162, 0.006548770214047811, 0.006463216703456925, 0.00637695678495604, 0.0062899998864659286, 0.006202355512083302, 0.006114033241045046, 0.006025042726679271, 0.005935393695350927, 0.005845095945399296, 0.005754159346065033, 0.005662593836414576, 0.005570409424251355, 0.0054776161850220466, 0.0053842242607182395, 0.005290243858763116, 0.0051956852509013034, 0.0051005587720714925, 0.005004874819279474, 0.004908643850461695, 0.004811876383340857, 0.004714582994277626, 0.004616774317114607, 0.004518461042012614, 0.0044196539142855205, 0.004320363733222272, 0.004220601350909488, 0.004120377671042578, 0.004019703647735881, 0.003918590284326712, 0.0038170486321696183, 0.0037150897894316927, 0.0036127248998770794, 0.0035099651516518333, 0.003406821776058694, 0.003303306046330757, 0.0031994292764019384, 0.0030952028196669814, 0.0029906380677445906, 0.0028857464492311412, 0.002780539428452415, 0.002675028504212449, 0.0025692252085409055, 0.002463141105430975, 0.002356787789583519, 0.002250176885138956, 0.0021433200444213973, 0.0020362289466670158, 0.0019289152967680268, 0.0018213908240185923, 0.0017136672808561744, 0.0016057564416445678, 0.0014976701014677357, 0.0013894200749916825, 0.001281018195428937, 0.001172476313703897, 0.0010638062980465963, 0.0009550200344351969, 0.0008461294290789873, 0.0007371464159049574, 0.0006280829779724268, 0.0005189512134602094, 0.0004097635734033533, 0.00030053396541231163, 0.000191285544654933, 8.217779368318766e-05],
}
#legendre_points = {
#    2: [-0.5773502691896257, 0.5773502691896257],
#    3: [-0.7745966692414834, 0.0, 0.7745966692414834],
#    4: [-0.8611363115940526, -0.33998104358485626, 0.33998104358485626, 0.8611363115940526],
#    5: [-0.906179845938664, -0.5384693101056831, 0.0, 0.5384693101056831, 0.906179845938664],
#    6: [-0.932469514203152, -0.6612093864662645, -0.23861918608319693, 0.23861918608319693, 0.6612093864662645, 0.932469514203152],
#    7: [-0.9491079123427585, -0.7415311855993945, -0.4058451513773972, 0.0, 0.4058451513773972, 0.7415311855993945, 0.9491079123427585],
#    8: [-0.9602898564975362, -0.7966664774136267, -0.525532409916329, -0.18343464249564978, 0.18343464249564978, 0.525532409916329, 0.7966664774136267,
#        0.9602898564975362
#    ],
#    9: [-0.9681602395076261, -0.8360311073266358, -0.6133714327005904, -0.3242534234038089, 0.0, 0.3242534234038089, 0.6133714327005904, 0.8360311073266358,
#        0.9681602395076261
#    ],
#    10: [-0.9739065285171717, -0.8650633666889845, -0.6794095682990244, -0.4333953941292472, -0.14887433898163122, 0.14887433898163122, 0.4333953941292472,
#        0.6794095682990244, 0.8650633666889845, 0.9739065285171717
#    ],
#    11: [-0.978228658146057, -0.8870625997680953, -0.7301520055740494, -0.5190961292068118, -0.26954315595234496, 0.0, 0.26954315595234496,
#        0.5190961292068118, 0.7301520055740494, 0.8870625997680953, 0.978228658146057
#    ],
#    12: [-0.9815606342467192, -0.9041172563704748, -0.7699026741943047, -0.5873179542866175, -0.3678314989981802, -0.1252334085114689, 0.1252334085114689,
#        0.3678314989981802, 0.5873179542866175, 0.7699026741943047, 0.9041172563704748, 0.9815606342467192
#    ],
#    13: [-0.9841830547185881, -0.9175983992229779, -0.8015780907333099, -0.6423493394403402, -0.4484927510364468, -0.23045831595513477, 0.0,
#        0.23045831595513477, 0.4484927510364468, 0.6423493394403402, 0.8015780907333099, 0.9175983992229779, 0.9841830547185881
#    ],
#    14: [-0.9862838086968123, -0.9284348836635735, -0.827201315069765, -0.6872929048116855, -0.5152486363581541, -0.31911236892788974, -0.10805494870734367,
#        0.10805494870734367, 0.31911236892788974, 0.5152486363581541, 0.6872929048116855, 0.827201315069765, 0.9284348836635735, 0.9862838086968123
#    ],
#    15: [-0.9879925180204854, -0.937273392400706, -0.8482065834104272, -0.7244177313601701, -0.5709721726085388, -0.3941513470775634, -0.20119409399743451,
#        0.0, 0.20119409399743451, 0.3941513470775634, 0.5709721726085388, 0.7244177313601701, 0.8482065834104272, 0.937273392400706, 0.9879925180204854
#    ],
#    16: [-0.9894009349916499, -0.9445750230732326, -0.8656312023878318, -0.755404408355003, -0.6178762444026438, -0.45801677765722737, -0.2816035507792589, -
#        0.09501250983763745, 0.09501250983763745, 0.2816035507792589, 0.45801677765722737, 0.6178762444026438, 0.755404408355003, 0.8656312023878318,
#        0.9445750230732326, 0.9894009349916499
#    ],
#    17: [-0.9905754753144174, -0.9506755217687678, -0.8802391537269859, -0.7815140038968014, -0.6576711592166908, -0.5126905370864769, -0.3512317634538763, -
#        0.17848418149584785, 0.0, 0.17848418149584785, 0.3512317634538763, 0.5126905370864769, 0.6576711592166908, 0.7815140038968014,
#        0.8802391537269859, 0.9506755217687678, 0.9905754753144174
#    ],
#    18: [-0.9915651684209309, -0.9558239495713978, -0.8926024664975557, -0.8037049589725231, -0.6916870430603532, -0.5597708310739475, -0.41175116146284263, -
#        0.2518862256915055, -0.08477501304173529, 0.08477501304173529, 0.2518862256915055, 0.41175116146284263, 0.5597708310739475, 0.6916870430603532,
#        0.8037049589725231, 0.8926024664975557, 0.9558239495713978, 0.9915651684209309
#    ],
#    19: [-0.9924068438435844, -0.96020815213483, -0.9031559036148179, -0.8227146565371428, -0.7209661773352294, -0.600545304661681, -0.46457074137596094, -
#        0.31656409996362983, -0.1603586456402254, 0.0, 0.1603586456402254, 0.31656409996362983, 0.46457074137596094, 0.600545304661681,
#        0.7209661773352294, 0.8227146565371428, 0.9031559036148179, 0.96020815213483, 0.9924068438435844
#    ],
##         87: [-0.9996223504324843, -0.9980107215629823, -0.995113458137992, -0.9909336501109646, -0.9854766060684204, -0.9787493410038163, -0.9707605197472843, -0.9615204369360731, -0.9510410013893136, -0.9393357199742057, -0.9264196798912372, -0.9123095290941229, -0.8970234547675694, -0.8805811598520419, -0.8630038376297066, -0.8443141443970352, -0.8245361702557805, -0.8036954080581777, -0.7818187205454378, -0.7589343057213493, -0.7350716605053138, -0.7102615427114729, -0.6845359314028236, -0.6579279856713494, -0.6304720018972505, -0.6022033695423352, -0.5731585255345304, -0.5433749073022933, -0.5128909045194523, -0.4817458096226668, -0.44997976716528437, -0.4176337220728691, -0.3847493668670969, -0.3513690879260413, -0.31753591085011573, -0.28329344500409187, -0.24868582730667713, -0.2137576653401016, -0.17855397985304422, -0.14312014673100815, -0.10750183850894277, -0.07174496550149943, -0.035895616626800894, 0.0, 0.035895616626800894, 0.07174496550149943, 0.10750183850894277, 0.14312014673100815, 0.17855397985304422, 0.2137576653401016, 0.24868582730667713, 0.28329344500409187, 0.31753591085011573, 0.3513690879260413, 0.3847493668670969, 0.4176337220728691, 0.44997976716528437, 0.4817458096226668, 0.5128909045194523, 0.5433749073022933, 0.5731585255345304, 0.6022033695423352, 0.6304720018972505, 0.6579279856713494, 0.6845359314028236, 0.7102615427114729, 0.7350716605053138, 0.7589343057213493, 0.7818187205454378, 0.8036954080581777, 0.8245361702557805, 0.8443141443970352, 0.8630038376297066, 0.8805811598520419, 0.8970234547675694, 0.9123095290941229, 0.9264196798912372, 0.9393357199742057, 0.9510410013893136, 0.9615204369360731, 0.9707605197472843, 0.9787493410038163, 0.9854766060684204, 0.9909336501109646, 0.995113458137992, 0.9980107215629823, 0.9996223504324843],
##         300: [-0.9999679782184367, -0.9998312829844194, -0.9995853734488863, -0.9992302218632736, -0.998765860353095, -0.9981923380734435, -0.9975097171758793, -0.9967180720510002, -0.9958174891208242, -0.9948080667630034, -0.9936899152742682, -0.9924631568471006, -0.9911279255509899, -0.9896843673150097, -0.9881326399103604, -0.9864729129322606, -0.9847053677808957, -0.9828301976412724, -0.9808476074619004, -0.9787578139322587, -0.9765610454590226, -0.9742575421410374, -0.9718475557430343, -0.9693313496680812, -0.9667091989287728, -0.9639813901171553, -0.9611482213733913, -0.9582100023531646, -0.9551670541938287, -0.9520197094793031, -0.948768312203718, -0.9454132177338137, -0.9419547927700982, -0.9383934153067653, -0.93472947459038, -0.9309633710773336, -0.927095516390074, -0.9231263332721162, -0.9190562555418367, -0.9148857280450583, -0.9106152066064294, -0.9062451579796031, -0.9017760597962232, -0.8972084005137192, -0.8925426793619202, -0.88777940628849, -0.8829191019031915, -0.8779622974209857, -0.8729095346039718, -0.8677613657021737, -0.8625183533931814, -0.8571810707206516, -0.8517501010316768, -0.846226037913026, -0.8406094851262689, -0.8349010565417858, -0.8291013760716742, -0.8232110776015571, -0.817230804921301, -0.8111612116546523, -0.8050029611877982, -0.7987567265968609, -0.7924231905743324, -0.7860030453544584, -0.77949699263758, -0.7729057435134394, -0.7662300183834609, -0.7594705468820128, -0.752628067796661, -0.7457033289874226, -0.7386970873050261, -0.7316101085081913, -0.7244431671799336, -0.7171970466429053, -0.7098725388737805, -0.7024704444166952, -0.6949915722957499, -0.6874367399265869, -0.6798067730270485, -0.6721025055269295, -0.664324779476831, -0.6564744449561274, -0.6485523599800557, -0.6405593904059368, -0.6324964098385406, -0.6243642995346039, -0.6161639483065119, -0.6078962524251537, -0.5995621155219635, -0.5911624484901564, -0.5826981693851706, -0.5741702033243276, -0.5655794823857192, -0.5569269455063353, -0.5482135383794405, -0.5394402133512136, -0.530607929316659, -0.5217176516148028, -0.5127703519231844, -0.5037670081516558, -0.4947086043354983, -0.4855961305278722, -0.4764305826916062, -0.4672129625903424, -0.45794427767904683, -0.44862554099389806, -0.43925777104156566, -0.42984199168789095, -0.4203792320459818, -0.410870526363734, -0.40131691391079155, -0.3917194388649578, -0.38207915019807054, -0.37239710156135264, -0.36267435117025176, -0.35291196168878075, -0.34311100011337214, -0.333272537656259, -0.32339764962839507, -0.3134874153219266, -0.3035429178922298, -0.29356524423952524, -0.2835554848900835, -0.27351473387703407, -0.26344408862079155, -0.25334464980911087, -0.24321752127678611, -0.233063809885005, -0.22288462540037263, -0.21268108037361766, -0.2024542900179944, -0.19220537208739363, -0.18193544675417583, -0.17164563648674022, -0.16133706592684258, -0.15101086176667575, -0.140668152625726, -0.1303100689274186, -0.1199377427755664, -0.10955230783063467, -0.0991548991858358, -0.08874665324306741, -0.07832870758870747, -0.0679022008692799, -0.057468272667004265, -0.0470280633752434, -0.03658271407386212, -0.02613336640451104, -0.015681162445849026, -0.005227244588717748, 0.005227244588717748, 0.015681162445849026, 0.02613336640451104, 0.03658271407386212, 0.0470280633752434, 0.057468272667004265, 0.0679022008692799, 0.07832870758870747, 0.08874665324306741, 0.0991548991858358, 0.10955230783063467, 0.1199377427755664, 0.1303100689274186, 0.140668152625726, 0.15101086176667575, 0.16133706592684258, 0.17164563648674022, 0.18193544675417583, 0.19220537208739363, 0.2024542900179944, 0.21268108037361766, 0.22288462540037263, 0.233063809885005, 0.24321752127678611, 0.25334464980911087, 0.26344408862079155, 0.27351473387703407, 0.2835554848900835, 0.29356524423952524, 0.3035429178922298, 0.3134874153219266, 0.32339764962839507, 0.333272537656259, 0.34311100011337214, 0.35291196168878075, 0.36267435117025176, 0.37239710156135264, 0.38207915019807054, 0.3917194388649578, 0.40131691391079155, 0.410870526363734, 0.4203792320459818, 0.42984199168789095, 0.43925777104156566, 0.44862554099389806, 0.45794427767904683, 0.4672129625903424, 0.4764305826916062, 0.4855961305278722, 0.4947086043354983, 0.5037670081516558, 0.5127703519231844, 0.5217176516148028, 0.530607929316659, 0.5394402133512136, 0.5482135383794405, 0.5569269455063353, 0.5655794823857192, 0.5741702033243276, 0.5826981693851706, 0.5911624484901564, 0.5995621155219635, 0.6078962524251537, 0.6161639483065119, 0.6243642995346039, 0.6324964098385406, 0.6405593904059368, 0.6485523599800557, 0.6564744449561274, 0.664324779476831, 0.6721025055269295, 0.6798067730270485, 0.6874367399265869, 0.6949915722957499, 0.7024704444166952, 0.7098725388737805, 0.7171970466429053, 0.7244431671799336, 0.7316101085081913, 0.7386970873050261, 0.7457033289874226, 0.752628067796661, 0.7594705468820128, 0.7662300183834609, 0.7729057435134394, 0.77949699263758, 0.7860030453544584, 0.7924231905743324, 0.7987567265968609, 0.8050029611877982, 0.8111612116546523, 0.817230804921301, 0.8232110776015571, 0.8291013760716742, 0.8349010565417858, 0.8406094851262689, 0.846226037913026, 0.8517501010316768, 0.8571810707206516, 0.8625183533931814, 0.8677613657021737, 0.8729095346039718, 0.8779622974209857, 0.8829191019031915, 0.88777940628849, 0.8925426793619202, 0.8972084005137192, 0.9017760597962232, 0.9062451579796031, 0.9106152066064294, 0.9148857280450583, 0.9190562555418367, 0.9231263332721162, 0.927095516390074, 0.9309633710773336, 0.93472947459038, 0.9383934153067653, 0.9419547927700982, 0.9454132177338137, 0.948768312203718, 0.9520197094793031, 0.9551670541938287, 0.9582100023531646, 0.9611482213733913, 0.9639813901171553, 0.9667091989287728, 0.9693313496680812, 0.9718475557430343, 0.9742575421410374, 0.9765610454590226, 0.9787578139322587, 0.9808476074619004, 0.9828301976412724, 0.9847053677808957, 0.9864729129322606, 0.9881326399103604, 0.9896843673150097, 0.9911279255509899, 0.9924631568471006, 0.9936899152742682, 0.9948080667630034, 0.9958174891208242, 0.9967180720510002, 0.9975097171758793, 0.9981923380734435, 0.998765860353095, 0.9992302218632736, 0.9995853734488863, 0.9998312829844194, 0.9999679782184367],
#}


def jacobian(f, x0, scalar=True, perturbation=1e-9, zero_offset=1e-7, args=(),
             **kwargs):
    """def test_fun(x):

    # test case - 2 inputs, 3 outputs - should work fine
    x2 = x[0]*x[0]
    return np.array([x2*exp(x[1]), x2*sin(x[1]), x2*cos(x[1])])

    def easy_fun(x):
        x = x[0]
        return 5*x*x - 3*x - 100
    """
    # For scalar - returns list, size of input variables
    # For vector - returns list of list - size of input variables * output variables
    # Could add backwards/complex, multiple evaluations, detection of poor condition
    # types and limits
    base = f(x0, *args, **kwargs)
    if not scalar:
        base = list(base) # copy the base point
    x = list(x0)
    nx = len(x0)

    gradient = []
    for i in range(nx):
        delta = x0[i]*(perturbation)
        if delta == 0:
            delta = zero_offset

        x[i] += delta

        point = f(x, *args, **kwargs)
        if scalar:
            dy = (point - base)/delta
            gradient.append(dy)
        else:
            delta_inv = 1.0/delta
            dys = [delta_inv*(p - b) for p, b in zip(point, base)]
            gradient.append(dys)

        x[i] -= delta
    if not scalar:
        # Transpose to be in standard form
        return list(map(list, zip(*gradient)))
    return gradient


def hessian(f, x0, scalar=True, perturbation=1e-9, zero_offset=1e-7, full=True, args=(), **kwargs):
    # Takes n**2/2 + 3*n/2 + 1 function evaluations! Can still be quite fast.
    # For scalar - returns list[list], size of input variables
    # For vector - returns list of list of list - size of input variables * input variables * output variables
    # Could add backwards/complex, multiple evaluations, detection of poor condition
    # types and limits, jacobian as output, fevals


    base = f(x0, *args, **kwargs)
    nx = len(x0)

    if not isinstance(base, (float, int, complex)):
        try:
            ny = len(base)
        except:
            ny = 1
    else:
        ny = 1

    deltas = []
    for i in range(nx):
        delta = x0[i]*(perturbation)
        if delta == 0.0:
            delta = zero_offset
        deltas.append(delta)
    deltas_inv = [1.0/di for di in deltas]


    x_perturb = list(x0)

    fs_perturb_i = []
    for i in range(nx):
        x_perturb[i] += deltas[i]
        f_perturb_i = f(x_perturb, *args, **kwargs)
        fs_perturb_i.append(f_perturb_i)
        x_perturb[i] -= deltas[i]

    if full:
        hessian = [[None]*nx for _ in range(nx)]
    else:
        hessian = []

    for i in range(nx):
        if not full:
            row = []
        f_perturb_i = fs_perturb_i[i]
        x_perturb[i] += deltas[i]

        for j in range(i+1):
            f_perturb_j = fs_perturb_i[j]
            x_perturb[j] += deltas[j]
            f_perturb_ij = f(x_perturb, *args, **kwargs)

            if scalar:
                dii0 = (f_perturb_i - base)*deltas_inv[i]
                dii1 = (f_perturb_ij - f_perturb_j)*deltas_inv[i]
                dij = (dii1 - dii0)*deltas_inv[j]
            else:
#                 dii0s = [(fi - bi)*deltas_inv[i] for fi, bi in zip(f_perturb_i, base)]
#                 dii1s = [(fij - fj)*deltas_inv[i] for fij, fj in zip(f_perturb_ij, f_perturb_j)]
#                 dij = [(di1 - di0)*deltas_inv[j] for di1, di0 in zip(dii1s, dii0s)]
                # Saves a good amount of time
                dij = [((f_perturb_ij[m] - f_perturb_j[m]) - (f_perturb_i[m] - base[m]))*deltas_inv[j]*deltas_inv[i]
                       for m in range(ny)]

            if not full:
                row.append(dij)
            else:
                hessian[i][j] = hessian[j][i] = dij

            x_perturb[j] -= deltas[j]
        if not full:
            hessian.append(row)
        x_perturb[i] -= deltas[i]
    return hessian

def stable_poly_to_unstable(coeffs, low, high):
    if high != low:
        # Handle the case of no transformation, no limits
        my_poly = Polynomial([-0.5*(high + low)*2.0/(high - low), 2.0/(high - low)])
        coeffs = horner(coeffs, my_poly).coef[::-1].tolist()
    return coeffs

def horner_backwards(x, coeffs):
    return horner(coeffs, x)

def exp_horner_backwards(x, coeffs):
    return exp(horner(coeffs, x))


def exp_horner_backwards_and_der(x, coeffs):
    poly_val, poly_der = horner_and_der(coeffs, x)
    val = exp(poly_val)
    der = poly_der*val
    return val, der

def exp_horner_backwards_and_der2(x, coeffs):
    poly_val, poly_der, poly_der2 = horner_and_der2(coeffs, x)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    return val, der, der2

def exp_horner_backwards_and_der3(x, coeffs):
    poly_val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, x)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
    return val, der, der2, der3

def horner_backwards_ln_tau(T, Tc, coeffs):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    return horner(coeffs, lntau)

def horner_backwards_ln_tau_and_der(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der = horner_and_der(coeffs, lntau)
    der = -poly_der/(Tc*(-T/Tc + 1))
    return val, der

def horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der, poly_der2 = horner_and_der2(coeffs, lntau)
    der = -poly_der/(Tc*(-T/Tc + 1))
    
    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    return val, der, der2

def horner_backwards_ln_tau_and_der3(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0, 0.0, 00
    lntau = log(1.0 - T/Tc)
    val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, lntau)
    der = -poly_der/(Tc*(-T/Tc + 1))
    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)
    
    return val, der, der2, der3




def exp_horner_backwards_ln_tau(T, Tc, coeffs):
    # This formulation has the nice property of being linear-linear when plotted
    # for surface tension
    if T >= Tc:
        return 0.0
    # No matter what the polynomial term does to it, as tau goes to 1, x goes to a large negative value
    # So long as the polynomial has the right derivative at the end (and a reasonable constant) it will always converge to 0.
    lntau = log(1.0 - T/Tc)
    # Guarantee it is larger than 0 with the exp
    # This is a linear plot as well because both variables are transformed into a log basis.
    return exp(horner(coeffs, lntau))

def exp_horner_backwards_ln_tau_and_der(T, Tc, coeffs):
    if T >= Tc:
        return 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_der_val = horner_and_der(coeffs, lntau)
    val = exp(poly_val)
    return val, -val*poly_der_val/(Tc*tau)

def exp_horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
    if T >= Tc:
        return 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_val_der, poly_val_der2 = horner_and_der2(coeffs, lntau)
    val = exp(poly_val)
    der = -val*poly_val_der/(Tc*tau)
    der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))
    
    return val, der, der2

def exp_poly_ln_tau_coeffs2(T, Tc, val, der):
    '''
    from sympy import *
    T, Tc, T0, T1, T2, sigma0, sigma1, sigma2 = symbols('T, Tc, T0, T1, T2, sigma0, sigma1, sigma2')
    val, der = symbols('val, der')
    from sympy.abc import a, b, c
    from fluids.numerics import horner
    coeffs = [a, b]
    lntau = log(1 - T/Tc)
    sigma = exp(horner(coeffs, lntau))
    d0 = diff(sigma, T)
    Eq0 = Eq(sigma,val)
    Eq1 = Eq(d0, der)
    s = solve([Eq0, Eq1], [a, b])
    '''
    c0 = der*(T - Tc)/val
    c1 = (-T*der*log((-T + Tc)/Tc) + Tc*der*log((-T + Tc)/Tc) + val*log(val))/val
    return [c0, c1]

def exp_poly_ln_tau_coeffs3(T, Tc, val, der, der2):
    '''
    from sympy import *
    T, Tc, T0, T1, T2, sigma0, sigma1, sigma2 = symbols('T, Tc, T0, T1, T2, sigma0, sigma1, sigma2')
    val, der, der2 = symbols('val, der, der2')
    from sympy.abc import a, b, c
    from fluids.numerics import horner
    coeffs = [a, b, c]
    lntau = log(1 - T/Tc)
    sigma = exp(horner(coeffs, lntau))
    d0 = diff(sigma, T)
    
    Eq0 = Eq(sigma,val)
    Eq1 = Eq(d0, der)
    Eq2 = Eq(diff(d0, T), der2)
    
    # s = solve([Eq0, Eq1], [a, b])
    s = solve([Eq0, Eq1, Eq2], [a, b, c])
    '''
    return [(-T**2*der**2 + T**2*der2*val + 2*T*Tc*der**2 - 2*T*Tc*der2*val + T*der*val - Tc**2*der**2 + Tc**2*der2*val - Tc*der*val)/(2*val**2),
  (T**2*der**2*log((-T + Tc)/Tc) - T**2*der2*val*log((-T + Tc)/Tc) - 2*T*Tc*der**2*log((-T + Tc)/Tc) + 2*T*Tc*der2*val*log((-T + Tc)/Tc) - T*der*val*log((-T + Tc)/Tc) + T*der*val + Tc**2*der**2*log((-T + Tc)/Tc) - Tc**2*der2*val*log((-T + Tc)/Tc) + Tc*der*val*log((-T + Tc)/Tc) - Tc*der*val)/val**2,
  (-T**2*der**2*log((-T + Tc)/Tc)**2 + T**2*der2*val*log((-T + Tc)/Tc)**2 + 2*T*Tc*der**2*log((-T + Tc)/Tc)**2 - 2*T*Tc*der2*val*log((-T + Tc)/Tc)**2 + T*der*val*log((-T + Tc)/Tc)**2 - 2*T*der*val*log((-T + Tc)/Tc) - Tc**2*der**2*log((-T + Tc)/Tc)**2 + Tc**2*der2*val*log((-T + Tc)/Tc)**2 - Tc*der*val*log((-T + Tc)/Tc)**2 + 2*Tc*der*val*log((-T + Tc)/Tc) + 2*val**2*log(val))/(2*val**2)]


def horner_domain(x, coeffs, xmin, xmax):
    r'''Evaluates a polynomial defined by coefficienfs `coeffs` and domain
    (`xmin`, `xmax`) which maps the input variable into the window
    (-1, 1) where the polynomial can be evaluated most acccurately.
    The evaluation uses horner's method.

    Note that the coefficients are reversed compared to the common form; the
    first value is the coefficient of the highest-powered x term, and the last
    value in `coeffs` is the constant offset value.

    Parameters
    ----------
    x : float
        Point at which to evaluate the polynomial, [-]
    coeffs : iterable[float]
        Coefficients of polynomial, [-]
    xmin : float
        Low value, [-]
    xmax : float
        High value, [-]

    Returns
    -------
    val : float
        The evaluated value of the polynomial, [-]

    Notes
    -----

    '''
    range_inv = 1.0/(xmax - xmin)
    off = (-xmax - xmin)*range_inv
    scl = 2.0*range_inv
    x = off + scl*x
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot

def polynomial_offset_scale(xmin, xmax):
    range_inv = 1.0/(xmax - xmin)
    offset = (-xmax - xmin)*range_inv
    scale = 2.0*range_inv
    return offset, scale

def horner_stable(x, coeffs, offset, scale):
    x = offset + scale*x
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot

def horner_stable_and_der(x, coeffs, offset, scale):
    x = offset + scale*x
    f = 0.0
    der = 0.0
    for a in coeffs:
        der = x*der + f
        f = x*f + a
    return (f, der*scale)

def horner_stable_and_der2(x, coeffs, offset, scale):
    x = offset + scale*x
    f, der, der2 = 0.0, 0.0, 0.0
    for a in coeffs:
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der*scale, scale*scale*(der2 + der2))

def horner_stable_and_der3(x, coeffs, offset, scale):
    x = offset + scale*x
    f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    scale2 = scale*scale
    return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0)

def horner_stable_and_der4(x, coeffs, offset, scale):
    x = offset + scale*x
    f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der4 = x*der4 + der3
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    scale2 = scale*scale
    return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0, scale2*scale2*der4*24.0)

def horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    return horner_stable(lntau, coeffs, offset, scale)

def horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der = horner_stable_and_der(lntau, coeffs, offset, scale)
    der = -poly_der/(Tc*(-T/Tc + 1))
    return val, der

def horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der, poly_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
    der = -poly_der/(Tc*(-T/Tc + 1))
    
    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    return val, der, der2

def horner_stable_ln_tau_and_der3(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0, 00
    lntau = log(1.0 - T/Tc)
    val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(lntau, coeffs, offset, scale)
    der = -poly_der/(Tc*(-T/Tc + 1))
    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)
    
    return val, der, der2, der3


def exp_horner_stable(x, coeffs, offset, scale):
    return trunc_exp(horner_stable(x, coeffs, offset, scale))

def exp_horner_stable_and_der(x, coeffs, offset, scale):
    poly_val, poly_der = horner_stable_and_der(x, coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    return val, der

def exp_horner_stable_and_der2(x, coeffs, offset, scale):
    poly_val, poly_der, poly_der2 = horner_stable_and_der2(x, coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    return val, der, der2

def exp_horner_stable_and_der3(x, coeffs, offset, scale):
    poly_val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(x, coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
    return val, der, der2, der3

def exp_horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    return exp(horner_stable(lntau, coeffs, offset, scale))

def exp_horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_der_val = horner_stable_and_der(lntau, coeffs, offset, scale)
    val = exp(poly_val)
    return val, -val*poly_der_val/(Tc*tau)

def exp_horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_val_der, poly_val_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
    val = exp(poly_val)
    der = -val*poly_val_der/(Tc*tau)
    der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))
    
    return val, der, der2


def exp_cheb(x, coeffs, offset, scale):
    y = chebval(x, coeffs, offset, scale)
    return trunc_exp(y)

def exp_cheb_and_der(x, coeffs, der_coeffs, offset, scale):
    poly_val = chebval(x, coeffs, offset, scale)
    poly_der = chebval(x, der_coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    return val, der

def exp_cheb_and_der2(x, coeffs, der_coeffs, der2_coeffs, offset, scale):
    poly_val = chebval(x, coeffs, offset, scale)
    poly_der = chebval(x, der_coeffs, offset, scale)
    poly_der2 = chebval(x, der2_coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    return val, der, der2

def exp_cheb_and_der3(x, coeffs, der_coeffs, der2_coeffs, der3_coeffs, offset, scale):
    poly_val = chebval(x, coeffs, offset, scale)
    poly_der = chebval(x, der_coeffs, offset, scale)
    poly_der2 = chebval(x, der2_coeffs, offset, scale)
    poly_der3 = chebval(x, der3_coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
    return val, der, der2, der3

def exp_cheb_ln_tau(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    y = chebval(lntau, coeffs, offset, scale)
    return trunc_exp(y)

def exp_cheb_ln_tau_and_der(T, Tc, coeffs, der_coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val = chebval(lntau, coeffs, offset, scale)
    poly_der_val = chebval(lntau, der_coeffs, offset, scale)

    val = exp(poly_val)
    return val, -val*poly_der_val/(Tc*tau)

def exp_cheb_ln_tau_and_der2(T, Tc, coeffs, der_coeffs, der2_coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val = chebval(lntau, coeffs, offset, scale)
    poly_val_der = chebval(lntau, der_coeffs, offset, scale)
    poly_val_der2 = chebval(lntau, der2_coeffs, offset, scale)
    val = exp(poly_val)
    der = -val*poly_val_der/(Tc*tau)
    der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))
    
    return val, der, der2

def chebval_ln_tau(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    poly_val = chebval(lntau, coeffs, offset, scale)
    return poly_val

def chebval_ln_tau_and_der(T, Tc, coeffs, der_coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val = chebval(lntau, coeffs, offset, scale)
    poly_der = chebval(lntau, der_coeffs, offset, scale)
    der = -poly_der/(Tc*(-T/Tc + 1))
    return val, der

    
def chebval_ln_tau_and_der2(T, Tc, coeffs, der_coeffs, der2_coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val = chebval(lntau, coeffs, offset, scale)
    poly_der = chebval(lntau, der_coeffs, offset, scale)
    poly_der2 = chebval(lntau, der2_coeffs, offset, scale)
    der = -poly_der/(Tc*(-T/Tc + 1))
    
    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    return val, der, der2

def chebval_ln_tau_and_der3(T, Tc, coeffs, der_coeffs, der2_coeffs, der3_coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0, 00
    lntau = log(1.0 - T/Tc)
    val = chebval(lntau, coeffs, offset, scale)
    poly_der = chebval(lntau, der_coeffs, offset, scale)
    poly_der2 = chebval(lntau, der2_coeffs, offset, scale)
    poly_der3 = chebval(lntau, der3_coeffs, offset, scale)
    der = -poly_der/(Tc*(-T/Tc + 1))
    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)
    
    return val, der, der2, der3

def horner(coeffs, x):
    r'''Evaluates a polynomial defined by coefficienfs `coeffs` at a specified
    scalar `x` value, using the horner method. This is the most efficient
    formula to evaluate a polynomial (assuming non-zero coefficients for all
    terms). This has been added to the `fluids` library because of the need to
    frequently evaluate polynomials; and `NumPy`'s polyval is actually quite
    slow for scalar values.

    Note that the coefficients are reversed compared to the common form; the
    first value is the coefficient of the highest-powered x term, and the last
    value in `coeffs` is the constant offset value.

    Parameters
    ----------
    coeffs : iterable[float]
        Coefficients of polynomial, [-]
    x : float
        Point at which to evaluate the polynomial, [-]

    Returns
    -------
    val : float
        The evaluated value of the polynomial, [-]

    Notes
    -----
    For maximum speed, provide a list of Python floats and `x` should also be
    of type `float` to avoid either `NumPy` types or slow python ints.

    Compare the speed with numpy via:

    >>> coeffs = np.random.uniform(0, 1, size=15)
    >>> coeffs_list = coeffs.tolist()

    %timeit np.polyval(coeffs, 10.0)

    `np.polyval` takes on the order of 15 us; `horner`, 1 us.

    Examples
    --------
    >>> horner([1.0, 3.0], 2.0)
    5.0

    >>> horner([21.24288737657324, -31.326919865992743, 23.490607246508382, -14.318875366457021, 6.993092901276407, -2.6446094897570775, 0.7629439408284319, -0.16825320656035953, 0.02866101768198035, -0.0038190069303978003, 0.0004027586707189051, -3.394447111198843e-05, 2.302586717011523e-06, -1.2627393196517083e-07, 5.607585274731649e-09, -2.013760843818914e-10, 5.819957519561292e-12, -1.3414794055766234e-13, 2.430101267966631e-15, -3.381444175898971e-17, 3.4861255675373234e-19, -2.5070616549039004e-21, 1.122234904781319e-23, -2.3532795334141448e-26], 300.0)
    1.9900667478569642e+58

    References
    ----------
    .. [1] "Horner’s Method." Wikipedia, October 6, 2018.
    https://en.wikipedia.org/w/index.php?title=Horner%27s_method&oldid=862709437.
    '''
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot


def horner_and_der(coeffs, x):
    # Coefficients in same order as for horner
    f = 0.0
    der = 0.0
    for a in coeffs:
        der = x*der + f
        f = x*f + a
    return (f, der)

def horner_and_der2(coeffs, x):
    # Coefficients in same order as for horner
    f, der, der2 = 0.0, 0.0, 0.0
    for a in coeffs:
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der, der2 + der2)

def horner_and_der3(coeffs, x):
    # Coefficients in same order as for horner
    # Tested
    f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der, der2 + der2, der3*6.0)

def horner_and_der4(coeffs, x):
    # Coefficients in same order as for horner
    # Tested
    f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der4 = x*der4 + der3
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der, der2 + der2, der3*6.0, der4*24.0)

def quadratic_from_points(x0, x1, x2, f0, f1, f2):
    '''
    from sympy import *
    f, a, b, c, x, x0, x1, x2, f0, f1, f2 = symbols('f, a, b, c, x, x0, x1, x2, f0, f1, f2')

    func = a*x**2 + b*x + c
    Eq0 = Eq(func.subs(x, x0), f0)
    Eq1 = Eq(func.subs(x, x1), f1)
    Eq2 = Eq(func.subs(x, x2), f2)
    sln = solve([Eq0, Eq1, Eq2], [a, b, c])
    cse([sln[a], sln[b], sln[c]], optimizations='basic', symbols=utilities.iterables.numbered_symbols(prefix='v'))
    '''

    v0 = -x2
    v1 = f0*(v0 + x1)
    v2 = f2*(x0 - x1)
    v3 = f1*(v0 + x0)
    v4 = x2*x2
    v5 = x0*x0
    v6 = x1*x1
    v7 = 1.0/(v4*x0 + v5*x1 + v6*x2 - (v4*x1  + v5*x2 + v6*x0))
    v8 = -v4
    a = v7*(v1 + v2 - v3)
    b = -v7*(f0*(v6 + v8) - f1*(v5 + v8) + f2*(v5 - v6))
    c = v7*(v1*x1*x2 + v2*x0*x1 - v3*x0*x2)
    return (a, b, c)



def quadratic_from_f_ders(x, v, d1, d2):
    '''from sympy import *
    f, a, b, c, x, v, d1, d2 = symbols('f, a, b, c, x, v, d1, d2')

    f0 = a*x**2 + b*x + c
    f1 = diff(f0, x)
    f2 = diff(f0, x, 2)

    solve([Eq(f0, v), Eq(f1, d1), Eq(f2, d2)], [a, b, c])
    '''
    a = d2*0.5
    b = d1 - d2*x
    c = -d1*x + d2*x*x*0.5 + v
    return [a, b, c]

def is_poly_positive(poly, domain=None, rand_pts=10, j_tol=1e-12, root_perturb=1e-12):
    # Returns True if positive everywhere in the specified domain (or globally)
    if domain is None:
        # 1e-100 to 1e100
        pts = logspace(-100, 100, rand_pts//2)
        pts += [-i for i in pts]
    else:
        pts = linspace(domain[0], domain[1], rand_pts)

    for p in pts:
        if horner(poly, p) < 0.0:
            return False

    roots = np.roots(poly)
    for root in roots:
        r = root.real
        if abs(root.imag/r) < j_tol:
            if (domain is not None) and (r < domain[0] or r > domain[1]):
                continue
            eps_high, eps_low = r*(1.0 + root_perturb), r*(1.0 - root_perturb)
            if horner(poly, eps_high) < 0:
                return False
            if horner(poly, eps_low) < 0:
                return False
    return True

def is_poly_negative(poly, domain=None, rand_pts=10, j_tol=1e-12, root_perturb=1e-12):
    # Returns True if negative everywhere in the specified domain (or globally)
    poly = [-i for i in poly]# Changes the sign of all polynomial calculated values
    return is_poly_positive(poly, domain=domain, rand_pts=rand_pts, j_tol=j_tol, root_perturb=root_perturb)

def min_max_ratios(actual, calculated):
    '''Given known and calculated data, compare
    the two and provide two numbers describing
    how far away from the known data the calculated
    data is.
    
    The numbers are the ratio of the lowest relative
    calc, and the highest relative calc.
    '''
    min_ratio = max_ratio = 1.0
    for i in range(len(actual)):
        if actual[i] == 0.0:
            r = 1.0 if calculated[i] == actual[i] else 10.0
        else:
            r = calculated[i]/actual[i]
        if r < min_ratio:
            min_ratio = r
        elif r > max_ratio:
            max_ratio = r
    return min_ratio, max_ratio

def std(data):
    '''Fast implementation of numpy's std function
    for 1d inputs only, with double precision only always.
    '''
    tot = 0.0
    N = len(data)
    for i in range(N):
        tot += data[i]
        
    mean = tot/N
    tot = 0.0
    for i in range(N):
        v = (data[i] - mean)
        tot += v*v
    return sqrt(tot/N)

def polyder(c, m=1, scl=1, axis=0):
    """not quite a copy of numpy's version because this was faster to
    implement."""
    cnt = m

    if cnt == 0:
        return c

    n = len(c)
    if cnt >= n:
        c = c[:1]*0
    else:
        for i in range(cnt): # normally only happens once
            n = n - 1

            der = [0.0]*n
            for j in range(n, 0, -1):
                der[j - 1] = j*c[j]
            c = der
    return c

def polyint(coeffs):
    """not quite a copy of numpy's version because this was faster to
    implement.
    Tried out a bunch of optimizations, and this hits a good balance
    between CPython and pypy speed."""
#    return ([0.0] + [c/(i+1) for i, c in enumerate(coeffs[::-1])])[::-1]
    N = len(coeffs)
    out = [0.0]*(N+1)
    for i in range(N):
        out[i] = coeffs[i]/(N-i)
    return out


def polyint_over_x(coeffs):
    N = len(coeffs)
    log_coef = coeffs[-1]
    Nm1 = N - 1
    poly_terms = [0.0]*N
    for i in range(Nm1):
        poly_terms[i] = coeffs[i]/(Nm1-i)
    return poly_terms, log_coef
#    N = len(coeffs)
#    log_coef = coeffs[-1]
#    Nm1 = N - 1
#    poly_terms = [coeffs[Nm1-i]/i for i in range(N-1, 0, -1)]
#    poly_terms.append(0.0)
#    return poly_terms, log_coef
#    coeffs = coeffs[::-1]
#    log_coef = coeffs[0]
#    poly_terms = [0.0]
#    for i in range(1, len(coeffs)):
#        poly_terms.append(coeffs[i]/i)
#    return list(reversed(poly_terms)), log_coef
#

def horner_log(coeffs, log_coeff, x):
    """Technically possible to save one addition of the last term of coeffs is
    removed but benchmarks said nothing was saved."""
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot + log_coeff*log(x)


def fit_integral_linear_extrapolation(T1, T2, int_coeffs, Tmin, Tmax,
                                      Tmin_value, Tmax_value,
                                      Tmin_slope, Tmax_slope):
    # Order T1, T2 so T2 is always larger for simplicity
    flip = T1 > T2
    if flip:
        T1, T2 = T2, T1

    tot = 0.0
    if T1 < Tmin:
        T2_low = T2 if T2 < Tmin else Tmin
        x1 = Tmin_value - Tmin_slope*Tmin
        tot += T2_low*(0.5*Tmin_slope*T2_low + x1) - T1*(0.5*Tmin_slope*T1 + x1)
    if (Tmin <= T1 <= Tmax) or (Tmin <= T2 <= Tmax) or (T1 <= Tmin and T2 >= Tmax):
        T1_mid = T1 if T1 > Tmin else Tmin
        T2_mid = T2 if T2 < Tmax else Tmax
        tot += (horner(int_coeffs, T2_mid) - horner(int_coeffs, T1_mid))

    if T2 > Tmax:
        T1_high = T1 if T1 > Tmax else Tmax
        x1 = Tmax_value - Tmax_slope*Tmax
        tot += T2*(0.5*Tmax_slope*T2 + x1) - T1_high*(0.5*Tmax_slope*T1_high + x1)
    if flip:
        return -tot
    return tot

def poly_fit_integral_value(T, int_coeffs, Tmin, Tmax, Tmin_value, Tmax_value,
                            Tmin_slope, Tmax_slope):
    # Can still save 1 horner evaluation (all of them for height T), but will be VERY messy.
    if T < Tmin:
        x1 = Tmin_value - Tmin_slope*Tmin
        tot = T*(0.5*Tmin_slope*T + x1)
        return tot
    if (Tmin <= T <= Tmax):
        tot1 = horner(int_coeffs, T) - horner(int_coeffs, Tmin)
        x1 = Tmin_value - Tmin_slope*Tmin
        tot = Tmin*(0.5*Tmin_slope*Tmin + x1)
        return tot + tot1
    else:
        x1 = Tmin_value - Tmin_slope*Tmin
        tot = Tmin*(0.5*Tmin_slope*Tmin + x1)

        tot1 = horner(int_coeffs, Tmax) - horner(int_coeffs, Tmin)

        x1 = Tmax_value - Tmax_slope*Tmax
        tot2 = T*(0.5*Tmax_slope*T + x1) - Tmax*(0.5*Tmax_slope*Tmax + x1)
        return tot1 + tot + tot2

def fit_integral_over_T_linear_extrapolation(T1, T2, T_int_T_coeffs,
                                            poly_fit_log_coeff, Tmin, Tmax,
                                      Tmin_value, Tmax_value,
                                      Tmin_slope, Tmax_slope):
    # Order T1, T2 so T2 is always larger for simplicity
    flip = T1 > T2
    if flip:
        T1, T2 = T2, T1

    tot = 0.0
    if T1 < Tmin:
        T2_low = T2 if T2 < Tmin else Tmin
        x1 = Tmin_value - Tmin_slope*Tmin
        tot += (Tmin_slope*T2_low + x1*log(T2_low)) - (Tmin_slope*T1 + x1*log(T1))
    if (Tmin <= T1 <= Tmax) or (Tmin <= T2 <= Tmax) or (T1 <= Tmin and T2 >= Tmax):
        T1_mid = T1 if T1 > Tmin else Tmin
        T2_mid = T2 if T2 < Tmax else Tmax
        tot += (horner_log(T_int_T_coeffs, poly_fit_log_coeff, T2_mid)
                    - horner_log(T_int_T_coeffs, poly_fit_log_coeff, T1_mid))
    if T2 > Tmax:
        T1_high = T1 if T1 > Tmax else Tmax
        x1 = Tmax_value - Tmax_slope*Tmax
        tot += (Tmax_slope*T2 + x1*log(T2)) - (Tmax_slope*T1_high + x1*log(T1_high))
    if flip:
        return -tot
    return tot


def poly_fit_integral_over_T_value(T, T_int_T_coeffs, poly_fit_log_coeff,
                                   Tmin, Tmax, Tmin_value, Tmax_value,
                                   Tmin_slope, Tmax_slope):
    if T < Tmin:
        x1 = Tmin_value - Tmin_slope*Tmin
        tot = (Tmin_slope*T + x1*log(T))
        return tot
    if (Tmin <= T <= Tmax):
        tot1 = (horner_log(T_int_T_coeffs, poly_fit_log_coeff, T)
                    - horner_log(T_int_T_coeffs, poly_fit_log_coeff, Tmin))

        x1 = Tmin_value - Tmin_slope*Tmin
        tot = (Tmin_slope*Tmin + x1*log(Tmin))
        return tot + tot1
    else:
        x1 = Tmin_value - Tmin_slope*Tmin
        tot = (Tmin_slope*Tmin + x1*log(Tmin))

        tot1 = (horner_log(T_int_T_coeffs, poly_fit_log_coeff, Tmax)
                    - horner_log(T_int_T_coeffs, poly_fit_log_coeff, Tmin))
        x2 = Tmax_value -Tmax*Tmax_slope
        tot2 = (-Tmax_slope*(Tmax - T) + x2*log(T) - x2*log(Tmax))
        return tot1 + tot + tot2



def evaluate_linear_fits(data, x):
    calc = []
    low_limits, high_limits, coeffs = data[0], data[3], data[6]
    for i in range(len(data[0])):
        if x < low_limits[i]:
            v = (x - low_limits[i])*data[1][i] + data[2][i]
        elif x > high_limits[i]:
            v = (x - high_limits[i])*data[4][i] + data[5][i]
        else:
            v = 0.0
            for c in coeffs[i]:
                v = v*x + c
#               v = horner(coeffs[i], x)
        calc.append(v)
    return calc


def evaluate_linear_fits_d(data, x):
    calc = []
    low_limits, high_limits, dcoeffs = data[0], data[3], data[7]
    for i in range(len(data[0])):
        if x < low_limits[i]:
            dv = data[1][i]
        elif x > high_limits[i]:
            dv = data[4][i]
        else:
            dv = 0.0
            for c in dcoeffs[i]:
                dv = dv*x + c
        calc.append(dv)
    return calc


def evaluate_linear_fits_d2(data, x):
    calc = []
    low_limits, high_limits, d2coeffs = data[0], data[3], data[8]
    for i in range(len(data[0])):
        d2v = 0.0
        if low_limits[i] < x < high_limits[i]:
            for c in d2coeffs[i]:
                d2v = d2v*x + c
        calc.append(d2v)
    return calc


def chebval(x, c, offset=0.0, scale=1.0):
    # Pure Python implementation of numpy.polynomial.chebyshev.chebval
    # This routine is faster in CPython as well as PyPy
    # Approxximately 2 adds and a multiply per coefficient
    x = offset + scale*x
    len_c = len(c)
    if len_c == 1:
        c0, c1 = c[0], 0.0
    elif len_c == 2:
        c0, c1 = c[0], c[1]
    else:
        x2 = 2.0*x
        c0, c1 = c[-2], c[-1]
        for i in range(3, len_c + 1):
            c0_prev = c0
            c0 = c[-i] - c1
            c1 = c0_prev + c1*x2
    return c0 + c1*x

def chebder(c, m=1, scl=1.0):
    """not quite a copy of numpy's version because this was faster to
    implement.
    
    This does not evaluate the value of a cheb series at a point; it returns
    a new chebyshev seriese to be evaluated by chebval.
    """
    c = list(c)
    cnt = int(m)
    if cnt == 0:
        return c

    n = len(c)
    if cnt >= n:
        c = []
    else:
        for i in range(cnt):
            n = n - 1
            if scl != 1.0:
                for j in range(len(c)):
                    c[j] *= scl
            der = [0.0 for _ in range(n)]
            for j in range(n, 2, -1):
                der[j - 1] = (j + j)*c[j]
                c[j - 2] += (j*c[j])/(j - 2.0)
            if n > 1:
                der[1] = 4.0*c[2]
            der[0] = c[1]
            c = der
    return c

def chebint(c, m=1, lbnd=0, scl=1):
    #  k=[], is used by numpy to provide integration constants
    cnt = int(m) # the order of integration
    if cnt < 0:
        raise ValueError("Negative integration error not allowed")
#     if len(k) > cnt:
#         raise ValueError("Size of integration constants not consistent with order of integration")
    if cnt == 0:
        return c
#     k = list(k) + [0]*(cnt - len(k))
    n = len(c)
    c2 = [0.0]*n # Make a copy of c
    for i in range(n):
        c2[i] = c[i]
    c = c2

    for i in range(cnt):
        n = len(c)
        for o in range(n):
            c[o] *= scl
        if n == 1 and c[0] == 0:
            pass
#             c[0] += k[i]
        else:
            tmp = [0.0]*(n+1)
            tmp[1] = c[0]
            if n > 1:
                tmp[2] = c[1]/4
            for j in range(2, n):
                cval = c[j]
                tmp[j + 1] = cval/(2.0*(j + 1.0))
                tmp[j - 1] -= cval/(2.0*(j - 1.0))
            # Scale is handled separately
#             tmp[0] += k[i] - chebval(lbnd, tmp)
            tmp[0] -= chebval(lbnd, tmp)
            c = tmp
    return c

def binary_search(key, arr, size=None):
    if size is None:
        size = len(arr)
    imin = 0
    imax = size
    if key > arr[size - 1]:
        return size
    while imin < imax:
        imid = imin + ((imax - imin) >> 1)
        if key >= arr[imid]: imin = imid + 1
        else: imax = imid
    return imin - 1


def isclose(a, b, rel_tol=1e-9, abs_tol=0.0):
    """Pure python and therefore slow version of the standard library isclose.
    Works on older versions of python though! Hasn't been unit tested, but has
    been tested.

    manual unit testing:

    from math import isclose as isclose2
    from random import uniform
    for i in range(10000000):
        a = uniform(-1, 1)
        b = uniform(-1, 1)
        rel_tol = uniform(0, 1)
        abs_tol = uniform(0, .001)
        ans1 = isclose(a, b, rel_tol, abs_tol)
        ans2 = isclose2(a, b, rel_tol=rel_tol, abs_tol=abs_tol)
        try:
            assert ans1 == ans2
        except:
            print(a, b, rel_tol, abs_tol)
    """
    if (rel_tol < 0.0 or abs_tol < 0.0 ):
        raise ValueError('Negative tolerances')

    if ((a.real == b.real) and (a.imag == b.imag)):
        return True

    if (isinf(a.real) or isinf(a.imag) or
        isinf(b.real) or isinf(b.imag)):
        return False

    diff = abs(a - b)
    return (((diff <= rel_tol*abs(b)) or
             (diff <= rel_tol*abs(a))) or (diff <= abs_tol))
try:
    from math import isclose
except ImportError:
    pass

def assert_close(a, b, rtol=1e-7, atol=0.0):
    if a is b:
        # Nice to handle None
        return True

    if __debug__:
        # Do not run these branches in -O, -OO mode
        try:
            try:
                assert isclose(a, b, rel_tol=rtol, abs_tol=atol)
                return
            except:
                assert cisclose(a, b, rel_tol=rtol, abs_tol=atol)
                return
        except:
            pass
    from numpy.testing import assert_allclose
    return assert_allclose(a, b, rtol=rtol, atol=atol)

def assert_close1d(a, b, rtol=1e-7, atol=0.0):
    N = len(a)
    if N != len(b):
        raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
    for i in range(N):
        assert_close(a[i], b[i], rtol=rtol, atol=atol)

def assert_close2d(a, b, rtol=1e-7, atol=0.0):
#    N = len(a)
#    if N != len(b):
#        raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
#    for i in range(N):
#        assert_close1d(a[i], b[i], rtol=rtol, atol=atol)
    N = len(a)
    if N != len(b):
        raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
    if not __debug__:
        # Do not run these branches in -O, -OO mode
        from numpy.testing import assert_allclose
        return assert_allclose(a, b, rtol=rtol, atol=atol)
    for i in range(N):
        a0, b0 = a[i], b[i]
        N0 = len(a0)
        if N0 != len(b0):
            raise ValueError("Variables are not the same length: %d, %d" %(N0, len(b0)))
        for j in range(N0):
#            assert_close(a0[j], b0[j], rtol=rtol, atol=atol)
            good = True
            a1, b1 = a0[j], b0[j]
            if a1 is b1:
                # Nice to handle None
                pass
            else:
                try:
                    try:
                        good = isclose(a1, b1, rel_tol=rtol, abs_tol=atol)
                    except:
                        good = cisclose(a1, b1, rel_tol=rtol, abs_tol=atol)
                except:
                    pass
            if not good:
                from numpy.testing import assert_allclose
                return assert_allclose(a1, b1, rtol=rtol, atol=atol)






def assert_close3d(a, b, rtol=1e-7, atol=0.0):
    N = len(a)
    if N != len(b):
        raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
    for i in range(N):
        assert_close2d(a[i], b[i], rtol=rtol, atol=atol)

def assert_close4d(a, b, rtol=1e-7, atol=0.0):
    N = len(a)
    if N != len(b):
        raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
#    for i in range(N):
#        assert_close3d(a[i], b[i], rtol=rtol, atol=atol)
    for i in range(N):
        a0, b0 = a[i], b[i]
        N0 = len(a0)
        if N0 != len(b0):
            raise ValueError("Variables are not the same length: %d, %d" %(N0, len(b0)))
        for j in range(N0):
            assert_close2d(a0[j], b0[j], rtol=rtol, atol=atol)

def zeros(shape, dtype=float, fill_value=0.0):
    if dtype is float:
        zero = float(fill_value)
    elif dtype is int:
        zero = int(fill_value)
    else:
        raise ValueError("dtype is not supported")
    t = type(shape)
    if t is int:
        return [zero]*shape
    if t is tuple:
        l = len(shape)
        if l == 1:
            return [zero]*shape[0]
        elif l == 2:
            s1 = shape[1]
            return [[zero]*s1 for _ in range(shape[0])]
        elif l == 3:
            s1 = shape[1]
            s2 = shape[2]
            return [[[zero]*s2 for _ in range(s1)] for _ in range(shape[0])]
        elif l == 4:
            s1 = shape[1]
            s2 = shape[2]
            s3 = shape[3]
            return [[[[zero]*s3 for _ in range(s2)] for _ in range(s1)] for _ in range(shape[0])]
    raise ValueError("Shape not implemented")

def full(shape, fill_value, dtype=float):
    return zeros(shape, dtype, fill_value)

def interp(x, dx, dy, left=None, right=None, extrapolate=False):
    """One-dimensional linear interpolation routine inspired/ reimplemented from
    NumPy for extra speed for scalar values (and also numpy).

    Returns the one-dimensional piecewise linear interpolant to a function
    with a given value at discrete data-points.

    Parameters
    ----------
    x : float
        X-coordinate of the interpolated values, [-]
    dx : list[float]
        X-coordinates of the data points, must be increasing, [-]
    dy : list[float]
        Y-coordinates of the data points; same length as `dx`, [-]
    left : float, optional
        Value to return for `x < dx[0]`, default is `dy[0]`, [-]
    right : float, optional
        Value to return for `x > dx[-1]`, default is `dy[-1]`, [-]
    extrapolate : bool, optional
        If True, for the cases of `left` and/or `right` not given, a linear
        extrapolation will be performed outside of bounds, [-]

    Returns
    -------
    y : float
        The interpolated value, [-]

    Notes
    -----
    This function is "unsafe" in that it assumes the x-coordinates
    are increasing. It also does not check for nan's, that `dx` and `dy`
    are the same length, and that `x` is scalar.

    Performance is 40-50% of that of NumPy under CPython.

    Examples
    --------
    >>> interp(2.5, [1, 2, 3], [3, 2, 0])
    1.0
    """
    lendx = len(dx)
    j = binary_search(x, dx, lendx)
    if (j == -1):
        if left is not None:
            return left
        elif extrapolate:
            j = 0
            return (dy[j + 1] - dy[j])/(dx[j + 1] - dx[j])*(x - dx[j]) + dy[j]
        else:
            return dy[0]
    elif (j == lendx - 1):
        return dy[j]
    elif (j == lendx):
        if right is not None:
            return right
        elif extrapolate:
            j = -2
            return (dy[j + 1] - dy[j])/(dx[j + 1] - dx[j])*(x - dx[j]) + dy[j]
        else:
            return dy[-1]
    else:
        return (dy[j + 1] - dy[j])/(dx[j + 1] - dx[j])*(x - dx[j]) + dy[j]


def interp2d_linear(x, y, xs, ys, vals):
    # Same as RectBivariateSpline, s=0, kx=1, ky=1 (and better performance)
    if y < ys[0]:
        i0, i1 = 0, 1
        y_dat = ys[i0], ys[i1]
    elif y > ys[-1]:
        i0, i1 = -2, -1
    else:
        for i in range(len(ys)):
            if ys[i] >= y:
                i0, i1 = i-1, i
                break
    y_low, y_high = ys[i0], ys[i1]

    v_low = interp(x, xs, vals[i0], extrapolate=True)
    v_high = interp(x, xs, vals[i1], extrapolate=True)

    return v_low + (y-y_low)/(y_high-y_low)*(v_high-v_low)


try:
    _array = np.array
    Polynomial = np.polynomial.Polynomial
except:
    pass
def implementation_optimize_tck(tck, force_numpy=False):
    """Converts 1-d or 2-d splines calculated with SciPy's `splrep` or.

    `bisplrep` to a format for fastest computation - lists in PyPy, and numpy
    arrays otherwise.

    Only implemented for 3 and 5 length `tck`s.
    """
    if IS_PYPY_OR_SKIP_DEPENDENCIES and not force_numpy:
        return tuple(tck)
    else:
        size = len(tck)
        if size == 3:
            return (_array(tck[0]), _array(tck[1]), tck[2])
        elif size == 5:
            return (_array(tck[0]), _array(tck[1]), _array(tck[2]), tck[3], tck[4])
        else:
            raise NotImplementedError


def tck_interp2d_linear(x, y, z, kx=1, ky=1):
    if kx != 1 or ky != 1:
        raise ValueError("Only linear formulations are currently implemented")
    # copy is not a method of lists in python 2
    x = list(x)
    x.insert(0, x[0])
    x.append(x[-1])

    y = list(y)
    y.insert(0, y[0])
    y.append(y[-1])

    # c needs to be transposed, and made 1d
    c = [z[j][i] for i in range(len(z[0])) for j in range(len(z))]

    tck = [x, y, c, 1, 1]
    return implementation_optimize_tck(tck)



def caching_decorator(f, full=False):
    from functools import wraps
    cache = {}
    info_cache = {}
    wraps = my_wraps()
    @wraps(f)
    def wrapper(x, *args, **kwargs):
        has_info = 'info' in kwargs
        if x in cache:
            if 'info' in kwargs:
                kwargs['info'][:] = info_cache[x]
            return cache[x]

        err = f(x, *args, **kwargs)
        cache[x] = err
        if has_info:
            info_cache[x] = list(kwargs['info'])
        return err
    if full:
        return wrapper, cache, info_cache
    return wrapper


def translate_bound_func(func, bounds=None, low=None, high=None):
    if bounds is not None:
        low = [i[0] for i in bounds]
        high = [i[1] for i in bounds]

    def new_f(x, *args, **kwargs):
        """Function for a solver to call when using the bounded variables."""
        x = [float(i) for i in x]
        for i in range(len(x)):
            x[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
        # Return the actual results
        return func(x, *args, **kwargs)

    def translate_into(x):
        x = [float(i) for i in x]
        for i in range(len(x)):
            x[i] = -log((high[i] - x[i])/(x[i] - low[i]))
        return x

    def translate_outof(x):
        x = [float(i) for i in x]
        for i in range(len(x)):
            x[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
        return x
    return new_f, translate_into, translate_outof


def translate_bound_jac(jac, bounds=None, low=None, high=None):
    if bounds is not None:
        low = [i[0] for i in bounds]
        high = [i[1] for i in bounds]

    def new_j(x):
        x_base = [float(i) for i in x]
        N = len(x)
        for i in range(N):
            x_base[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
        jac_base = jac(x_base)
        try:
            jac_base = [i for i in jac_base]
            for i in range(N):
                v = (high[i] - low[i])*exp(-x[i])*jac_base[i]
                v *= (1.0 + exp(-x[i]))**-2
                jac_base[i] = v
            return jac_base
        except:
            raise NotImplementedError("Fail")

    def translate_into(x):
        x = [float(i) for i in x]
        for i in range(len(x)):
            x[i] = -log((high[i] - x[i])/(x[i] - low[i]))
        return x

    def translate_outof(x):
        x = [float(i) for i in x]
        for i in range(len(x)):
            x[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
        return x
    return new_j, translate_into, translate_outof


def translate_bound_f_jac(f, jac, bounds=None, low=None, high=None,
                          inplace_jac=False, as_np=False):
    if bounds is not None:
        low = [i[0] for i in bounds]
        high = [i[1] for i in bounds]

    exp_terms = [0.0]*len(low)

    def new_f_j(x, *args):
        x_base = [i for i in x]
        N = len(x)
        for i in range(N):
            exp_terms[i] = ei = trunc_exp(-x[i])
            x_base[i] = (low[i] + (high[i] - low[i])/(1.0 + ei))

        if jac is True:
            f_base, jac_base = f(x_base, *args)
        else:
            f_base = f(x_base, *args)
            jac_base = jac(x_base, *args)
        try:
            if type(jac_base[0]) is list or (isinstance(jac_base, np.ndarray) and len(jac_base.shape) == 2):
                if not inplace_jac:
                    jac_base = [[j for j in i] for i in jac_base]

                for i in range(len(jac_base)):
                    for j in range(len(jac_base[i])):
                        # Checked numerically
                        t = (1.0 + exp_terms[j])
                        jac_base[i][j] = (high[j] - low[j])*exp_terms[j]*jac_base[i][j]/(t*t)
            else:
                if not inplace_jac:
                    jac_base = [i for i in jac_base]
                for i in range(N):
                    t = (1.0 + exp_terms[i])
                    jac_base[i] = (high[i] - low[i])*exp_terms[i]*jac_base[i]/(t*t)
            if as_np:
                jac_base = np.array(jac_base)
            return f_base, jac_base
        except:
            raise NotImplementedError("Fail")

    def translate_into(x):
        #x = [float(i) for i in x]
        for i in range(len(x)):
            x[i] = -trunc_log((high[i] - x[i])/(x[i] - low[i]))
        return x

    def translate_outof(x):
        #x = [float(i) for i in x]
        for i in range(len(x)):
            x[i] = (low[i] + (high[i] - low[i])/(1.0 + trunc_exp(-x[i])))
        return x
    return new_f_j, translate_into, translate_outof


class OscillationError(Exception):
    """Error raised when a derivative-based method is not converging."""

class UnconvergedError(Exception):
    """Error raised when maxiter has been reached in an optimization problem."""

    def __repr__(self):
        return ('UnconvergedError("Failed to converge; maxiter (%d) reached, value=%g, error %g)"' %(self.maxiter, self.point, self.err))

    def __init__(self, message, iterations=None, err=None, point=None):
        super(UnconvergedError, self).__init__(message)
        self.point = point
        self.iterations = iterations
        self.err = err

class SamePointError(UnconvergedError):
    """Error raised when two trial points in a root finding problem have the
    same error."""
    def __repr__(self):
        return 'TODO'

    def __init__(self, message, iterations=None, err=None, q1=None, p1=None, q0=None, p0=None):
        super(UnconvergedError, self).__init__(message)
        self.q1 = q1
        self.p1 = p1
        self.q0 = q0
        self.p0 = p0
        self.iterations = iterations
        self.err = err


class NoSolutionError(Exception):
    """Error raised when detected that there is no actual solution to a
    problem."""

class NotBoundedError(Exception):
    """Error raised when a bisection type algorithm fails because its initial
    bounds do not bound the solution."""
class DiscontinuityError(Exception):
    """Error raised when a bisection type algorithm fails because there is a
    discontinuity."""

def damping_maintain_sign(x, step, damping=1.0, factor=0.5):
    """Damping function which will maintain the sign of the variable being
    manipulated. If the step puts it at the other sign, the distance between `x`
    and `step` will be shortened by the multiple of `factor`; i.e. if factor is
    `x`, the new value of `x` will be 0 exactly.

    The provided `damping` is applied as well.

    Parameters
    ----------
    x : float
        Previous value in iteration, [-]
    step : float
        Change in `x`, [-]
    damping : float, optional
        The damping factor to be applied always, [-]
    factor : float, optional
        If the calculated step changes sign, this factor will be used instead
        of the step, [-]

    Returns
    -------
    x_new : float
        The new value in the iteration, [-]

    Notes
    -----

    Examples
    --------
    >>> damping_maintain_sign(100, -200, factor=.5)
    50.0
    """
    if isinstance(x, list):
        return [damping_maintain_sign(x[i], step[i], damping, factor) for i in range(len(x))]
    positive = x > 0.0
    step_x = x + step

    if (positive and step_x < 0) or (not positive and step_x > 0.0):
#        print('damping')
        step = -factor*x
    return x + step*damping


def make_damp_initial(steps=5, damping=1.0, *args):
    steps_holder = [steps]
    def damping_func(x, step, damping=damping, *args):
        if steps_holder[0] <= 0:
            # Do not dampen at all
            if isinstance(x, list):
                return [xi + dxi for xi, dxi in zip(x, step)]
            return x + step
        else:
            steps_holder[0] -= 1
            if isinstance(x, list):
                return [xi + dxi*damping for xi, dxi in zip(x, step)]
            return x + step*damping
    return damping_func


def make_max_step_initial(max_step, steps=5, *args):
    steps_holder = [steps]

    def damping_func(x, step, *args):
        if steps_holder[0] <= 0:
            # Do not dampen at all
            if isinstance(x, list):
                return [xi + dxi for xi, dxi in zip(x, step)]
            return x + step
        else:
            steps_holder[0] -= 1
            if isinstance(x, list):
                next = []
                for i in range(len(x)):
                    the_step = step[i]
                    if abs(the_step) > max_step:
                        next.append(x[i] + copysign(max_step[i], the_step))
                    else:
                        next.append(x[i] + the_step)
                return next

            the_step = step
            if abs(the_step) > max_step:
                return x + copysign(max_step, the_step)
            return x + the_step

    return damping_func


def oscillation_checking_wrapper(f, minimum_progress=0.3,
                                 both_sides=False, full=True,
                                 good_err=None):
    checker = oscillation_checker(minimum_progress=minimum_progress,
                                 both_sides=both_sides, good_err=good_err)
    wraps = my_wraps()
    @wraps(f)
    def wrapper(x, *args, **kwargs):
        err_test = err = f(x, *args, **kwargs)
        if not isinstance(err, (float, int, complex)):
            err_test = err[0]
        try:
            oscillating = checker(x, err_test)
        except:
            oscillating = False # Zero division error probably

        if oscillating:
            raise OscillationError("Oscillating")

        return err
    if full:
        return wrapper, checker
    return wrapper


class oscillation_checker(object):
    def __init__(self, minimum_progress=0.3, both_sides=False, good_err=None):
        self.minimum_progress = minimum_progress
        self.both_sides = both_sides
        self.xs_neg = []
        self.xs_pos = []

        self.ys_neg = []
        self.ys_pos = []

        # Provide a number that if the error is under this, no longer be able to return False
        # For example, near phase boundaries newton could be bisecting as it overshoots
        # each step, but is still converging fine
        self.good_err = good_err

    def clear(self):
        self.xs_neg = []
        self.xs_pos = []

        self.ys_neg = []
        self.ys_pos = []

    def is_solve_oscilating(self, x, y):
        if y == 0.0:
            return False
        xs_neg, xs_pos, ys_neg, ys_pos = self.xs_neg, self.xs_pos, self.ys_neg, self.ys_pos
        minimum_progress = self.minimum_progress

        if y < 0.0:
            xs_neg.append(x)
            ys_neg.append(y)
        else:
            xs_pos.append(x)
            ys_pos.append(y)
        if len(xs_pos) > 1 and len(xs_neg) > 1:
            if y < 0:
                dy_cur = y - ys_neg[-2]
                dy_other = ys_pos[-1] - ys_pos[-2]
                gain_neg = abs(dy_cur/y)
                gain_pos = abs(dy_other/ys_pos[-1])
            else:
                dy_cur = y - ys_pos[-2]
                dy_other = ys_neg[-1] - ys_neg[-2]
                gain_pos = abs(dy_cur/y)
                gain_neg = abs(dy_other/ys_neg[-1])

#            print(gain_pos, gain_neg, y)
            if self.both_sides:
                if gain_pos < minimum_progress and gain_neg < minimum_progress:
                    if self.good_err is not None and min(abs(ys_neg[-1]), abs(ys_pos[-1])) < self.good_err:
                        return False
                    return True
            else:
                if gain_pos < minimum_progress or gain_neg < minimum_progress:
                    if self.good_err is not None and min(abs(ys_neg[-1]), abs(ys_pos[-1])) < self.good_err:
                        return False
                    return True
        return False

    __call__ = is_solve_oscilating


def best_bounding_bounds(low, high, f=None, xs_pos=None, ys_pos=None,
                         xs_neg=None, ys_neg=None, fa=None, fb=None):
    r'''Given:
        1) A presumed bracketing interval such as very far out limits on
           physical bounds
        2) A history of a non-bounded search algorithm which did not converge

    Find the best bracketing points which get the algorithm as close to the
    solution as possible.

    Parameters
    ----------
    low : float
        Low bracketing interval (`f` has opposite sign at `low` than `high`),
        [-]
    high : float
        High bracketing interval (`f` has opposite sign at `high` than `low`),
        [-]
    f : callable, optional
        1D function to be solved, [-]
    xs_pos : list[float]
        Unsorted list of `x` values of points with positive `y` values
        previously evaluated, [-]
    ys_pos : list[float]
        Unsorted list of `y` values of points with positive `y` values
        previously evaluated, [-]
    xs_neg : list[float]
        Unsorted list of `x` values of points with negative `y` values
        previously evaluated, [-]
    ys_neg : list[float]
        Unsorted list of `y` values of points with negative `y` values
        previously evaluated, [-]
    fa : float, optional
        Value of function at `low`, used instead of recalculating if provided,
        [-]
    fb : float, optional
        Value of function at `high`, used instead of recalculating if provided,
        [-]

    Returns
    -------
    low : float
        Low bracketing interval (`f` has opposite sign at `low` than `high`),
        [-]
    high : float
        High bracketing interval (`f` has opposite sign at `high` than `low`),
        [-]
    fa : float
        Value of function at `low`, [-]
    fb : float, optional
        Value of function at `high`, [-]

    Notes
    -----
    Negative and/or positive history values can be omitted, but both the `x`
    and `y` lists should be skipped if so.

    More work could be done to handle better the case if the bounds not
    bracketing the root but the function history doing so.
    '''
    if fa is None:
        fa = f(low)
    if fb is None:
        fb = f(high)

    if ys_pos:
        y_min_pos = min(ys_pos)
        x_min_pos = xs_pos[ys_pos.index(y_min_pos)]

        if fa > 0:
            if y_min_pos < fa:
                fa, low = y_min_pos, x_min_pos
        else:
            if y_min_pos < fb:
                fb, high = y_min_pos, x_min_pos

    if ys_neg:
        y_min_neg = max(ys_neg)
        x_min_neg = xs_neg[ys_neg.index(y_min_neg)]

        if fa < 0:
            if y_min_neg > fa:
                fa, low = y_min_neg, x_min_neg
        else:
            if y_min_pos > fb:
                fb, high = y_min_neg, x_min_neg

    if fa*fb > 0:
        raise ValueError("Bounds and previous history do not contain bracketing points")
    return low, high, fa, fb

def bisect(f, a, b, args=(), xtol=1e-12, rtol=2.220446049250313e-16, maxiter=100,
              ytol=None):
    """Port of SciPy's C bisect routine."""
    fa = f(a, *args)
    fb = f(b, *args)
    if fa*fb > 0.0:
        raise ValueError("f(a) and f(b) must have different signs")
    elif fa == 0.0:
        return a
    elif fb == 0.0:
        return b

    dm = b - a
#    iterations = 0.0

    for i in range(maxiter):
        dm *= 0.5
        xm = a + dm
        fm = f(xm, *args)
        if fm*fa >= 0.0:
            a = xm
        abs_dm = fabs(dm)

        if fm == 0.0:
            return xm
        elif ytol is not None:
            if (abs_dm < (xtol + rtol*abs_dm)) and abs(fm) < ytol:
                return xm
        elif (abs_dm < (xtol + rtol*abs_dm)):
            return xm
#        elif gap_detection:
#            dy_dx = abs((fm - fa)/(a-b))
#            if dy_dx > dy_dx_limit:
#                raise DiscontinuityError("Discontinuity detected")

    raise UnconvergedError("Failed to converge after %d iterations" %maxiter)


def ridder(f, a, b, args=(), xtol=_xtol, rtol=_rtol, maxiter=_iter,
              full_output=False, disp=True):
    a_abs, b_abs = fabs(a), fabs(b)
    tol = xtol + rtol*(a_abs if a_abs < b_abs else b_abs)

    fa = f(a, *args)
    fb = f(b, *args)
    if fa*fb > 0.0:
        raise ValueError("f(a) and f(b) must have different signs")
    elif fa == 0.0:
        return a
    elif fb == 0.0:
        return b

    for i in range(maxiter):
        dm = 0.5*(b - a)
        xm = a + dm
        fm = f(xm, *args)
        dn = copysign(1.0/sqrt(fm*fm - fa*fb), fb - fa)*fm*dm

        dn_abs, dm_abs_tol = fabs(dn), fabs(dm) - 0.5*tol
        xn = xm - copysign((dn_abs if dn_abs < dm_abs_tol else dm_abs_tol), dn)
        fn = f(xn, *args)

        if (fn*fm < 0.0):
            a = xn
            fa = fn
            b = xm
            fb = fm
        elif (fn*fa < 0.0):
            b = xn
            fb = fn
        else:
            a = xn
            fa = fn
        tol = xtol + rtol*xn
        if (fn == 0.0 or fabs(b - a) < tol):
            return xn
    raise UnconvergedError("Failed to converge after %d iterations" %maxiter) # numba: delete
#    raise UnconvergedError("Failed to converge") # numba: uncomment

def brenth(f, xa, xb, args=(),
            xtol=1e-12, rtol=4.440892098500626e-16, maxiter=100, ytol=None,
            full_output=False, disp=True, q=False,
            fa=None, fb=None, kwargs={}):
    xpre = xa
    xcur = xb
    xblk = 0.0
    fblk = 0.0
    spre = 0.0
    scur = 0.0

    if fa is None:
        fpre = f(xpre, *args, **kwargs)
    else:
        fpre = fa

    if fb is None:
        fcur = f(xcur, *args, **kwargs)
    else:
        fcur = fb

    if fpre*fcur > 0.0:
        raise NotBoundedError("f(a) and f(b) must have different signs")
    elif fpre == 0.0:
        return xa
    elif fcur == 0.0:
        return xb

    for i in range(maxiter):
        if fpre*fcur < 0.0:
            xblk = xpre
            fblk = fpre
            spre = scur = xcur - xpre
        # Breaks a bunch of tests
#        if fpre == fcur:
#            raise UnconvergedError("Failed to converge - reached equal points after %d iterations" %i)
        if abs(fblk) < abs(fcur):
            xpre = xcur
            xcur = xblk
            xblk = xpre

            fpre = fcur
            fcur = fblk
            fblk = fpre

        delta = 0.5*(xtol + rtol*abs(xcur))
        sbis = 0.5*(xblk - xcur)

        if ytol is not None:
            if fcur == 0.0 or (abs(sbis) < delta) and abs(fcur) < ytol:
                return xcur
        else:
            if fcur == 0.0 or (abs(sbis) < delta):
                return xcur

        if (abs(spre) > delta and abs(fcur) < abs(fpre)):
            if xpre == xblk:
                # interpolate
                stry = -fcur*(xcur - xpre)/(fcur - fpre)
            else:
                # extrapolate
                dpre = (fpre - fcur)/(xpre - xcur)
                dblk = (fblk - fcur)/(xblk - xcur)
                if q:
                    stry = -fcur*(fblk*dblk - fpre*dpre)/(dblk*dpre*(fblk - fpre))
                else:
                    stry = -fcur*(fblk - fpre)/(fblk*dpre - fpre*dblk)
            if (abs(stry + stry) < min(abs(spre), 3.0*abs(sbis) - delta)):
                # accept step
                spre = scur
                scur = stry
            else:
                # bisect
                spre = sbis
                scur = sbis
        else:
            # bisect
            spre = sbis
            scur = sbis

        xpre = xcur
        fpre = fcur
        if abs(scur) > delta:
            xcur += scur
        else:
            if sbis > 0.0:
                xcur += delta
            else:
                xcur -= delta

        fcur = f(xcur, *args, **kwargs)
    raise UnconvergedError("Failed to converge after %d iterations" %maxiter)


def secant(func, x0, args=(), maxiter=100, low=None, high=None, damping=1.0,
           xtol=1.48e-8, ytol=None, x1=None, require_eval=False,
           f0=None, f1=None, bisection=False, same_tol=1.0, kwargs={},
           require_xtol=True):
    p0 = 1.0*x0
    # Logic to take a small step to calculate the approximate derivative
    if x1 is not None:
        p1 = x1
    else:
        if x0 >= 0.0:
            p1 = x0*1.0001 + 1e-4
        else:
            p1 = x0*1.0001 - 1e-4
        # May need to truncate p1
        if low is not None and p1 < low:
            p1 = low
        if high is not None and p1 > high:
            p1 = high

    # Are we already converged on either point? Do not consider checking xtol
    # if so.
    if f0 is None:
        q0 = func(p0, *args, **kwargs)
    else:
        q0 = f0
    if (ytol is not None and abs(q0) < ytol and not require_xtol) or q0 == 0.0:
        return p0

    if f1 is None:
        q1 = func(p1, *args, **kwargs)
    else:
        q1 = f1
    if (ytol is not None and abs(q1) < ytol and not require_xtol) or q1 == 0.0:
        return p1

    if bisection:
        a, b = None, None
        if q1 < 0.0:
            a = p1
        else:
            b = p1
        if q0 < 0.0:
            a = p0
        else:
            b = p0

    for i in range(maxiter):
        # Calculate new point, and truncate if necessary

        if q1 != q0:
            p = p1 - q1*(p1 - p0)/(q1 - q0)*damping
        else:
            p = p1

        if low is not None and p < low:
            p = low
        if high is not None and p > high:
            p = high

        # After computing new point
        if bisection and a is not None and b is not None:
            if not (a < p < b) or (b < p < a):
                p = 0.5*(a + b)

        # Check the exit conditions
        if ytol is not None and xtol is not None:
            # Meet both tolerance - new value is under ytol, and old value
            if abs(q1) < ytol and (not require_xtol or abs(p0 - p1) <= abs(xtol*p0)):
#            if abs(p0 - p1) <= abs(xtol*p0) and abs(q1) < ytol:
                if require_eval:
                    return p1
                return p
        elif xtol is not None:
            if abs(p0 - p1) <= abs(xtol*p0) and not (p0 == p1 and (p0 == low or p0 == high)):
                if require_eval:
                    return p1
                return p
        elif ytol is not None:
            if abs(q1) < ytol:
                if require_eval:
                    return p1
                return p

        # Check to quit after convergence check - may meet criteria
        if q1 == q0:
            # Are we close enough? Run the checks again
            if xtol is not None:
                xtol *= same_tol
            if ytol is not None:
                ytol *= same_tol

            if ytol is not None and xtol is not None:
                # Meet both tolerance - new value is under ytol, and old value
                if abs(p0 - p1) <= abs(xtol * p0) and abs(q1) < ytol:
                    return p
            elif xtol is not None:
                if abs(p0 - p1) <= abs(xtol * p0) and not (p0 == p1 and (p0 == low or p0 == high)):
                    return p
            elif ytol is not None:
                if abs(q1) < ytol:
                    return p

            # Cannot proceed, raise an error
            raise SamePointError("Convergence failed - previous points are the same", q1=q1, p1=p1, q0=q0, p0=p0)


        # Swap the points around
        p0 = p1
        q0 = q1
        p1 = p
        q1 = func(p1, *args, **kwargs)
        if q1 == 0.0:
            return p1
        if bisection:
            if q1 < 0.0:
                a = p1
            else:
                b = p1

    raise UnconvergedError("Failed to converge", iterations=i, point=p, err=q1)

# start with 0.99 and try taking powers of two off of 1
line_search_factors = []
remove = 0.01
for i in range(7):
    line_search_factors.append(1-remove)
    remove*= 2

# once under 0.36, jump to 0.1 and go down by orders of magnitude to 1e-10
tmp = []
remove = 1e-10
for i in range(10):
    tmp.append(remove)
    remove *= 10
tmp.sort(reverse=True)
line_search_factors.extend(tmp)

line_search_factors_low_prec = line_search_factors[3:]

newton_line_search_factors = [1.0] + line_search_factors
newton_line_search_factors_disabled = [1.0]

def one_sided_secant(f, x0, x_flat, args=tuple(), maxiter=100, xtol=1.48e-8, 
                     ytol=None, require_xtol=True, damping=1.0, x1=None, 
                     y_flat=None, max_quadratic_iter=7, low_prec_ls_iter=3,
                     y0=None, y1=None,
                     kwargs={}):
    if x1 is None:
        if x0 >= 0.0:
            x1 = x0*1.0001 + 1e-4
        else:
            x1 = x0*1.0001 - 1e-4

    if y0 is None:
        y0 = f(x0, *args, **kwargs)
    # print(f'Start point: x={x0}, y={y0}')
    if y1 is None:
        y1 = f(x1, *args, **kwargs)
    # print(f'Start point: x={x1}, y={y1}')
    flat_higher_than_x = x_flat > x0
    
    # this is the flat value - all other y values that are flat must be this number
    # we only need to calculate it if not provided
    if y_flat is None:
        y_flat = f(x_flat, *args, **kwargs)
    if y0 == y_flat:
        raise ValueError("The initial y value is the same as the value in the zero-derivative region")
    if y0 == y1:
        raise ValueError("The initial points have the same value, cannot start the search")
    if y1 == y_flat:
        raise ValueError("The second point is also flat, cannot start the search")
        
    # store some other points for higher order steps
    x2 = x3 = y2 = y3 = None

    for i in range(maxiter):
        # # guess the new value based on the two points
        has_step = False
        if x2 is not None and i < max_quadratic_iter:
            try:
                # print('Points for quadratic', [x0, x1, x2], [y0, y1, y2])
                a, b, c = quadratic_from_points(x0, x1, x2, y0, y1, y2)
                # print('Quadratic coefficients', (a, b, c))
                sln = roots_quadratic(a, b, c)
                # print('Quadratic solutions', sln)
                if sln[0].imag == 0:
                    if len(sln) == 2:
                        a_step = (sln[0] - x1)
                        another_step = (sln[1] - x1)
                        # use the closest one
                        if abs(a_step) < abs(another_step):
                            # print('Using quadratic solution', sln[0])
                            step = a_step
                        else:
                            # print('Using quadratic solution', sln[1])
                            step = another_step
                    else:
                        # only got a single step
                        # print('Using quadratic solution', sln[0])
                        step = (sln[0] - x1)
                    has_step = True
                    # print(f'Quadratic desired point:  x={x1 + step}')
            except:
                # print('Quadratic had a numerical error')
                pass
        
        # secant can always work
        if not has_step:
            step = - y1*(x1 - x0)/(y1 - y0)*damping
            # print(f'Secant desired point:  x={x1 + step}')
        
        force_line_search = x_flat <= (x1 + step) if flat_higher_than_x else x_flat >= (x1 + step) 
        if not force_line_search:
            x = x1 + step
            y = f(x, *args, **kwargs)
            # print(f'Iteration: x={x}, y={y}, flat={y==y_flat}')
            if y == y_flat:
                x_flat = x
        else:
            pass
            # print(f'Secant desired point lower than flat point: x={x1 + step}, x_flat={x_flat}')
            
        if force_line_search or y == y_flat:
            # If the step is too big (overshoots the known flat point), recalculate it to be the limit
            if flat_higher_than_x:
                if x_flat <= (x0 + step):
                    step = x_flat - x0
            else:
                if x_flat >= (x0 + step):
                    step = x_flat - x0
            
            
            # Must use linesearch to find a x that gives a working y
            for line_search_factor in (line_search_factors if i > low_prec_ls_iter else line_search_factors_low_prec):
                x = x0 + step*line_search_factor
                y = f(x, *args, **kwargs)
                # print(f'Line search: x={x}, y={y}, flat={y==y_flat}, x_flat={x_flat}')
                if y != y_flat:
                    break
                else:
                    x_flat = x
                    
            if y == y_flat:
                raise ValueError("The line search has finished and no point to continue with was found")
        # Check if we converged, but note this really requires a ytol as the xtol doesn't work well with lsearch
        if ytol is not None and xtol is not None:
            # Meet both tolerance - new value is under ytol, and old value
            if abs(y) < ytol and (abs(x - x0) <= abs(xtol*x)):
                return x
        elif xtol is not None:
            if abs(x - x0) <= abs(xtol*x):
                return x
        elif ytol is not None:
            if abs(y) < ytol:
                return x
            
        # change the points around, forgetting about one of the values
        x0, x1, x2, x3 = x, x0, x1, x2
        y0, y1, y2, y3 = y, y0, y1, y2
    raise UnconvergedError("Failed to converge", iterations=i, point=x, err=y)

def halley_compat_numba(func, x, *args):
    a, b = func(x, *args)
    return a, b, 0.0

def newton(func, x0, fprime=None, args=(), tol=None, maxiter=100,
           fprime2=None, low=None, high=None, damping=1.0, ytol=None,
           xtol=1.48e-8, require_eval=False, damping_func=None,
           bisection=False, gap_detection=False, dy_dx_limit=1e100,
           max_bound_hits=4, kwargs={}):
    """Newton's method designed to be mostly compatible with SciPy's
    implementation, with a few features added and others now implemented.

    1) No tracking of how many iterations have progressed.
    2) No ability to return a RootResults object
    3) No warnings on some cases of bad input (low tolerance, no iterations)
    4) Ability to accept True for either fprime or fprime2, which means that
       they are included in the return value of func
    5) No handling for inf or nan!
    6) Special handling for functions which need to ensure an evaluation at
       the final point
    7) Damping as a constant or a fraction
    8) Ability to perform bisection, optionally specifying a maximum range
    9) Ability to specify minimum and maximum iteration values
    10) Ability to specify a tolerance in the `y` direction
    11) Ability to pass in keyword arguments as well as positional arguments

    From scipy, with some modifications!
    https://github.com/scipy/scipy/blob/v1.1.0/scipy/optimize/zeros.py#L66-L206
    """
    if tol is not None:
        xtol = tol
    p0 = 1.0*x0
#    p1 = p0 = 1.0*x0
#    fval0 = None
    if bisection:
        a, b = None, None
        fa, fb = None, None

    fprime2_included = fprime2 == True
    fprime_included = fprime == True
    if fprime2_included:
        func2 = func
    hit_low, hit_high = 0, 0

    for it in range(maxiter):
#        if fprime2_included: # numba: uncomment
#            fval, fder, fder2 = func(p0, *args) # numba: uncomment
#        else: # numba: uncomment
#            fval, fder = func(p0, *args) # numba: uncomment
#            fder2 = 0.0 # numba: uncomment

        if fprime2_included: # numba: DELETE
            fval, fder, fder2 = func2(p0, *args, **kwargs) # numba: DELETE
        elif fprime_included: # numba: DELETE
            fval, fder = func(p0, *args, **kwargs)
        elif fprime2 is not None: #numba: DELETE
            fval = func(p0, *args, **kwargs) #numba: DELETE
            fder = fprime(p0, *args, **kwargs) #numba: DELETE
            fder2 = fprime2(p0, *args, **kwargs) #numba: DELETE
        else: #numba: DELETE
            fval = func(p0, *args, **kwargs) #numba: DELETE
            fder = fprime(p0, *args, **kwargs) #numba: DELETE

        if fval == 0.0:
            return p0 # Cannot continue or already finished
        elif fder == 0.0:
            if ytol is None or abs(fval) < ytol:
                return p0
            else:
                raise UnconvergedError("Derivative became zero; maxiter (%d) reached, value=%f " %(maxiter, p0))

        if bisection:
            if fval < 0.0:
                a = p0
                fa = fval
            else:
                b = p0 # b always has positive value of error
                fb = fval
        fder_inv = 1.0/fder
        # Compute the next point
        step = fval*fder_inv
        if damping_func is not None:
            if fprime2 is not None:
                step = step/(1.0 - 0.5*step*fder2*fder_inv)
            p = damping_func(p0, -step, damping)
#                variable, derivative, damping_factor

        elif fprime2 is None:
            p = p0 - step*damping
        else:
            p = p0 - step/(1.0 - 0.5*step*fder2*fder_inv)*damping

        if bisection and a is not None and b is not None:
            if (not (a < p < b) and not (b < p < a)):
#                if p < 0.0:
#                    if p < a:
#                    print('bisecting')
                p = 0.5*(a + b)
#                else:
#                    if p > b:
#                        p = 0.5*(a + b)
                if gap_detection:
                    # Change in function value required to get goal in worst case
                    dy_dx = abs((fa- fb)/(a-b))
                    if dy_dx > dy_dx_limit: #or dy_dx > abs(fder)*10:
                        raise DiscontinuityError("Discontinuity detected")

        if low is not None and p < low:
            hit_low += 1
            if p0 == low and hit_low > max_bound_hits:
                if abs(fval) < ytol:
                    return low
                else:
                    raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
                # Stuck - not going to converge, hammering the boundary. Check ytol
            p = low
        if high is not None and p > high:
            hit_high += 1
            if p0 == high and hit_high > max_bound_hits:
                if abs(fval) < ytol:
                    return high
                else:
                    raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
            p = high




        # p0 is last point (fval at that point), p is new

        if ytol is not None and xtol is not None:
            # Meet both tolerance - new value is under ytol, and old value
            if abs(p - p0) < abs(xtol*p) and abs(fval) < ytol:
                if require_eval:
                    return p0
                return p
        elif xtol is not None:
            if abs(p - p0) < abs(xtol*p):
                if require_eval:
                    return p0
                return p
        elif ytol is not None:
            if abs(fval) < ytol:
                if require_eval:
                    return p0
                return p

#            fval0, fval1 = fval, fval0
#            p0, p1 = p, p0
# need a history of fval also
        p0 = p
#    else:
#        return secant(func, x0, args=args, maxiter=maxiter, low=low, high=high,
#                      damping=damping,
#                      xtol=xtol, ytol=ytol, kwargs=kwargs)
#
    raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " %(maxiter, p))

def halley(func, x0, args=(), maxiter=100,
           low=None, high=None, damping=1.0, ytol=None,
           xtol=1.48e-8, require_eval=False, damping_func=None,
           bisection=False,
           max_bound_hits=4, kwargs={}, max_2nd_ratio=1.5):
    p0 = 1.0*x0
    if bisection:
        a, b = None, None
        fa, fb = None, None

    hit_low, hit_high = 0, 0

    for it in range(maxiter):
        fval, fder, fder2 = func(p0, *args)
        if fval == 0.0:
            return p0 # Cannot continue or already finished
        elif fder == 0.0:
            if ytol is None or abs(fval) < ytol:
                return p0
            else:
                raise UnconvergedError("Derivative became zero; maxiter (%d) reached, value=%f " %(maxiter, p0))

        if bisection:
            if fval < 0.0:
                a = p0
                fa = fval
            else:
                b = p0 # b always has positive value of error
                fb = fval

        fder_inv = 1.0/fder
        # Compute the next point
        step = fval*fder_inv
        skipped_halley = False
        if damping_func is not None:
            step = step/(1.0 - 0.5*step*fder2*fder_inv)
            p = damping_func(p0, -step, damping)
        else:
            step2 = step/(1.0 - 0.5*step*fder2*fder_inv)*damping
            if max_2nd_ratio is not None and abs(1.0-step2/step) > max_2nd_ratio:
                skipped_halley = True
                p = p0 - step
            else:
                p = p0 - step2

        if bisection and a is not None and b is not None:
            if (not (a < p < b) and not (b < p < a)):
                p = 0.5*(a + b)

        if low is not None and p < low:
            hit_low += 1
            if p0 == low and hit_low > max_bound_hits:
                if abs(fval) < ytol:
                    return low
                else:
                    raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
                # Stuck - not going to converge, hammering the boundary. Check ytol
            p = low
        if high is not None and p > high:
            hit_high += 1
            if p0 == high and hit_high > max_bound_hits:
                if abs(fval) < ytol:
                    return high
                else:
                    raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
            p = high




        # p0 is last point (fval at that point), p is new
        if not skipped_halley:
            if ytol is not None and xtol is not None:
                # Meet both tolerance - new value is under ytol, and old value
                if abs(p - p0) < abs(xtol*p) and abs(fval) < ytol:
                    if require_eval:
                        return p0
                    return p
            elif xtol is not None:
                if abs(p - p0) < abs(xtol*p):
                    if require_eval:
                        return p0
                    return p
            elif ytol is not None:
                if abs(fval) < ytol:
                    if require_eval:
                        return p0
                    return p

        p0 = p
    raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " %(maxiter, p))

def newton_err(F):
    err = sum([abs(i) for i in F])
    return err

def basic_damping(x, dx, damping, *args):
    N = len(x)
    x2 = [0.0]*N
    for i in range(N):
        x2[i] = x[i] + dx[i]*damping
    return x2

def solve_2_direct(mat, vec):
    ab = mat[0]
    cd = mat[1]
    a, b = ab[0], ab[1]
    c, d = cd[0], cd[1]
    e, f = vec[0], vec[1]

    x0 = 1.0/(a*d - b*c)

    sln = [0.0]*2
    sln[0] = x0*(-b*f + d*e)
    sln[1] = x0*(a*f - c*e)
    return sln

def solve_3_direct(mat, vec):
    a, b, c = mat[0]
    d, e, f = mat[1]
    g, h, i = mat[2]
    j, k, l = vec

    x0 = a*e
    x1 = -b*d + x0
    x2 = a*i - c*g
    x3 = a*f - c*d
    x4 = a*h - b*g
    x5 = x1*x2 - x3*x4
    x6 = 1.0/x5
    x7 = b*x3 - c*x1
    x8 = 1.0/x1
    x9 = d*x4 - g*x1
    x10 = j*x8
    x11 = a*k
    x12 = a*l

    ans = [0.0]*3
    ans[0] = x6*(-k*x8*(b*x5 + x4*x7) + l*x7 + x10*(x0*x5 + x7*x9)/a)
    ans[1] = x6*(-x10*(d*x5 + x3*x9) + x11*x2 - x12*x3)
    ans[2] = x6*(j*x9 + x1*x12 - x11*x4)
    return ans

def solve_4_direct(mat, vec):
    a, b, c, d = mat[0]
    e, f, g, h = mat[1]
    i, j, k, l = mat[2]
    m, n, o, p = mat[3]
    q, r, s, t = vec
    x0 = a*f
    x1 = -b*e + x0
    x2 = x1*(a*k - c*i)
    x3 = a*g - c*e
    x4 = a*j - b*i
    x5 = x2 - x3*x4
    x6 = a*h - d*e
    x7 = a*n - b*m
    x8 = x1*(a*p - d*m) - x6*x7
    x9 = x1*(a*l - d*i) - x4*x6
    x10 = x1*(a*o - c*m) - x3*x7
    x11 = -x10*x9 + x5*x8
    x12 = 1.0/x11
    x13 = -b*x3 + c*x1
    x14 = x13*x9
    x15 = x5*(-b*x6 + d*x1)
    x16 = -x14 + x15
    x17 = 1.0/x5
    x18 = s*x17
    x19 = x10*x4 - x5*x7
    x20 = 1.0/x1
    x21 = x17*x20
    x22 = e*x4 - i*x1
    x23 = x5*(e*x7 - m*x1)
    x24 = x10*x22
    x25 = x23 - x24
    x26 = q*x17
    x27 = x20*x26
    x28 = x3*x9
    x29 = x5*x6
    x30 = a*t
    x31 = -x28 + x29
    x32 = a*r
    x33 = a*s*x1
    x34 = x1*x30
    x35 = -x23 + x24
    ans = [0.0]*4
    ans[0] = x12*(-r*x21*(-x11*(-b*x5 + x13*x4) + x16*x19) + t*(x14 - x15)
             - x18*(-x10*x16 + x11*x13) - x27*(-x11*(x0*x5 - x13*x22) + x16*x25)/a)
    ans[1] = x12*(-a*x18*(-x10*x31 + x11*x3) - x21*x32*(-x11*x2 + x19*x31)
             - x27*(x11*(e*x5 + x22*x3) + x25*x31) + x30*(x28 - x29))
    ans[2] = x12*(-x17*x32*(x11*x4 + x19*x9) + x26*(x11*x22 + x35*x9) + x33*x8 - x34*x9)
    ans[3] = x12*(-q*x35 - x10*x33 + x19*x32 + x34*x5)
    return ans


def newton_system(f, x0, jac, xtol=None, ytol=None, maxiter=100, damping=1.0,
                  args=(), damping_func=None, solve_func=py_solve, line_search=False): # numba: delete
#                  args=(), damping_func=None, solve_func=np.linalg.solve, line_search=False): # numba: uncomment
    jac_also = True if jac == True else False


    if jac_also:
        fcur, j = f(x0, *args)
    else: # numba: delete
        fcur = f(x0, *args)  # numba: delete


    err0 = 0.0
    for v in fcur:
        err0 += abs(v)

    if xtol is None and (ytol is not None and err0 < ytol):
        return x0, 0
    else:
        x = x0
        if not jac_also:  # numba: delete
            j = jac(x, *args)  # numba: delete
            
    factors = newton_line_search_factors if line_search else newton_line_search_factors_disabled

    iteration = 1
    while iteration < maxiter:
        dx = solve_func(j, [-v for v in fcur]) # numba: delete
#        dx = solve_func(j, -fcur) # numba: uncomment
        for factor in factors:
            mult = factor*damping
            if damping_func is None:
#                xnew = x + dx*mult # numba: uncomment
                xnew = [xi + dxi*mult for xi, dxi in zip(x, dx)] # numba: delete
            else:
                xnew = damping_func(x, dx, damping*factor, *args)
            # try:
            if jac_also:
                fnew, jnew = f(xnew, *args)
            else: # numba: delete
                fnew = f(xnew, *args)  # numba: delete
            # except:
            # print(f'Line search calculation with point failed')
                # continue
            err_new = 0.0
            for v in fnew:
                err_new += abs(v)
            # print(f'Line search with error={err_new}, factor {mult}' )
            if err_new < err0:
                break
        if line_search and err_new > err0:
            raise ValueError("Completed line search without reducing the objective function error, cannot proceed")
                
        fcur = fnew
        j = jnew
        err0 = err_new
        x = xnew
        
        iteration += 1

        if xtol is not None:
            if (norm2(fcur) < xtol) and (ytol is None or err0 < ytol):
                break
        elif ytol is not None:
            if err0 < ytol:
                break

        if not jac_also:  # numba: delete
            j = jac(x, *args)  # numba: delete

    if xtol is not None and norm2(fcur) > xtol:
        raise UnconvergedError("Failed to converge")
#        raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s" %(maxiter, x))
    if ytol is not None:
        err0 = 0.0
        for v in fcur:
            err0 += abs(v)
        if err0 > ytol:
#            raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s" %(maxiter, x))
            raise UnconvergedError("Failed to converge")

    return x, iteration

def newton_minimize(f, x0, jac, hess, xtol=None, ytol=None, maxiter=100, damping=1.0,
                  args=(), damping_func=None):
    jac_also = True if jac == True else False
    hess_also = True if hess == True else False
    def err(F):
        err = sum([abs(i) for i in F])
        return err
    if hess_also:
        fcur, j, h = f(x0, *args)
    elif jac_also:
        fcur, j = f(x0, *args)
        h = hess(x0, *args)
    else:
        fcur = f(x0, *args)
        j = jac(x0, *args)
        h = hess(x0, *args)
    iter = 0
    x = x0
    while iter < maxiter:
        dx = py_solve(h, [-v for v in j])
        if damping_func is None:
            x = [xi + dxi*damping for xi, dxi in zip(x, dx)]
        else:
            x = damping_func(x, dx, damping)
        if hess_also:
            fcur, j, h = f(x, *args)
        elif jac_also:
            fcur, j = f(x, *args)
            h = hess(x, *args)
        else:
            fcur = f(x, *args)
            j = jac(x, *args)
            h = hess(x, *args)

        iter += 1
        if xtol is not None and norm2(j) < xtol:
            break
        if ytol is not None and err(j) < ytol:
            break

    if xtol is not None and norm2(j) > xtol:
        raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s " %(maxiter, x))
    if ytol is not None and err(j) > ytol:
        raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s " %(maxiter, x))

    return x, iter


def broyden2(xs, fun, jac, xtol=1e-7, maxiter=100, jac_has_fun=False,
             skip_J=False, args=()):
    iter = 0
    if skip_J:
        fcur = fun(xs, *args)
        N = len(fcur)
        J = eye(N)
    elif jac_has_fun:
        fcur, J = jac(xs, *args)
        J = inv(J)
    else:
        fcur = fun(xs, *args)
        J = inv(jac(xs, *args))

    N = len(fcur)
    eqns = range(N)

    err = 0.0
    for fi in fcur:
        err += abs(fi)

    while err > xtol and iter < maxiter:
        s = dot(J, fcur)

        xs = [xs[i] - s[i] for i in eqns]

        fnew = fun(xs, *args)
        z = [fnew[i] - fcur[i] for i in eqns]

        u = dot(J, z)

        d = [-i for i in s]


        dmu = [d[i]-u[i] for i in eqns]
        dmu_d = inner_product(dmu, d)
        den_inv = 1.0/inner_product(d, u)
        factor = den_inv*dmu_d
        J_delta = [[factor*j for j in row] for row in J]
        for i in eqns:
            for j in eqns:
                J[i][j] += J_delta[i][j]

        fcur = fnew
        iter += 1
        err = 0.0
        for fi in fcur:
            err += abs(fi)

    return xs, iter

def normalize(values):
    r'''Simple function which normalizes a series of values to be from 0 to 1,
    and for their sum to add to 1.

    .. math::
        x = \frac{x}{sum_i x_i}

    Parameters
    ----------
    values : array-like
        array of values

    Returns
    -------
    fractions : array-like
        Array of values from 0 to 1

    Notes
    -----
    Does not work on negative values, or handle the case where the sum is zero.

    Examples
    --------
    >>> normalize([3, 2, 1])
    [0.5, 0.3333333333333333, 0.16666666666666666]
    '''
    tot_inv = 1.0/sum(values)
    return [i*tot_inv for i in values]

# NOTE: the first value of each array is used; it is only the indexes that
# are adjusted for fortran
def func_35_splev(arg, t, l, l1, k2, nk1):
    # minus 1 index
    if arg >= t[l-1] or l1 == k2:
        arg, t, l, l1, nk1, leave = func_40_splev(arg, t, l, l1, nk1)
        # Always leaves here
        return arg, t, l, l1, k2, nk1

    l1 = l
    l = l - 1
    arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)
    return arg, t, l, l1, k2, nk1

def func_40_splev(arg, t, l, l1, nk1):
    if arg < t[l1-1] or l == nk1: # minus 1 index
        return arg, t, l, l1, nk1, 1
    l = l1
    l1 = l + 1
    arg, t, l, l1, nk1, leave = func_40_splev(arg, t, l, l1, nk1)
    return arg, t, l, l1, nk1, leave

def py_splev(x, tck, ext=0, t=None, c=None, k=None):
    """Evaluate a B-spline using a pure-python port of FITPACK's splev. This is
    not fully featured in that it does not support calculating derivatives.
    Takes the knots and coefficients of a B-spline tuple, and returns the value
    of the smoothing polynomial.

    Parameters
    ----------
    x : float or list[float]
        An point or array of points at which to calculate and return the value
        of the  spline, [-]
    tck : 3-tuple
        Ssequence of length 3 returned by
        `splrep` containing the knots, coefficients, and degree
        of the spline, [-]
    ext : int, optional, default 0
        If `x` is not within the range of the spline, this handles the
        calculation of the results.

        * For ext=0, extrapolate the value
        * For ext=1, return 0 as the value
        * For ext=2, raise a ValueError on that point and fail to return values
        * For ext=3, return the boundary value as the value

    Returns
    -------
    y : list
        The array of calculated values; the spline function evaluated at
        the points in `x`, [-]

    Notes
    -----
    The speed of this for a scalar value in CPython is approximately 15%
    slower than SciPy's FITPACK interface. In PyPy, this is 10-20 times faster
    than using it (benchmarked on PyPy 6).

    There could be more bugs in this port.
    """
    e = ext
    if tck is not None:
        t, c, k = tck
    x = [x]
#    if isinstance(x, (float, int, complex)):
#        x = [x]

    m = 1#len(x)
    n = len(t)
    y = [] # output array

    k1 = k + 1
    k2 = k1 + 1
    nk1 = n - k1
    tb = t[k1-1] # -1 to get right index
    te = t[nk1 ]  # -1 to get right index; + 1 - 1
    l = k1
    l1 = l + 1

    for i in range(0, m): # m is only 1
        # i only used in loop for 1
        arg = x[i]
        if arg < tb or arg > te:
            if e == 0:
                arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)
            elif e == 1:
                y.append(0.0)
                continue
            elif e == 2:
                raise ValueError("X value not in domain; set `ext` to 0 to "
                                 "extrapolate")
            elif e == 3:
                if arg < tb:
                    arg = tb
                else:
                    arg = te
                arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)
        else:
            arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)

        # Local arrays used in fpbspl and to carry its result
        h = [0.0]*20
        hh = [0.0]*19

        fpbspl(t, n, k, arg, l, h, hh)
        sp = 0.0E0
        ll = l - k1
        for j in range(0, k1):
            ll = ll + 1
            sp = sp + c[ll-1]*h[j] # -1 to get right index
        y.append(sp)
    return y[0]
#    if len(y) == 1:
#        return y[0]
#    return y


def py_bisplev(x, y, tck, dx=0, dy=0):
    """Evaluate a bivariate B-spline or its derivatives. For scalars, returns a
    float; for other inputs, mimics the formats of SciPy's `bisplev`.

    Parameters
    ----------
    x : float or list[float]
        x value (rank 1), [-]
    y : float or list[float]
        y value (rank 1), [-]
    tck : tuple(list, list, list, int, int)
        Tuple of knot locations, coefficients, and the degree of the spline,
        [tx, ty, c, kx, ky], [-]
    dx : int, optional
        Order of partial derivative with respect to `x`, [-]
    dy : int, optional
        Order of partial derivative with respect to `y`, [-]

    Returns
    -------
    values : float or list[list[float]]
        Calculated values from spline or their derivatives; according to the
        same format as SciPy's `bisplev`, [-]

    Notes
    -----
    Use `bisplrep` to generate the `tck` representation; there is no Python
    port of it.
    """
    tx, ty, c, kx, ky = tck
    if isinstance(x, (float, int)):
        x = [x]
    if isinstance(y, (float, int)):
        y = [y]

    z = [[cy_bispev(tx, ty, c, kx, ky, [xi], [yi])[0] for yi in y] for xi in x]
    if len(x) == len(y) == 1:
        return z[0][0]
    return z


def fpbspl(t, n, k, x, l, h, hh):
    """subroutine fpbspl evaluates the (k+1) non-zero b-splines of degree k at
    t(l) <= x < t(l+1) using the stable recurrence relation of de boor and cox.

    All arrays are 1d! Optimized the assignment and order and so on.
    """
    h[0] = 1.0
    for j in range(1, k + 1):
        hh[0:j] = h[0:j]
        h[0] = 0.0
        for i in range(j):
            li = l+i
            f = hh[i]/(t[li] - t[li - j])
            h[i] = h[i] + f*(t[li] - x)
            h[i + 1] = f*(x - t[li - j])


def init_w(t, k, x, lx, w):
    tb = t[k]
    n = len(t)
    m = len(x)
    h = [0]*6
    hh = [0]*5
    te = t[n - k - 1]
    l1 = k + 1
    l2 = l1 + 1
    for i in range(m):
        arg = x[i]
        if arg < tb:
            arg = tb
        if arg > te:
            arg = te
        while not (arg < t[l1] or l1 == (n - k - 1)):
            l1 = l2
            l2 = l1 + 1
        fpbspl(t, n, k, arg, l1, h, hh)

        lx[i] = l1 - k - 1
        for j in range(k + 1):
            w[i][j] = h[j]


def cy_bispev(tx, ty, c, kx, ky, x, y):
    """Possible optimization: Do not evaluate derivatives, ever."""
    nx = len(tx)
    ny = len(ty)
    mx = len(x)
    my = len(y)

    kx1 = kx + 1
    ky1 = ky + 1

    nkx1 = nx - kx1
    nky1 = ny - ky1

    wx = [[0.0]*kx1]*mx
    wy = [[0.0]*ky1]*my
    lx = [0]*mx
    ly = [0]*my

    size_z = mx*my

    z = [0.0]*size_z
    init_w(tx, kx, x, lx, wx)
    init_w(ty, ky, y, ly, wy)

    for j in range(my):
        for i in range(mx):
            sp = 0.0
            err = 0.0
            for i1 in range(kx1):
                for j1 in range(ky1):
                    l2 = lx[i]*nky1 + ly[j] + i1*nky1 + j1
                    a = c[l2]*wx[i][i1]*wy[j][j1] - err
                    tmp = sp + a
                    err = (tmp - sp) - a
                    sp = tmp
            z[j*mx + i] += sp
    return z


p_0_70 = array_if_needed([0.06184590404457956, -0.7460693871557973, 2.2435704485433376, -2.1944070385048526, 0.3382265629285811, 0.2791966558569478])
q_0_07 = array_if_needed([-0.005308735283483908, 0.1823421262956287, -1.2364596896290079, 2.9897802200092296, -2.9365321202088004, 1.0])
p_07_099 = array_if_needed([7543860.817140365, -10254250.429758755, -4186383.973408412, 7724476.972409749, -3130743.609030545, 600806.068543299, -62981.15051292659, 3696.7937385473397, -114.06795167646395, 1.4406337969700391])
q_07_099 = array_if_needed([-1262997.3422452002, 10684514.56076485, -16931658.916668657, 10275996.02842749, -3079141.9506451315, 511164.4690136096, -49254.56172495263, 2738.0399260270983, -81.36790509581284, 1.0])
p_099_1 = array_if_needed([8.548256176424551e+34, 1.8485781239087334e+35, -2.1706889553798647e+34, 8.318563643438321e+32, -1.559802348661511e+31, 1.698939241177209e+29, -1.180285031647229e+27, 5.531049937687143e+24, -1.8085903366375877e+22, 4.203276811951035e+19, -6.98211620300421e+16, 82281997048841.92, -67157299796.61345, 36084814.54808544, -11478.108105137717, 1.6370226052761176])
q_099_1 = array_if_needed([-1.9763570499484274e+35, 1.4813997374958851e+35, -1.4773854824041134e+34, 5.38853721252814e+32, -9.882387315028929e+30, 1.0635231532999732e+29, -7.334629044071992e+26, 3.420655574477631e+24, -1.1147787784365177e+22, 2.584530363912858e+19, -4.285376337404043e+16, 50430830490687.56, -41115254924.43107, 22072284.971253656, -7015.799744041691, 1.0])

def polylog2(x):
    r'''Simple function to calculate PolyLog(2, x) from ranges 0 <= x <= 1,
    with relative error guaranteed to be < 1E-7 from 0 to 0.99999. This
    is a Pade approximation, with three coefficient sets with splits at 0.7
    and 0.99. An exception is raised if x is under 0 or above 1.


    Parameters
    ----------
    x : float
        Value to evaluate PolyLog(2, x) T

    Returns
    -------
    y : float
        Evaluated result

    Notes
    -----
    Efficient (2-4 microseconds). No implementation of this function exists in
    SciPy. Derived with mpmath's pade approximation.
    Required for the entropy integral of
    :obj:`thermo.heat_capacity.Zabransky_quasi_polynomial`.

    Examples
    --------
    >>> polylog2(0.5)
    0.5822405264516294
    '''
    if 0 <= x <= 0.7:
        p = p_0_70
        q = q_0_07
        offset = 0.26
    elif 0.7 < x <= 0.99:
        p = p_07_099
        q = q_07_099
        offset = 0.95
    elif 0.99 < x <= 1:
        p = p_099_1
        q = q_099_1
        offset = 0.999
    else:
        raise ValueError('Approximation is valid between 0 and 1 only.')
    x = x - offset
    return horner(p, x)/horner(q, x)



def max_abs_error(data, calc):
    max_err = 0.0
    N = len(data)
    for i in range(N):
        diff = abs(data[i] - calc[i])
        if diff > max_err:
            max_err = diff
    return max_err

def max_abs_rel_error(data, calc):
    max_err = 0.0
    N = len(data)
    for i in range(N):
        diff = abs((data[i] - calc[i])/data[i])
        if diff > max_err:
            max_err = diff
    return max_err

def max_squared_error(data, calc):
    max_err = 0.0
    N = len(data)
    for i in range(N):
        diff = abs(data[i] - calc[i])
        diff *= diff
        if diff > max_err:
            max_err = diff
    return max_err

def max_squared_rel_error(data, calc):
    max_err = 0.0
    N = len(data)
    for i in range(N):
        diff = abs((data[i] - calc[i])/data[i])
        diff *= diff
        if diff > max_err:
            max_err = diff
    return max_err

def mean_abs_error(data, calc):
    mean_err = 0.0
    N = len(data)
    for i in range(N): 
        mean_err += abs(data[i] - calc[i])
    return mean_err/N

def mean_abs_rel_error(data, calc):
    mean_err = 0.0
    N = len(data)
    for i in range(N):
        if data[i] == 0.0:
            if calc[i] == 0.0:
                pass
            else:
                mean_err += 1.0
        else:
            mean_err += abs((data[i] - calc[i])/data[i])
    return mean_err/N

def mean_squared_error(data, calc):
    mean_err = 0.0
    N = len(data)
    for i in range(N):
        err = abs(data[i] - calc[i])
        mean_err += err*err
    return mean_err/N

def mean_squared_rel_error(data, calc):
    mean_err = 0.0
    N = len(data)
    for i in range(N):
        err = abs((data[i] - calc[i])/data[i])
        mean_err += err*err
    return mean_err/N

global sp_root
sp_root = None
def root(*args, **kwargs):
    global sp_root
    if sp_root is None:
        from scipy.optimize import root as sp_root
    return sp_root(*args, **kwargs)

global sp_minimize
sp_minimize = None
def minimize(*args, **kwargs):
    global sp_minimize
    if sp_minimize is None:
        from scipy.optimize import minimize as sp_minimize
    return sp_minimize(*args, **kwargs)


global sp_fsolve
sp_fsolve = None
def fsolve(*args, **kwargs):
    global sp_fsolve
    if sp_fsolve is None:
        from scipy.optimize import fsolve as sp_fsolve
    return sp_fsolve(*args, **kwargs)

global sp_curve_fit
sp_curve_fit = None
def curve_fit(*args, **kwargs):
    global sp_curve_fit
    if sp_curve_fit is None:
        from scipy.optimize import curve_fit as sp_curve_fit
    return sp_curve_fit(*args, **kwargs)

global sp_leastsq
sp_leastsq = None
def leastsq(*args, **kwargs):
    global sp_leastsq
    if sp_leastsq is None:
        from scipy.optimize import leastsq as sp_leastsq
    return sp_leastsq(*args, **kwargs)

global sp_differential_evolution
sp_differential_evolution = None
def differential_evolution(*args, **kwargs):
    global sp_differential_evolution
    if sp_differential_evolution is None:
        from scipy.optimize import differential_evolution as sp_differential_evolution
    return sp_differential_evolution(*args, **kwargs)

global sp_lmder
sp_lmder = None
def lmder(*args, **kwargs):
    global sp_lmder
    if sp_lmder is None:
        from scipy.optimize._minpack import _lmder as sp_lmder
    return sp_lmder(*args, **kwargs)

global sp_lmfit
sp_lmfit = None
def lmfit(*args, **kwargs):
    global sp_lmfit
    if sp_lmfit is None:
        from scipy.optimize._minpack import _lmfit as sp_lmfit
    return sp_lmfit(*args, **kwargs)

def fixed_quad_Gauss_Kronrod(f, a, b, k_points, k_weights, l_weights, args):
    '''
    Note: This type of function cannot be fast in numba right now, the function
    call is too slow!
    https://numba.pydata.org/numba-doc/dev/user/faq.html#can-i-pass-a-function-as-an-argument-to-a-jitted-function
    '''
    val_gauss_kronrod = val_gauss_legendre = 0.0
    diff = b - a
    fact = 0.5*diff
    N = len(k_points)
#     center = N//2
#     sp = [0.0]*N
#     fx_gk = [0.0]*N
#     fx_gl = [0.0]*center
    k = 0
    for i in range(N):
        x0 = 0.5*(1.0 - k_points[i])
        x1 = 0.5*(1.0 + k_points[i])
#         sp[i] =
        x = a*x0 + b*x1
#         fx_gk[i] =
        y = f(x, *args)
        val_gauss_kronrod += fact*y*k_weights[i]
        if i%2:
#             fx_gl[k] = y
            val_gauss_legendre += fact*y*l_weights[k]
            k += 1
    return val_gauss_kronrod, val_gauss_kronrod-val_gauss_legendre

def quad_adaptive(f, a, b, args=(), kronrod_points=array_if_needed(kronrod_points[10]),
                  kronrod_weights=array_if_needed(kronrod_weights[10]), legendre_weights=array_if_needed(legendre_weights[10]),
                  epsrel=1.49e-8, epsabs=1.49e-8, depth=0, points=None):
    # Disregard `points` for now
    area, err_abs = fixed_quad_Gauss_Kronrod(f, a, b, kronrod_points, kronrod_weights,
                                             legendre_weights, args)
    # Match behavior, documented at https://www.johndcook.com/blog/2012/03/20/scipy-integration/
    #and with a good test case at https://www.johndcook.com/blog/2012/03/20/scipy-integration/
    if (abs(err_abs) < epsabs or (area == 0.0 or abs(err_abs/area) < epsrel)) or depth > 6:
#        print((a, b), area, abs(err_abs),  epsabs, abs(err_abs/area), epsrel, depth)
        return area, err_abs

    mid = a + (b-a)*0.5
    area_A, err_abs_A = quad_adaptive(f, a, mid, args, kronrod_points, kronrod_weights, legendre_weights,
                    epsrel=epsrel, epsabs=epsabs*0.5, depth=depth+1)
    area_B, err_abs_B = quad_adaptive(f, mid, b, args, kronrod_points, kronrod_weights, legendre_weights,
                    epsrel=epsrel, epsabs=epsabs*0.5, depth=depth+1)
    return area_A + area_B, abs(err_abs_A) + abs(err_abs_B)

global sp_quad
sp_quad = None
def lazy_quad(f, a, b, args=(), epsrel=1.49e-08, epsabs=1.49e-8, **kwargs):
    global sp_quad
    if not IS_PYPY:
        if sp_quad is None:
            from scipy.integrate import quad as sp_quad
        return sp_quad(f, a, b, args, epsrel=epsrel, epsabs=epsabs, **kwargs)
    else:
        return quad_adaptive(f, a, b, args=args, epsrel=epsrel, epsabs=epsabs)
#        n = 300
#        return fixed_quad_Gauss_Kronrod(f, a, b, kronrod_points[n], kronrod_weights[n], legendre_weights[n], args)


def _call_nquad(x, func, range_funcs, epsrel, epsabs, *args):
    return nquad(func, range_funcs, args=(x,) +args , epsrel=epsrel, epsabs=epsabs)

def nquad(func, ranges, args=(), epsrel=1.48e-8, epsabs=1.48e-8):
    my_low, my_high = ranges[-1](*args)
    if len(ranges) == 1:
        return quad_adaptive(func, my_low, my_high, args=args, epsrel=epsrel, epsabs=epsabs)
    #
    return quad_adaptive(_call_nquad, my_low, my_high,
                         args=(func, ranges[:-1], epsrel, epsabs)  +args,
                         epsrel=epsrel, epsabs=epsabs)

def dblquad(func, a, b, hfun, gfun, args=(), epsrel=1.48e-12, epsabs=1.48e-15):
    """Nominally working, but trying to use it has exposed the expected bugs in
    `quad_adaptive`."""
    def inner_func(y, *args):
        full_args = (y,)+args
        quad_fluids = quad_adaptive(func, hfun(y, *args), gfun(y, *args), args=full_args, epsrel=epsrel, epsabs=epsabs)[0]
        # from scipy.integrate import quad as quad2
        # quad_sp = quad2(func, hfun(y), gfun(y), args=full_args, epsrel=epsrel, epsabs=epsabs)[0]
        # print(quad_fluids, quad_sp, hfun(y), gfun(y), full_args, )
        return quad_fluids
#         return quad(func, hfun(y), gfun(y), args=(y,)+args, epsrel=epsrel, epsabs=epsabs)[0]
    return quad_adaptive(inner_func, a, b, args=args, epsrel=epsrel, epsabs=epsabs)

if IS_PYPY:
    quad = quad_adaptive
else:
    quad = lazy_quad


fit_minimization_targets = {'MeanAbsErr': mean_abs_error,
                            'MeanRelErr': mean_abs_rel_error,
                            'MeanSquareErr': mean_squared_error,
                            'MeanSquareRelErr': mean_squared_rel_error,
                            'MaxAbsErr': max_abs_error,
                            'MaxRelErr': max_abs_rel_error,
                            'MaxSquareErr': max_squared_error,
                            'MaxSquareRelErr': max_squared_rel_error,
                            }


def py_factorial(n):
    if n < 0:
        raise ValueError("Positive values only")
    factorial = 1
    for i in range(2, n + 1):
        factorial *= i
    return factorial
try:
    from math import factorial
except:
    factorial = py_factorial

# interp, horner, derivative methods (and maybe newton?) should always be used.
if not IS_PYPY:
    def splev(*args, **kwargs):
        from scipy.interpolate import splev
        return splev(*args, **kwargs)
    def bisplev(*args, **kwargs):
        from scipy.interpolate import bisplev
        return bisplev(*args, **kwargs)

else:
    splev, bisplev = py_splev, py_bisplev

# Try out mpmath for special functions anyway
has_scipy = False
if not SKIP_DEPENDENCIES and not is_micropython and not is_ironpython:
    has_scipy = True
    # try:
    #     import scipy
    #     has_scipy = True
    # except ImportError:
    #     has_scipy = False
else:
    has_scipy = False

erf = None
try:
    from math import erf
except ImportError:
    # python 2.6 or other implementations?
    pass




def _lambertw_err(x, y):
    return x*exp(x) - y
def py_lambertw(y, k=0):
    """For x > 0, the is always only one real solution For -1/e < x < 0, two
    real solutions.

    Besides compatibility with scipy, the result should have a complex part
    because micropython doesn't support .real on floats
    """
    # Works for real inputs only, two main branches
    if k == 0:
        # Branches dead at -1
        # -1 is hard limit for real in this branch
        # 700 is safe upper limit for exp
        # Input should be between -1 and +BIGNUMBER
        return brenth(_lambertw_err, -1.0, 700.0, (y,)) + 0.0j
    elif k == -1:
        # Input should be between 0 and -1/e
        # not a big input range!
        return brenth(_lambertw_err, -700.0, -1.0, (y,)) + 0.0j
    else:
        raise ValueError("Other branches not supported")
#has_scipy = False
if IS_PYPY:
    lambertw = py_lambertw

if has_scipy:
    if not IS_PYPY:
        def lambertw(*args, **kwargs):
            from scipy.special import lambertw
            return lambertw(*args, **kwargs)
    def ellipe(m):
        from scipy.special import ellipe
        return ellipe(m)
    def gammaincc(*args, **kwargs):
        from scipy.special import gammaincc
        return gammaincc(*args, **kwargs)
    def i1(*args, **kwargs):
        from scipy.special import i1
        return i1(*args, **kwargs)
    def i0(*args, **kwargs):
        from scipy.special import i0
        return i0(*args, **kwargs)
    def k1(*args, **kwargs):
        from scipy.special import k1
        return k1(*args, **kwargs)
    def k0(*args, **kwargs):
        from scipy.special import k0
        return k0(*args, **kwargs)
    def iv(*args, **kwargs):
        from scipy.special import iv
        return iv(*args, **kwargs)
    def hyp2f1(*args, **kwargs):
        from scipy.special import hyp2f1
        return hyp2f1(*args, **kwargs)
    def ellipkinc(phi, m):
        from scipy.special import ellipkinc
        return ellipkinc(phi, m)
    def ellipeinc(phi, m):
        from scipy.special import ellipeinc
        return ellipeinc(phi, m)
    if erf is None:
        def erf(*args, **kwargs):
            from scipy.special import erf
            return erf(*args, **kwargs)


#    from scipy.special import lambertw, ellipe, gammaincc # fluids
#    from scipy.special import i1, i0, k1, k0, iv # ht
#    from scipy.special import hyp2f1
#    if erf is None:
#        from scipy.special import erf
else:
    lambertw = py_lambertw
        # scipy is not available... fall back to mpmath as a Pure-Python implementation
        # However, lazy load all functions
    #    from mpmath import lambertw # Same branches as scipy, supports .real
            # Figured out this definition from test_precompute_gammainc.py in scipy
    if erf is None:
        def erf(*args, **kwargs):
            import mpmath
            return mpmath.erf(*args, **kwargs)

    def gammaincc(a, x):
        import mpmath
        return mpmath.gammainc(a, a=x, regularized=True)

    def ellipe(*args, **kwargs):
        import mpmath
        return mpmath.ellipe(*args, **kwargs)

    def gammaincc(a, x):
        import mpmath
        return mpmath.gammainc(a, a=x, regularized=True)

    def iv(*args, **kwargs):
        import mpmath
        return mpmath.besseli(*args, **kwargs)

    def hyp2f1(*args, **kwargs):
        import mpmath
        return mpmath.hyp2f1(*args, **kwargs)

    def iv(*args, **kwargs):
        import mpmath
        return mpmath.besseli(*args, **kwargs)
    def i1(x):
        import mpmath
        return mpmath.mpmath.besseli(1, x)
    def i0(x):
        import mpmath
        return mpmath.mpmath.besseli(0, x)
    def k1(x):
        import mpmath
        return mpmath.mpmath.besselk(1, x)
    def k0(x):
        import mpmath
        return mpmath.mpmath.besselk(0, x)
    def ellipkinc(phi, m):
        import mpmath
        return mpmath.mpmath.ellipf(phi, m)
    def ellipeinc(phi, m):
        import mpmath
        return mpmath.ellipe.ellipeinc(phi, m)

try:
    if FORCE_PYPY:
        lambertw = py_lambertw
        from scipy.special import ellipe, gammaincc, gamma, ellipkinc, ellipeinc # fluids
        from scipy.special import i1, i0, k1, k0, iv # ht
        from scipy.special import hyp2f1
        if erf is None:
            from scipy.special import erf

except:
    pass