1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
|
# -*- coding: utf-8 -*-
# type: ignore
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018, 2019, 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicensse, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from __future__ import division
from math import (sin, exp, pi, fabs, copysign, log, isinf, acos, cos, sin,
atan2, asinh, sqrt, gamma)
from cmath import sqrt as csqrt, log as clog
import sys
from fluids.numerics.arrays import (solve as py_solve, inv, dot, norm2, inner_product, eye,
array_as_tridiagonals, tridiagonals_as_array,
solve_tridiagonal, subset_matrix)
from fluids.numerics.special import (py_hypot, py_cacos, py_catan, py_catanh,
trunc_exp, trunc_log)
__all__ = ['isclose', 'horner', 'horner_and_der', 'horner_and_der2',
'horner_and_der3', 'quadratic_from_f_ders', 'chebval', 'interp',
'linspace', 'logspace', 'cumsum', 'diff', 'basic_damping',
'is_poly_negative', 'is_poly_positive',
'implementation_optimize_tck', 'tck_interp2d_linear',
'bisect', 'ridder', 'brenth', 'newton', 'secant', 'halley',
'one_sided_secant',
'splev', 'bisplev', 'derivative', 'jacobian', 'hessian',
'normalize', 'oscillation_checker',
'IS_PYPY', 'roots_cubic', 'roots_quartic', 'newton_system',
'broyden2', 'basic_damping', 'solve_2_direct', 'solve_3_direct',
'solve_4_direct', 'sincos', 'horner_and_der4',
'lambertw', 'ellipe', 'gamma', 'gammaincc', 'erf',
'i1', 'i0', 'k1', 'k0', 'iv', 'mean', 'polylog2', 'roots_quadratic',
'numpy', 'nquad', 'catanh', 'factorial',
'polyint_over_x', 'horner_log', 'polyint', 'zeros', 'full',
'chebder', 'chebint', 'exp_cheb',
'polyder', 'make_damp_initial', 'quadratic_from_points',
'OscillationError', 'UnconvergedError', 'caching_decorator',
'NoSolutionError', 'SamePointError', 'NotBoundedError',
'damping_maintain_sign', 'oscillation_checking_wrapper',
'trunc_exp', 'trunc_log', 'fit_integral_linear_extrapolation',
'fit_integral_over_T_linear_extrapolation',
'poly_fit_integral_value', 'poly_fit_integral_over_T_value',
'evaluate_linear_fits', 'evaluate_linear_fits_d',
'evaluate_linear_fits_d2',
'best_bounding_bounds', 'newton_minimize', 'array_as_tridiagonals',
'tridiagonals_as_array', 'solve_tridiagonal', 'subset_matrix',
'assert_close', 'assert_close1d', 'assert_close2d', 'assert_close3d',
'assert_close4d', 'translate_bound_func', 'translate_bound_jac',
'translate_bound_f_jac', 'curve_fit',
'quad', 'quad_adaptive', 'stable_poly_to_unstable',
'std', 'min_max_ratios', 'detect_outlier_normal',
'max_abs_error', 'max_abs_rel_error', 'max_squared_error',
'max_squared_rel_error', 'mean_abs_error', 'mean_abs_rel_error',
'mean_squared_error', 'mean_squared_rel_error',
# Complex number math missing in micropython
'cacos', 'catan',
'deflate_cubic_real_roots', 'fit_minimization_targets',
'root', 'minimize', 'fsolve', 'differential_evolution',
'lmder', 'lmfit', 'horner_backwards', 'exp_horner_backwards',
'horner_backwards_ln_tau', 'exp_horner_backwards_ln_tau',
'exp_horner_backwards_ln_tau_and_der', 'exp_horner_backwards_ln_tau_and_der2',
'exp_poly_ln_tau_coeffs2', 'exp_poly_ln_tau_coeffs3',
'exp_horner_backwards_and_der', 'exp_horner_backwards_and_der2',
'exp_horner_backwards_and_der3',
'horner_backwards_ln_tau_and_der', 'horner_backwards_ln_tau_and_der2',
'horner_backwards_ln_tau_and_der3',
'horner_domain', 'polynomial_offset_scale', 'horner_stable',
'horner_stable_and_der', 'horner_stable_and_der2',
'horner_stable_and_der3', 'horner_stable_and_der4',
'exp_horner_stable', 'exp_horner_stable_and_der',
'exp_horner_stable_and_der2', 'exp_horner_stable_and_der3',
'exp_cheb_and_der', 'exp_cheb_and_der2', 'exp_cheb_and_der3',
'chebval_ln_tau', 'chebval_ln_tau_and_der',
'chebval_ln_tau_and_der2', 'chebval_ln_tau_and_der3',
'horner_stable_ln_tau', 'horner_stable_ln_tau_and_der',
'horner_stable_ln_tau_and_der2', 'horner_stable_ln_tau_and_der3',
'exp_cheb_ln_tau', 'exp_cheb_ln_tau_and_der', 'exp_cheb_ln_tau_and_der2',
'exp_horner_stable_ln_tau', 'exp_horner_stable_ln_tau_and_der',
'exp_horner_stable_ln_tau_and_der2',
]
from fluids.numerics import doubledouble
from fluids.numerics.doubledouble import *
__all__.extend(doubledouble.__all__)
__numba_additional_funcs__ = ['py_bisplev', 'py_splev', 'binary_search',
'py_lambertw', '_lambertw_err', 'newton_err',
'norm2', 'py_solve', 'func_35_splev', 'func_40_splev',
'quad_adaptive', 'fixed_quad_Gauss_Kronrod',
'halley_compat_numba',
]
nan = float("nan")
inf = float("inf")
SKIP_DEPENDENCIES = False # for testing
class FakePackage(object):
pkg = None
def __getattr__(self, name):
raise ImportError('%s in not installed and required by this feature' %(self.pkg))
def __init__(self, pkg):
self.pkg = pkg
version_components = sys.version.split('.')
PY_MAJOR, PY_MINOR = int(version_components[0]), int(version_components[1])
PY37 = (PY_MAJOR, PY_MINOR) >= (3, 7)
try:
# The right way imports the platform module which costs to ms to load!
# implementation = platform.python_implementation()
IS_PYPY = 'PyPy' in sys.version
except AttributeError:
IS_PYPY = False
# Hacks for numba - allow the module to run in different ways
try:
IS_PYPY = FORCE_PYPY
except:
pass
try:
array_if_needed
except:
array_if_needed = lambda x: x
try:
is_micropython = sys.implementation.name == 'micropython'
if is_micropython:
IS_PYPY = True
except:
is_micropython = False
try:
is_ironpython = sys.implementation.name == 'ironpython'
if is_ironpython:
IS_PYPY = True
except:
is_ironpython = False
if is_micropython:
hypot = py_hypot
def sincos(x):
return sin(x), cos(x)
try:
if IS_PYPY:
def sincos(x):
# fast implementation based of cephes and go
PI4A = 7.85398125648498535156e-1
PI4B = 3.77489470793079817668e-8
PI4C = 2.69515142907905952645e-15
M4PI = 1.273239544735162542821171882678754627704620361328125 #// 4/pi
sinSign, cosSign = False, False
if x < 0:
x = -x
sinSign = True
j = int(x * M4PI)
y = float(j)
if j&1 == 1:
j += 1
y += 1
j &= 7
if j > 3:
j -= 4
sinSign, cosSign = not sinSign, not cosSign
if j > 1:
cosSign = not cosSign
z = ((x - y*PI4A) - y*PI4B) - y*PI4C
zz = z * z
cos = 1.0 - 0.5*zz + zz*zz*((((((-1.13585365213876817300E-11*zz)+2.08757008419747316778E-9)
*zz+-2.75573141792967388112E-7)*zz+2.48015872888517045348E-5)
*zz+-1.38888888888730564116E-3)*zz+4.16666666666665929218E-2)
sin = z + z*zz*((((((1.58962301576546568060E-10*zz)+-2.50507477628578072866E-8)*zz+2.75573136213857245213E-6)
*zz+-1.98412698295895385996E-4)*zz+8.33333333332211858878E-3)*zz+-1.66666666666666307295E-1)
if j == 1 or j == 2:
sin, cos = cos, sin
if cosSign :
cos = -cos
if sinSign:
sin = -sin
return sin, cos
except:
pass
try:
from cmath import acos as cacos, atan as catan, atanh as catanh, isclose as cisclose
except:
cacos = py_cacos
catan = py_catan
catanh = py_catanh
_wraps = None
def my_wraps():
global _wraps
if _wraps is not None:
return _wraps
from functools import wraps
_wraps = wraps
return _wraps
#IS_PYPY = True # for testing
if not SKIP_DEPENDENCIES:
try:
# Regardless of actual interpreter, fall back to pure python implementations
# if scipy and numpy are not available.
import numpy
np = numpy
except ImportError:
# Allow a fake numpy to be imported, but will raise an excption on any use
numpy = FakePackage('numpy')
IS_PYPY = True
else:
numpy = FakePackage('numpy')
IS_PYPY = True
IS_PYPY_OR_SKIP_DEPENDENCIES = IS_PYPY or SKIP_DEPENDENCIES
np = numpy
try:
scalar_types = (float, int, np.float64, np.float32, np.float16, np.float128,
np.int8, np.int16, np.int32, np.int64)
except:
scalar_types = (float, int)
#IS_PYPY = True
try:
from sys import float_info
epsilon = float_info.epsilon
except:
# Probably micropython
epsilon = 2.220446049250313e-16
one_epsilon_larger = 1.0 + epsilon
one_epsilon_smaller = 1.0 - epsilon
zero_epsilon_smaller = 0.0 - epsilon
one_10_epsilon_larger = 1.0 + epsilon*10.0
one_10_epsilon_smaller = 1.0 - epsilon*10.0
one_100_epsilon_larger = 1.0 + epsilon*100.0
one_100_epsilon_smaller = 1.0 - epsilon*100.0
one_1000_epsilon_larger = 1.0 + epsilon*1000.0
one_1000_epsilon_smaller = 1.0 - epsilon*1000.0
_iter = 100
_xtol = 1e-12
_rtol = epsilon*2.0
third = 1.0/3.0
sixth = 1.0/6.0
ninth = 1.0/9.0
twelfth = 1.0/12.0
two_thirds = 2.0/3.0
four_thirds = 4.0/3.0
root_three = 1.7320508075688772 # sqrt(3.0)
one_27 = 1.0/27.0
complex_factor = 0.8660254037844386j # (sqrt(3)*0.5j)
def roots_quadratic(a, b, c):
if a == 0.0:
return (-c/b, )
D = b*b - 4.0*a*c
a_inv_2 = 0.5/a
if D < 0.0:
D = sqrt(-D)
x1 = (-b + D*1.0j)*a_inv_2
x2 = (-b - D*1.0j)*a_inv_2
else:
D = sqrt(D)
x1 = (D - b)*a_inv_2
x2 = -(b + D)*a_inv_2
return (x1, x2)
def roots_cubic_a1(b, c, d):
# Output from mathematica
t1 = b*b
t2 = t1*b
t4 = c*b
t9 = c*c
t16 = d*d
t19 = csqrt(12.0*t9*c + 12.0*t2*d - 54.0*t4*d - 3.0*t1*t9 + 81.0*t16)
t22 = (-8.0*t2 + 36.0*t4 - 108.0*d + 12.0*t19)**third
root1 = t22*sixth - 6.0*(c*third - t1*ninth)/t22 - b*third
t28 = (c*third - t1*ninth)/t22
t101 = -t22*twelfth + 3.0*t28 - b*third
t102 = root_three*(t22*sixth + 6.0*t28)
root2 = t101 + 0.5j*t102
root3 = t101 - 0.5j*t102
return [root1, root2, root3]
def roots_cubic_a2(a, b, c, d):
# Output from maple
t2 = a*a
t3 = d*d
t10 = c*c
t14 = b*b
t15 = t14*b
t20 = csqrt(-18.0*a*b*c*d + 4.0*a*t10*c + 4.0*t15*d - t14*t10 + 27.0*t2*t3)
t31 = (36.0*c*b*a + 12.0*root_three*t20*a - 108.0*d*t2 - 8.0*t15)**third
t32 = 1.0/a
root1 = t31*t32*sixth - two_thirds*(3.0*a*c - t14)*t32/t31 - b*t32*third
t33 = t31*t32
t40 = (3.0*a*c - t14)*t32/t31
t50 = -t33*twelfth + t40*third - b*t32*third
t51 = 0.5j*root_three *(t33*sixth + two_thirds*t40)
root2 = t50 + t51
root3 = t50 - t51
return [root1, root2, root3]
def roots_cubic(a, b, c, d):
r'''Cubic equation solver based on a variety of sources, algorithms, and
numerical tools. It seems evident after some work that no analytical
solution using floating points will ever have high-precision results
for all cases of inputs. Some other solvers, such as NumPy's roots
which uses eigenvalues derived using some BLAS, seem to provide bang-on
answers for all values coefficients. However, they can be quite slow - and
where possible there is still a need for analytical solutions to obtain
15-35x speed, such as when using PyPy.
A particular focus of this routine is where a=1, b is a small number in the
range -10 to 10 - a common occurrence in cubic equations of state.
Parameters
----------
a : float
Coefficient of x^3, [-]
b : float
Coefficient of x^2, [-]
c : float
Coefficient of x, [-]
d : float
Added coefficient, [-]
Returns
-------
roots : tuple(float)
The evaluated roots of the polynomial, 1 value when a and b are zero,
two values when a is zero, and three otherwise, [-]
Notes
-----
For maximum speed, provide Python floats. Compare the speed with numpy via:
%timeit roots_cubic(1.0, 100.0, 1000.0, 10.0)
%timeit np.roots([1.0, 100.0, 1000.0, 10.0])
%timeit roots_cubic(1.0, 2.0, 3.0, 4.0)
%timeit np.roots([1.0, 2.0, 3.0, 4.0])
The speed is ~15-35 times faster; or using PyPy, 240-370 times faster.
Examples
--------
>>> roots_cubic(1.0, 100.0, 1000.0, 10.0)
(-0.0100100190, -88.731288, -11.25870159)
References
----------
.. [1] "Solving Cubic Equations." Accessed January 5, 2019.
http://www.1728.org/cubic2.htm.
'''
'''
Notes
-----
Known issue is inputs that look like
1, -0.999999999978168, 1.698247818501352e-11, -8.47396642608142e-17
Errors grown unbound, starting when b is -.99999 and close to 1.
'''
if a == 0.0:
if b == 0.0:
return (-d/c, )
D = c*c - 4.0*b*d
b_inv_2 = 0.5/b
if D < 0.0:
D = sqrt(-D)
x1 = (-c + D*1.0j)*b_inv_2
x2 = (-c - D*1.0j)*b_inv_2
else:
D = sqrt(D)
x1 = (D - c)*b_inv_2
x2 = -(c + D)*b_inv_2
return (x1, x2)
a_inv = 1.0/a
a_inv2 = a_inv*a_inv
bb = b*b
'''Herbie modifications for f:
c*a_inv - b_a*b_a*third
'''
b_a = b*a_inv
b_a2 = b_a*b_a
f = c*a_inv - b_a2*third
# f = (3.0*c*a_inv - bb*a_inv2)*third
g = ((2.0*(bb*b) * a_inv2*a_inv) - (9.0*b*c)*(a_inv2) + (27.0*d*a_inv))*one_27
# g = (((2.0/(a/b))/((a/b) * (a/b)) + d*27.0/a) - (9.0/a*b)*c/a)/27.0
h = (0.25*(g*g) + (f*f*f)*one_27)
# print(f, g, h)
'''h has no savings on precision - 0.4 error to 0.2.
'''
# print(f, g, h, 'f, g, h')
if h == 0.0 and g == 0.0 and f == 0.0:
if d/a >= 0.0:
x = -((d*a_inv)**(third))
else:
x = (-d*a_inv)**(third)
return (x, x, x)
elif h > 0.0:
# Happy with these formulas - double doubles should be fast.
# No complex numbers are needed here.
# print('basic')
# 1 real root, 2 imag
root_h = sqrt(h)
R = -0.5*g + root_h
# It is possible to save one of the power of thirds!
if R >= 0.0:
S = R**third
else:
S = -((-R)**third)
T = -(0.5*g) - root_h
if T >= 0.0:
U = (T**(third))
else:
U = -(((-T)**(third)))
SU = S + U
b_3a = b*(third*a_inv)
t1 = -0.5*SU - b_3a
t2 = (S - U)*complex_factor
x1 = SU - b_3a
# x1 is OK actually in some tests? the issue is x2, x3?
x2 = t1 + t2
x3 = t1 - t2
else:
# elif h <= 0.0:
t2 = a*a
t3 = d*d
t10 = c*c
t14 = b*b
t15 = t14*b
'''This method is inaccurate when choice_term is too small; but still
more accurate than the other method.
'''
choice_term = -18.0*a*b*c*d + 4.0*a*t10*c + 4.0*t15*d - t14*t10 + 27.0*t2*t3
if (abs(choice_term) > 1e-12 or abs(b + 1.0) < 1e-7):
# print('mine')
t32 = 1.0/a
t20 = csqrt(choice_term)
t31 = (36.0*c*b*a + 12.0*root_three*t20*a - 108.0*d*t2 - 8.0*t15)**third
t33 = t31*t32
t32_t31 = t32/t31
x1 = (t33*sixth - two_thirds*(3.0*a*c - t14)*t32_t31 - b*t32*third).real
t40 = (3.0*a*c - t14)*t32_t31
t50 = -t33*twelfth + t40*third - b*t32*third
t51 = 0.5j*root_three*(t33*sixth + two_thirds*t40)
x2 = (t50 + t51).real
x3 = (t50 - t51).real
else:
# print('other')
# 3 real roots
# example is going in here
i = sqrt(((g*g)*0.25) - h)
j = i**third # There was a saving for j but it was very weird with if statements!
'''Clamied nothing saved for k.
'''
k = acos(-0.5*g/i)
# L = -j
# N, M = sincos(k*third)
# N *= root_three
k_third = k*third
M = cos(k_third)
N = root_three*sin(k_third)
P = -b_a*third
# Direct formula for x1
x1 = 2.0*j*M + P
x2 = P - j*(M + N)
x3 = P - j*(M - N)
return (x1, x2, x3)
def roots_quartic(a, b, c, d, e):
# There is no divide by zero check. A should be 1 for best numerical results
# Multiple order of magnitude differences still can cause problems
# Like [1, 0.0016525874561771799, 106.8665062954208, 0.0032802613917246727, 0.16036091315844248]
x0 = 1.0/a
x1 = b*x0
x2 = -x1*0.25
x3 = c*x0
x4 = b*b*x0*x0
x5 = -two_thirds*x3 + 0.25*x4
x6 = x3 - 0.375*x4
x6_2 = x6*x6
x7 = x6_2*x6
x8 = d*x0
x9 = x1*(-0.5*x3 + 0.125*x4)
x10 = (x8 + x9)*(x8 + x9)
x11 = e*x0
x12 = x1*(x1*(-0.0625*x3 + 0.01171875*x4) + 0.25*x8) # 0.01171875 = 3/256
x13 = x6*(x11 - x12)
x14 = -.125*x10 + x13*third - x7/108.0
x15 = 2.0*(x14 + 0.0j)**(third)
x16 = csqrt(-x15 + x5)
x17 = 0.5*x16
x18 = -x17 + x2
x19 = -four_thirds*x3
x20 = 0.5*x4
x21 = x15 + x19 + x20
x22 = 2.0*x8 + 2.0*x9
x23 = x22/x16
x24 = csqrt(x21 + x23)*0.5
x25 = -x11 + x12 - twelfth*x6_2
x27 = (0.0625*x10 - x13*sixth + x7/216.0 + csqrt(0.25*x14*x14 + one_27*x25*x25*x25))**(third)
x28 = 2.0*x27
x29 = two_thirds*x25/(x27)
x30 = csqrt(x28 - x29 + x5)
x31 = 0.5*x30
x32 = x2 - x31
x33 = x19 + x20 - x28 + x29
x34 = x22/x30
x35 = csqrt(x33 + x34)*0.5
x36 = x17 + x2
x37 = csqrt(x21 - x23)*0.5
x38 = x2 + x31
x39 = csqrt(x33 - x34)*0.5
return ((x32 - x35), (x32 + x35), (x38 - x39), (x38 + x39))
def mean(data):
# Much faster than the statistics.mean module
return sum(data)/len(data)
def detect_outlier_normal(data, cutoff=3):
std_val = std(data)
mean_val = mean(data)
low = mean_val - std_val*cutoff
high = mean_val + std_val*cutoff
outlier_idxs = []
for i, p in enumerate(data):
if p < low or p > high:
outlier_idxs.append(i)
return outlier_idxs
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None):
"""Port of numpy's linspace to pure python.
Does not support dtype, and returns lists of floats.
"""
num = int(num)
start = start * 1.
stop = stop * 1.
if num <= 0:
return []
if endpoint:
if num == 1:
return [start]
step = (stop-start)/float((num-1))
if num == 1:
step = nan
y = [start]
for _ in range(num-2):
y.append(y[-1] + step)
y.append(stop)
else:
step = (stop-start)/float(num)
if num == 1:
step = nan
y = [start]
for _ in range(num-1):
y.append(y[-1] + step)
if retstep:
return y, step
else:
return y
def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None):
y = linspace(start, stop, num=num, endpoint=endpoint)
for i in range(len(y)):
y[i] = base**y[i]
# return [base**yi for yi in y]
return y
def product(l):
# Helper in some functions
tot = 1.0
for i in l:
tot *= i
return tot
def cumsum(a):
# Does not support multiple dimensions
base = a[0]
sums = [base]
for v in a[1:]:
base = base + v
sums.append(base)
return sums
def diff(a, n=1, axis=-1):
if n == 0:
return a
if n < 0:
raise ValueError(
"order must be non-negative but got %s" %(n))
# nd = 1 # hardcode
diffs = []
for i in range(1, len(a)):
delta = a[i] - a[i-1]
diffs.append(delta)
if n > 1:
return diff(diffs, n-1)
return diffs
central_diff_weights_precomputed = {
(1, 3): [-0.5, 0.0, 0.5],
(1, 5): [0.08333333333333333, -0.6666666666666666, 0.0, 0.6666666666666666, -0.08333333333333333],
(1, 7): [-0.016666666666666666, 0.15, -0.75, 0.0, 0.75, -0.15, 0.016666666666666666],
(1, 9): [0.0035714285714285713, -0.0380952380952381, 0.2, -0.8, 0.0, 0.8, -0.2, 0.0380952380952381,
-0.0035714285714285713],
(1, 11): [-0.0007936507936507937, 0.00992063492063492, -0.05952380952380952, 0.23809523809523808, -0.8333333333333334,
0.0, 0.8333333333333334, -0.23809523809523808, 0.05952380952380952, -0.00992063492063492,
0.0007936507936507937],
(1, 13): [0.00018037518037518038, -0.0025974025974025974, 0.017857142857142856, -0.07936507936507936,
0.26785714285714285, -0.8571428571428571, 0.0, 0.8571428571428571, -0.26785714285714285, 0.07936507936507936,
-0.017857142857142856, 0.0025974025974025974, -0.00018037518037518038],
(1, 15): [-4.1625041625041625e-05, 0.0006798756798756799, -0.005303030303030303, 0.026515151515151516,
-0.09722222222222222, 0.2916666666666667, -0.875, 0.0, 0.875, -0.2916666666666667, 0.09722222222222222,
-0.026515151515151516, 0.005303030303030303, -0.0006798756798756799, 4.1625041625041625e-05],
(1, 17): [9.712509712509713e-06, -0.0001776001776001776, 0.001554001554001554, -0.008702408702408702,
0.03535353535353535, -0.11313131313131314, 0.3111111111111111, -0.8888888888888888, 0.0, 0.8888888888888888,
-0.3111111111111111, 0.11313131313131314, -0.03535353535353535, 0.008702408702408702, -0.001554001554001554,
0.0001776001776001776, -9.712509712509713e-06],
(1, 19): [-2.285296402943462e-06, 4.6277252159605104e-05, -0.00044955044955044955, 0.002797202797202797,
-0.012587412587412588, 0.044055944055944055, -0.12727272727272726, 0.32727272727272727, -0.9, 0.0, 0.9,
-0.32727272727272727, 0.12727272727272726, -0.044055944055944055, 0.012587412587412588,
-0.002797202797202797, 0.00044955044955044955, -4.6277252159605104e-05, 2.285296402943462e-06],
(2, 3): [1.0, -2.0, 1.0],
(2, 5): [-0.08333333333333333, 1.3333333333333333, -2.5, 1.3333333333333333, -0.08333333333333333],
(2, 7): [0.011111111111111112, -0.15, 1.5, -2.7222222222222223, 1.5, -0.15, 0.011111111111111112],
(2, 9): [-0.0017857142857142857, 0.025396825396825397, -0.2, 1.6, -2.8472222222222223, 1.6, -0.2, 0.025396825396825397,
-0.0017857142857142857],
(2, 11): [0.00031746031746031746, -0.00496031746031746, 0.03968253968253968, -0.23809523809523808, 1.6666666666666667,
-2.9272222222222224, 1.6666666666666667, -0.23809523809523808, 0.03968253968253968, -0.00496031746031746,
0.00031746031746031746],
(2, 13): [-6.012506012506013e-05, 0.001038961038961039, -0.008928571428571428, 0.05291005291005291,
-0.26785714285714285, 1.7142857142857142, -2.9827777777777778, 1.7142857142857142, -0.26785714285714285,
0.05291005291005291, -0.008928571428571428, 0.001038961038961039, -6.012506012506013e-05],
(2, 15): [1.1892869035726179e-05, -0.00022662522662522663, 0.0021212121212121214, -0.013257575757575758,
0.06481481481481481, -0.2916666666666667, 1.75, -3.02359410430839, 1.75, -0.2916666666666667,
0.06481481481481481, -0.013257575757575758, 0.0021212121212121214, -0.00022662522662522663,
1.1892869035726179e-05],
(2, 17): [-2.428127428127428e-06, 5.074290788576503e-05, -0.000518000518000518, 0.003480963480963481,
-0.017676767676767676, 0.07542087542087542, -0.3111111111111111, 1.7777777777777777, -3.05484410430839,
1.7777777777777777, -0.3111111111111111, 0.07542087542087542, -0.017676767676767676, 0.003480963480963481,
-0.000518000518000518, 5.074290788576503e-05, -2.428127428127428e-06],
(2, 19): [5.078436450985471e-07, -1.1569313039901276e-05, 0.00012844298558584272, -0.0009324009324009324,
0.005034965034965035, -0.022027972027972027, 0.08484848484848485, -0.32727272727272727, 1.8,
-3.0795354623330815, 1.8, -0.32727272727272727, 0.08484848484848485, -0.022027972027972027,
0.005034965034965035, -0.0009324009324009324, 0.00012844298558584272, -1.1569313039901276e-05,
5.078436450985471e-07],
(3, 5): [-0.5, 1.0, 0.0, -1.0, 0.5],
(3, 7): [0.125, -1.0, 1.625, 0.0, -1.625, 1.0, -0.125],
(3, 9): [-0.029166666666666667, 0.30000000000000004, -1.4083333333333332, 2.033333333333333, 0.0, -2.033333333333333,
1.4083333333333332, -0.30000000000000004, 0.029166666666666667],
# (3, 11): [0.006779100529100529, -0.08339947089947089, 0.48303571428571435, -1.7337301587301588, 2.3180555555555555,
# 0.0, -2.3180555555555555, 1.7337301587301588, -0.48303571428571435, 0.08339947089947089,
# -0.006779100529100529],
# (3, 13): [-0.0015839947089947089, 0.02261904761904762, -0.1530952380952381, 0.6572751322751322, -1.9950892857142857,
# 2.527142857142857, 0.0, -2.527142857142857, 1.9950892857142857, -0.6572751322751322, 0.1530952380952381,
# -0.02261904761904762, 0.0015839947089947089],
# (3, 15): [0.0003724747474747475, -0.006053691678691679, 0.04682990620490621, -0.2305699855699856, 0.8170667989417989,
# -2.2081448412698412, 2.6869345238095237, 0.0, -2.6869345238095237, 2.2081448412698412, -0.8170667989417989,
# 0.2305699855699856, -0.04682990620490621, 0.006053691678691679, -0.0003724747474747475],
# (3, 17): [-8.810006131434702e-05, 0.0016058756058756059, -0.013982697196982911, 0.07766492766492766,
# -0.31074104136604136, 0.9613746993746994, -2.384521164021164, 2.81291761148904, 0.0, -2.81291761148904,
# 2.384521164021164, -0.9613746993746994, 0.31074104136604136, -0.07766492766492766, 0.013982697196982911,
# -0.0016058756058756059, 8.810006131434702e-05],
# (3, 19): [2.0943672729387014e-05, -0.00042319882498453924, 0.00409817266067266, -0.025376055161769447,
# 0.11326917130488559, -0.3904945471195471, 1.0909741462241462, -2.532634817563389, 2.9147457482993198, 0.0,
# -2.9147457482993198, 2.532634817563389, -1.0909741462241462, 0.3904945471195471, -0.11326917130488559,
# 0.025376055161769447, -0.00409817266067266, 0.00042319882498453924, -2.0943672729387014e-05],
# (4, 5): [1.0, -4.0, 6.0, -4.0, 1.0],
# (4, 7): [-0.16666666666666666, 2.0, -6.5, 9.333333333333334, -6.5, 2.0, -0.16666666666666666],
# (4, 9): [0.029166666666666667, -0.4, 2.8166666666666664, -8.133333333333333, 11.375, -8.133333333333333,
# 2.8166666666666664, -0.4, 0.029166666666666667],
# (4, 11): [-0.005423280423280424, 0.08339947089947089, -0.644047619047619, 3.4674603174603176, -9.272222222222222,
# 12.741666666666665, -9.272222222222222, 3.4674603174603176, -0.644047619047619, 0.08339947089947089,
# -0.005423280423280424],
# (4, 13): [0.0010559964726631393, -0.018095238095238095, 0.1530952380952381, -0.8763668430335096, 3.9901785714285714,
# -10.108571428571429, 13.717407407407407, -10.108571428571429, 3.9901785714285714, -0.8763668430335096,
# 0.1530952380952381, -0.018095238095238095, 0.0010559964726631393],
# (5, 7): [-0.5, 2.0, -2.5, 0.0, 2.5, -2.0, 0.5],
# (5, 9): [0.16666666666666669, -1.5, 4.333333333333333, -4.833333333333334, 0.0, 4.833333333333334, -4.333333333333333,
# 1.5, -0.16666666666666669],
# (5, 11): [-0.04513888888888889, 0.5277777777777778, -2.71875, 6.5, -6.729166666666667, 0.0, 6.729166666666667, -6.5,
# 2.71875, -0.5277777777777778, 0.04513888888888889],
# (5, 13): [0.011491402116402117, -0.16005291005291006, 1.033399470899471, -3.9828042328042326, 8.39608134920635,
# -8.246031746031747, 0.0, 8.246031746031747, -8.39608134920635, 3.9828042328042326, -1.033399470899471,
# 0.16005291005291006, -0.011491402116402117]
}
def deflate_cubic_real_roots(b, c, d, x0):
F = b + x0
G = -d/x0
D = F*F - 4.0*G
# if D < 0.0:
# D = (-D)**0.5
# x1 = (-F + D*1.0j)*0.5
# x2 = (-F - D*1.0j)*0.5
# else:
if D < 0.0:
return (0.0, 0.0)
D = sqrt(D)
x1 = 0.5*(D - F)#(D - c)*0.5
x2 = 0.5*(-F - D) #-(c + D)*0.5
return x1, x2
def central_diff_weights(points, divisions=1):
# Check the cache
if (divisions, points) in central_diff_weights_precomputed:
return central_diff_weights_precomputed[(divisions, points)]
if points < divisions + 1:
raise ValueError("Points < divisions + 1, cannot compute")
if points % 2 == 0:
raise ValueError("Odd number of points required")
ho = points >> 1
x = [[xi] for xi in range(-ho, ho+1)]
X = []
for xi in x:
line = [1.0] + [xi[0]**k for k in range(1, points)]
X.append(line)
factor = product(range(1, divisions + 1))
# from scipy.linalg import inv
from sympy import Matrix
# The above coefficients were generated from a routine which used Fractions
# Additional coefficients cannot reliable be computed with numpy or floating
# point numbers - the error is too great
# sympy must be used for reliability
inverted = [[float(j) for j in i] for i in Matrix(X).inv().tolist()]
w = [i*factor for i in inverted[divisions]]
# w = [i*factor for i in (inv(X)[divisions]).tolist()]
central_diff_weights_precomputed[(divisions, points)] = w
return w
def derivative(func, x0, dx=1.0, n=1, args=(), order=3, scalar=True,
lower_limit=None, upper_limit=None, kwargs={}):
"""Reimplementation of SciPy's derivative function, with more cached
coefficients and without using numpy. If new coefficients not cached are
needed, they are only calculated once and are remembered.
Support for vector value functions has also been added.
"""
if order < n + 1:
raise ValueError
if order % 2 == 0:
raise ValueError
weights = central_diff_weights(order, n)
ho = order >> 1
denominator = 1.0/product([dx]*n)
if scalar:
max_x = x0 + (order - 1 - ho)*dx
if upper_limit is not None and max_x > upper_limit:
x0 -= (max_x - x0)
min_x = x0 + -ho*dx
if lower_limit is not None and min_x < lower_limit:
x0 += (x0 - min_x)
tot = 0.0
for k in range(order):
if weights[k] != 0.0:
tot += weights[k]*func(x0 + (k - ho)*dx, *args, **kwargs)
return tot*denominator
else:
numerators = None
for k in range(order):
f = func(x0 + (k - ho)*dx, *args, **kwargs)
if numerators is None:
N = len(f)
numerators = [0.0]*N
for i in range(N):
numerators[i] += weights[k]*f[i]
return [num*denominator for num in numerators]
kronrod_weights = {
# 2: [0.1979797979797974, 0.4909090909090922, 0.6222222222222221, 0.4909090909090904, 0.1979797979797974],
# 3: [0.10465622602646653, 0.2684880898683364, 0.4013974147759613, 0.45091653865847436, 0.40139741477596186, 0.26848808986833306, 0.10465622602646701],
# 4: [0.06297737366547282, 0.17005360533572325, 0.26679834045228396, 0.3269491896014517, 0.3464429818901376, 0.32694918960145064, 0.2667983404522837,
# 0.17005360533572333, 0.06297737366547272
# ],
# 5: [0.042582036751078814, 0.11523331662247298, 0.1868007965564952, 0.2410403392286488, 0.27284980191255903, 0.28298741785749215, 0.2728498019125575,
# 0.24104033922864848, 0.1868007965564929, 0.11523331662247287, 0.04258203675108158
# ],
# 6: [0.03039615411981852, 0.08369444044690531, 0.1373206046344473, 0.1810719943231391, 0.21320965227196226, 0.23377086411699666, 0.2410725801734652,
# 0.23377086411699363, 0.21320965227196081, 0.1810719943231382, 0.13732060463444687, 0.08369444044690623, 0.030396154119819826
# ],
# 7: [0.02293532201053038, 0.0630920926299766, 0.10479001032225017, 0.14065325971552478, 0.16900472663927035, 0.19035057806478545, 0.2044329400753001,
# 0.20948214108472712, 0.2044329400752992, 0.1903505780647853, 0.16900472663926686, 0.14065325971552592, 0.10479001032225005, 0.06309209262997834,
# 0.022935322010529363
# ],
# 8: [0.017822383320711625, 0.04943939500213785, 0.08248229893135677, 0.11164637082684088, 0.13626310925517557, 0.15665260616818655, 0.17207060855521186,
# 0.18140002506803385, 0.18444640574468968, 0.1814000250680349, 0.1720706085552107, 0.1566526061681889, 0.13626310925517285, 0.11164637082683933,
# 0.08248229893135825, 0.04943939500213947, 0.017822383320710476
# ],
# 9: [0.014304775643840032, 0.03963189516026222, 0.0665181559402729, 0.09079068168872734, 0.11178913468441762, 0.13000140685534053, 0.14523958838436735,
# 0.15641352778848416, 0.16286282744011463, 0.16489601282834765, 0.16286282744011538, 0.15641352778848497, 0.14523958838436518,
# 0.13000140685534053, 0.11178913468441844, 0.09079068168872709, 0.0665181559402743, 0.03963189516026152, 0.01430477564383906
# ],
10: [0.011694638867371172, 0.03255816230796458, 0.05475589657435185, 0.07503967481091954, 0.09312545458369915, 0.10938715880229993, 0.12349197626206619,
0.1347092173114735, 0.1427759385770589, 0.14773910490133732, 0.1494455540029151, 0.14773910490133846, 0.14277593857705978, 0.13470921731147467,
0.1234919762620664, 0.10938715880229763, 0.09312545458369788, 0.0750396748109198, 0.05475589657435227, 0.03255816230796462, 0.01169463886737192
],
# 11: [0.009765441045959541, 0.02715655468210335, 0.045829378564428196, 0.06309742475037379, 0.07866457193222803, 0.092953098596902, 0.1058720744813897,
# 0.11673950246104702, 0.12515879910031777, 0.13128068422980624, 0.13519357279988428, 0.1365777947111174, 0.13519357279988467, 0.1312806842298052,
# 0.12515879910031882, 0.11673950246104742, 0.10587207448139022, 0.09295309859690085, 0.07866457193222773, 0.06309742475037532,
# 0.04582937856442653, 0.027156554682104143, 0.009765441045960747
# ],
# 12: [0.008257711433166826, 0.023036084038981483, 0.03891523046929862, 0.053697017607756393, 0.06725090705084145, 0.07992027533360162,
# 0.09154946829504902, 0.1016497322790617, 0.11002260497764366, 0.11671205350175794, 0.12162630352394828, 0.12458416453615645,
# 0.12555689390547403, 0.12458416453615662, 0.12162630352394885, 0.11671205350175637, 0.11002260497764366, 0.10164973227906021,
# 0.09154946829504902, 0.07992027533360205, 0.06725090705084015, 0.05369701760775601, 0.038915230469299136, 0.023036084038982187,
# 0.008257711433168356
# ],
# 13: [0.007087846351247695, 0.019753746382707126, 0.03344358998955114, 0.046279017973829016, 0.05811521042311424, 0.06930363324778273,
# 0.0798059621694777, 0.08916844187754189, 0.09714173487607722, 0.10383060116904075, 0.10926635109528536, 0.11321025917152877, 0.1154887990912863,
# 0.11620961236306047, 0.11548879909128668, 0.11321025917152944, 0.10926635109528575, 0.10383060116903994, 0.09714173487607768,
# 0.08916844187754075, 0.0798059621694761, 0.06930363324778134, 0.05811521042311445, 0.0462790179738303, 0.033443589989552346,
# 0.019753746382705984, 0.007087846351248617
# ],
# 14: [0.006139558686377161, 0.01714845890993743, 0.02904870126150814, 0.04025059487268863, 0.050691543260464045, 0.06066712586674275,
# 0.07010297900274666, 0.0786557972496211, 0.08618376286946026, 0.09273683001785471, 0.09826492647210357, 0.1026166273213988, 0.10573163984176341,
# 0.10762642111411824, 0.10827006650642954, 0.10762642111411819, 0.10573163984176337, 0.10261662732139956, 0.09826492647210401,
# 0.09273683001785424, 0.08618376286945752, 0.07865579724962145, 0.07010297900274708, 0.060667125866742444, 0.050691543260465384,
# 0.040250594872688804, 0.029048701261508613, 0.01714845890993556, 0.00613955868637814
# ],
# 15: [0.005377479872922721, 0.015007947329316597, 0.02546084732671451, 0.03534636079137684, 0.044589751324763977, 0.053481524690928775,
# 0.06200956780067099, 0.06985412131872938, 0.07684968075772279, 0.08308050282313152, 0.08856444305621097, 0.09312659817082411,
# 0.09664272698362378, 0.09917359872179198, 0.10076984552387584, 0.10133000701479176, 0.10076984552387498, 0.09917359872179111,
# 0.09664272698362311, 0.09312659817082504, 0.08856444305621132, 0.08308050282313374, 0.07684968075772115, 0.06985412131872824,
# 0.06200956780067089, 0.05348152469092814, 0.04458975132476507, 0.03534636079137597, 0.0254608473267153, 0.01500794732931606,
# 0.005377479872923303
# ],
# 16: [0.0047427770492463476, 0.01325793068809046, 0.022498859440048875, 0.031260543647380616, 0.03951295120242179, 0.04750621597640688,
# 0.055205633095423194, 0.062358806011834494, 0.06886299519153054, 0.07476982388560004, 0.08005394126371923, 0.08459580379259089,
# 0.08833750257911316, 0.0912920328281922, 0.09343867406092181, 0.09472840124723077, 0.09515421608049866, 0.09472840124722949,
# 0.09343867406092161, 0.09129203282819215, 0.08833750257911213, 0.0845958037925905, 0.08005394126371795, 0.07476982388559944,
# 0.06886299519153126, 0.062358806011835174, 0.05520563309542224, 0.047506215976407244, 0.03951295120242178, 0.031260543647380366,
# 0.02249885944004935, 0.013257930688091162, 0.0047427770492472505
# ],
# 17: [0.00421897579377578, 0.011785837562288765, 0.020022233953294232, 0.027856722457863144, 0.035249746751878815, 0.04244263020500057,
# 0.04943614182396047, 0.055994044530093004, 0.06200091526823072, 0.06752801671813287, 0.07258989011419156, 0.07705622304620212,
# 0.08083667844081736, 0.08397257199123528, 0.08649053220565191, 0.08830878229760371, 0.08936184586778975, 0.08969642194398147,
# 0.08936184586778813, 0.08830878229760494, 0.08649053220565157, 0.0839725719912349, 0.08083667844081745, 0.07705622304620285,
# 0.07258989011419015, 0.06752801671813129, 0.06200091526822982, 0.05599404453009317, 0.04943614182395916, 0.042442630205000643,
# 0.03524974675187985, 0.027856722457863275, 0.020022233953294787, 0.011785837562289191, 0.004218975793776932
# ],
# 18: [0.00377351012843988, 0.010554430567545547, 0.01793337620570976, 0.024964402753740674, 0.03163401984884463, 0.0381537583251753,
# 0.044509195165090054, 0.0505075715021042, 0.056072390382993734, 0.061253565791358926, 0.06603995819281894, 0.07033745002422243,
# 0.07409702738131525, 0.0773320701646388, 0.08003001949509578, 0.08214399978333053, 0.08365485143716135, 0.08456933354407732,
# 0.08487813861267707, 0.08456933354407585, 0.08365485143716228, 0.08214399978332948, 0.08003001949509637, 0.07733207016463836,
# 0.07409702738131455, 0.07033745002422402, 0.06603995819281755, 0.06125356579135898, 0.05607239038299394, 0.05050757150210246,
# 0.044509195165090026, 0.03815375832517691, 0.031634019848844154, 0.024964402753740036, 0.017933376205711227, 0.01055443056754483,
# 0.0037735101284401234
# ],
# 19: [0.0033981531196335965, 0.009499205461711157, 0.016153414369089493, 0.02250869575220442, 0.028544238117114772, 0.03446235286288065,
# 0.04027002324951411, 0.04578597308792263, 0.05092622550624418, 0.05575220103348164, 0.060277411503209075, 0.0644023522619292,
# 0.06805978049813398, 0.07128142476493002, 0.07408407453373855, 0.07640286193981659, 0.07818691068574178, 0.07946568358535473,
# 0.08026621602085142, 0.08054560329299826, 0.08026621602085034, 0.07946568358535418, 0.07818691068574216, 0.07640286193981571,
# 0.07408407453373904, 0.07128142476492985, 0.06805978049813312, 0.06440235226192832, 0.06027741150320817, 0.055752201033481275,
# 0.05092622550624404, 0.04578597308792251, 0.04027002324951481, 0.03446235286288103, 0.028544238117114873, 0.02250869575220419,
# 0.016153414369091356, 0.009499205461710144, 0.0033981531196347167
# ],
# 87: [0.00016881480210456692, 0.00047314868570756235, 0.0008076859860306628, 0.0011322615841296547, 0.00144806597820222, 0.0017668191481724435, 0.0020903160499537304, 0.002411576726915393, 0.0027285063230227296, 0.0030454007869937876, 0.0033639128646212944, 0.0036808253607571195, 0.003994559817314871, 0.004307345076427869, 0.004620335406184352, 0.004931600306915534, 0.00523996592505234, 0.005546814695915935, 0.00585298027614558, 0.006157129826902876, 0.006458347449208747, 0.0067575841722384, 0.007055469839437327, 0.007351002065619594, 0.007643435225722091, 0.007933469441304792, 0.008221599308725454, 0.008507026852701362, 0.008789124673244655, 0.009068433903060025, 0.00934535574073612, 0.00961922899522448, 0.009889512165959614, 0.010156639610742505, 0.01042094604150296, 0.010681867318519509, 0.010938926800718108, 0.011192484212786687, 0.011442825936038695, 0.011689459907180238, 0.01193196007256122, 0.012170632572570447, 0.01240572822845446, 0.012636810511622156, 0.012863493923529042, 0.013086045502712524, 0.013304689821902624, 0.013519034459386238, 0.013728727196381123, 0.013934006347263819, 0.014135077241799326, 0.0143315833864912, 0.01452320041557479, 0.01471014561481331, 0.014892610489607272, 0.015070268437801156, 0.01524281878982064, 0.015410463680651272, 0.01557338508816692, 0.015731281717590702, 0.01588387332676284, 0.016031351508057137, 0.01617389219804666, 0.016311215832305204, 0.016443059955062258, 0.016569609315104587, 0.016691036698090543, 0.016807081400707274, 0.01691749655723537, 0.017022463108090843, 0.017122153135412682, 0.017216322428248873, 0.017304737826468557, 0.017387579005841453, 0.0174650194618558, 0.017536829459282623, 0.017602787871331006, 0.01766307528646667, 0.017717868485658792, 0.017766950435146724, 0.017810110503721263, 0.01784753209761472, 0.017879396979083733, 0.017905499199739466, 0.017925637157192337, 0.017939998782076135, 0.017948772394930045, 0.017951761607250333, 0.01794877239493056, 0.017939998782076676, 0.01792563715719179, 0.017905499199739282, 0.017879396979084167, 0.017847532097614346, 0.01781011050372197, 0.017766950435146787, 0.017717868485658865, 0.01766307528646623, 0.017602787871330267, 0.017536829459281828, 0.01746501946185603, 0.01738757900584135, 0.017304737826468315, 0.017216322428249966, 0.01712215313541374, 0.017022463108090982, 0.016917496557235175, 0.016807081400708086, 0.016691036698090224, 0.016569609315104577, 0.016443059955061293, 0.016311215832305943, 0.016173892198046793, 0.01603135150805684, 0.015883873326762922, 0.0157312817175899, 0.015573385088166592, 0.015410463680651668, 0.015242818789820901, 0.015070268437801513, 0.01489261048960673, 0.014710145614813493, 0.014523200415575395, 0.014331583386491533, 0.01413507724179865, 0.013934006347263444, 0.013728727196380418, 0.013519034459385928, 0.01330468982190219, 0.013086045502712456, 0.01286349392352816, 0.012636810511621802, 0.012405728228453924, 0.012170632572569789, 0.011931960072561447, 0.011689459907180488, 0.011442825936038951, 0.011192484212786695, 0.010938926800718342, 0.010681867318518458, 0.010420946041502708, 0.01015663961074195, 0.009889512165958998, 0.009619228995224303, 0.009345355740736385, 0.009068433903060022, 0.00878912467324535, 0.008507026852701478, 0.008221599308725935, 0.007933469441304955, 0.00764343522572274, 0.007351002065619289, 0.007055469839437192, 0.006757584172238039, 0.006458347449209268, 0.0061571298269029575, 0.005852980276145424, 0.00554681469591638, 0.005239965925052114, 0.004931600306916382, 0.00462033540618409, 0.004307345076429006, 0.003994559817315303, 0.0036808253607556987, 0.00336391286462138, 0.0030454007869938063, 0.0027285063230224034, 0.0024115767269154683, 0.0020903160499540895, 0.0017668191481723982, 0.0014480659782023144, 0.0011322615841305992, 0.000807685986030332, 0.0004731486857077167, 0.00016881480210494433],
# 300: [1.431338551855931e-05, 4.012227180120215e-05, 6.850298129947514e-05, 9.605899747347381e-05, 0.00012290072040166636, 0.0001500289025800392, 0.00017760205103018156, 0.0002050376837370814, 0.00023216802273282316, 0.00025936376117528543, 0.000286770923337297, 0.0003141263938546069, 0.0003413064333028032, 0.0003685059563224142, 0.0003958282766766556, 0.00042311960183710317, 0.00045029066797970557, 0.00047746412489335334, 0.0005047156371897132, 0.0005319422306222964, 0.0005590766158027022, 0.0005862043554606536, 0.0006133833418229676, 0.0006405386949363323, 0.0006676176085674061, 0.0006946838416537453, 0.0007217832962185991, 0.0007488584417973781, 0.0007758664924472269, 0.0008028571692832445, 0.0008298678975835217, 0.0008568527124189767, 0.0008837760635199613, 0.0009106780294555469, 0.0009375898032692981, 0.0009644735729342993, 0.000991299201423038, 0.0010180998154806211, 0.001044901876521459, 0.0010716735696885908, 0.0010983889275928184, 0.0011250758736232511, 0.0011517571804946123, 0.00117840559504653, 0.0012049984403109213, 0.0012315596269869425, 0.0012581089880280057, 0.0012846228351818792, 0.0013110811414252545, 0.00133750464674385, 0.001363910797264291, 0.0013902787534588901, 0.0014165906596462637, 0.0014428646992844724, 0.0014691163496578206, 0.0014953270906152946, 0.001521480872306304, 0.0015475937814626148, 0.00157367964899441, 0.0015997218734369169, 0.0016257059263124127, 0.001651646149529894, 0.001677554980842586, 0.001703417427928488, 0.0017292202586412138, 0.0017549763445420545, 0.0017806969321644153, 0.0018063683949693567, 0.0018319786165106394, 0.001857539215647843, 0.0018830604109505785, 0.0019085297473710398, 0.0019339360773297323, 0.001959289942067989, 0.0019846006657902662, 0.002009856807725714, 0.002035048068429775, 0.0020601840541859453, 0.0020852733053521944, 0.00211030526669342, 0.002135270386619155, 0.002160177454021052, 0.0021850343177347107, 0.002209831201507028, 0.0022345592175448837, 0.0022592264352258922, 0.002283840089667751, 0.002308391094568184, 0.0023328711548821417, 0.0023572877027127443, 0.002381647425556331, 0.00240594185202409, 0.002430163219323544, 0.002454318391951272, 0.002478413566344175, 0.0025024408222929406, 0.0025263928773852835, 0.00255027608798504, 0.0025740962081959693, 0.0025978458144661396, 0.0026215180600127255, 0.0026451188441838666, 0.0026686535209823115, 0.0026921151165751785, 0.0027154971809750543, 0.0027388052007325915, 0.0027620441665595044, 0.0027852075136901313, 0.002808289155056237, 0.002831294202880455, 0.0028542273168385085, 0.002877082305828928, 0.002899853416015445, 0.0029225454189358694, 0.002945162671626956, 0.002967699325674426, 0.0029901499343276, 0.0030125189580153013, 0.003034810476250164, 0.0030570189560660717, 0.0030791392346825115, 0.00310117548753865, 0.0031231315389228563, 0.0031450021472680554, 0.0031667824132465515, 0.003188476250471062, 0.003210087247886691, 0.0032316104340022714, 0.0032530411546735326, 0.0032743830823033305, 0.003295639588282603, 0.003316805952230262, 0.003337877748850066, 0.0033588584277646333, 0.003379751158776646, 0.003400551455680898, 0.0034212551073882925, 0.0034418653572642383, 0.0034623851879040167, 0.0034828103321097002, 0.0035031367798385575, 0.0035233675830591412, 0.0035435055501479742, 0.0035635466192892535, 0.0035834869696225067, 0.0036033294751299954, 0.003623076781728268, 0.0036427250207152315, 0.003662270549687044, 0.0036817160767749556, 0.0037010640961099225, 0.0037203109210253195, 0.003739453077859395, 0.0037584931198988143, 0.003777433399208016, 0.003796270401119918, 0.003815000811903878, 0.003833627040006793, 0.003852151304287865, 0.0038705702529859497, 0.003888880724274518, 0.003907084990886804, 0.003925185146571497, 0.003943177994202738, 0.003961060516554395, 0.00397883485897057, 0.00399650299750876, 0.004014061882142001, 0.004031508633574408, 0.0040488452773837025, 0.004066073678737227, 0.004083190927833456, 0.0041001942772090185, 0.004117085639660952, 0.004133866775714363, 0.004150534909511804, 0.004167087419841768, 0.00418352611313258, 0.004199852651012914, 0.004216064385826003, 0.004232158817490263, 0.0042481376519647165, 0.004264002457277361, 0.004279750708703243, 0.004295380022593513, 0.004310892009868351, 0.004326288149837712, 0.004341566035873309, 0.004356723396447817, 0.004371761752443555, 0.004386682498963286, 0.004401483343036293, 0.0044161621212866105, 0.004430720269180384, 0.004445159101775619, 0.004459476435677051, 0.004473670212010881, 0.004487741785091177, 0.0045016923937820415, 0.004515519960510983, 0.0045292225275432845, 0.0045428013719821725, 0.004556257660061908, 0.004569589416572178, 0.004582794781821561, 0.004595874959351039, 0.004608831046059929, 0.004621661165914976, 0.004634363554417776, 0.00464693934491508, 0.00465938956802471, 0.004671712443956493, 0.004683906300772354, 0.0046959722047512755, 0.004707911123050588, 0.0047197213694184096, 0.004731401362055238, 0.004742952103059206, 0.004754374498742801, 0.004765666953897418, 0.004776827974631882, 0.004787858501534513, 0.004798759382490675, 0.004809529111038303, 0.004820166279139213, 0.004830671768345388, 0.004841046370347547, 0.004851288665314363, 0.004861397329170941, 0.004871373186717853, 0.004881216975513267, 0.0048909273604094364, 0.004900503099558432, 0.004909944963118174, 0.0049192536364175265, 0.004928427867200543, 0.004937466494252367, 0.004946370235033431, 0.0049551397243954, 0.004963773791329307, 0.004972271353793974, 0.004980633078343443, 0.004988859550960298, 0.004996949680372135, 0.005004902462380824, 0.005012718514281037, 0.0050203983746564115, 0.005027941030594458, 0.00503534555452279, 0.005042612515983653, 0.005049742407509773, 0.005056734293288795, 0.0050635873212702565, 0.0050703020146247325, 0.005076878821053563, 0.0050833168806995, 0.005089615416040483, 0.005095774905126578, 0.005101795751935285, 0.0051076771715272175, 0.0051134184600114575, 0.005119020051454203, 0.0051244823071031915, 0.005129804516003444, 0.005134986047095221, 0.005140027291483333, 0.005144928568571508, 0.005149689240552303, 0.0051543087484908, 0.005158787441443115, 0.005163125597752833, 0.005167322652015288, 0.0051713781168029205, 0.005175292299931676, 0.005179065439366613, 0.0051826970414525384, 0.005186186689737414, 0.005189534651502356, 0.005192741124918436, 0.005195805687514126, 0.005198727993361184, 0.005201508269816953, 0.0052041466757448375, 0.005206642859375407, 0.005208996544935003, 0.00521120792036838, 0.00521327710562835, 0.005215203819244274, 0.005216987855309183, 0.005218629362770544, 0.005220128422976571, 0.005221484824432338, 0.005222698430884936, 0.005223769352611614, 0.005224697632566832, 0.005225483128989441, 0.005226125775143653, 0.005226625642871415, 0.005226982736856913, 0.005227196984904545, 0.005227268389736952, 0.005227196984904609, 0.005226982736857298, 0.005226625642871094, 0.005226125775143343, 0.005225483128989314, 0.005224697632566667, 0.005223769352611394, 0.005222698430885047, 0.005221484824432276, 0.005220128422976045, 0.005218629362770703, 0.005216987855309369, 0.005215203819244113, 0.005213277105628448, 0.005211207920368179, 0.005208996544935323, 0.005206642859375223, 0.005204146675744738, 0.005201508269816841, 0.005198727993361313, 0.005195805687514172, 0.0051927411249182535, 0.00518953465150263, 0.005186186689737238, 0.0051826970414525254, 0.0051790654393667, 0.005175292299931799, 0.005171378116803026, 0.005167322652015363, 0.005163125597752643, 0.005158787441443411, 0.00515430874849076, 0.005149689240552316, 0.005144928568571719, 0.005140027291483478, 0.00513498604709535, 0.005129804516003328, 0.0051244823071030276, 0.005119020051454297, 0.005113418460011166, 0.005107677171526961, 0.005101795751935227, 0.005095774905126261, 0.005089615416040522, 0.005083316880699735, 0.005076878821053743, 0.005070302014624845, 0.0050635873212700805, 0.0050567342932884085, 0.005049742407509847, 0.00504261251598381, 0.005035345554522823, 0.005027941030594158, 0.005020398374656165, 0.005012718514281176, 0.005004902462380897, 0.00499694968037226, 0.0049888595509603095, 0.004980633078343566, 0.004972271353793644, 0.004963773791329042, 0.004955139724395721, 0.004946370235034016, 0.004937466494252536, 0.004928427867200534, 0.004919253636417707, 0.004909944963118104, 0.004900503099558809, 0.0048909273604097105, 0.0048812169755131024, 0.004871373186717716, 0.004861397329170951, 0.004851288665314311, 0.004841046370347232, 0.004830671768345188, 0.004820166279138959, 0.004809529111038251, 0.004798759382490338, 0.0047878585015345716, 0.004776827974631735, 0.004765666953897307, 0.0047543744987427914, 0.004742952103059202, 0.0047314013620551616, 0.004719721369418516, 0.004707911123050433, 0.004695972204750941, 0.0046839063007723, 0.004671712443956289, 0.004659389568024603, 0.004646939344914928, 0.004634363554417283, 0.00462166116591521, 0.004608831046059741, 0.004595874959351329, 0.004582794781821686, 0.004569589416571941, 0.004556257660061593, 0.004542801371981853, 0.0045292225275430625, 0.0045155199605110725, 0.004501692393782684, 0.004487741785091521, 0.0044736702120110345, 0.0044594764356769125, 0.004445159101775285, 0.0044307202691803455, 0.004416162121286692, 0.004401483343036429, 0.004386682498963625, 0.004371761752443638, 0.004356723396447825, 0.004341566035873333, 0.004326288149837637, 0.004310892009868086, 0.00429538002259381, 0.0042797507087033665, 0.004264002457277777, 0.004248137651964907, 0.004232158817490341, 0.004216064385826206, 0.004199852651012641, 0.004183526113132338, 0.004167087419841528, 0.004150534909512119, 0.004133866775714176, 0.004117085639661458, 0.0041001942772092145, 0.00408319092783341, 0.004066073678737072, 0.004048845277383841, 0.004031508633574328, 0.004014061882142042, 0.003996502997508904, 0.003978834858970341, 0.00396106051655424, 0.003943177994202945, 0.003925185146572065, 0.003907084990886625, 0.0038888807242744516, 0.003870570252985675, 0.0038521513042880833, 0.003833627040007188, 0.0038150008119035845, 0.0037962704011200703, 0.003777433399207321, 0.003758493119898556, 0.003739453077858988, 0.0037203109210250346, 0.0037010640961101984, 0.0036817160767748554, 0.0036622705496868126, 0.00364272502071535, 0.0036230767817284986, 0.003603329475130338, 0.0035834869696225024, 0.0035635466192891576, 0.00354350555014782, 0.0035233675830593134, 0.0035031367798384993, 0.003482810332109164, 0.003462385187904296, 0.003441865357264365, 0.0034212551073889708, 0.003400551455680581, 0.0033797511587767763, 0.003358858427764282, 0.003337877748850245, 0.0033168059522300543, 0.00329563958828269, 0.0032743830823032723, 0.0032530411546732876, 0.003231610434001921, 0.0032100872478863954, 0.003188476250471022, 0.0031667824132466152, 0.0031450021472676755, 0.003123131538923296, 0.003101175487538483, 0.003079139234681824, 0.0030570189560658587, 0.0030348104762501467, 0.003012518958015103, 0.0029901499343269566, 0.0029676993256746486, 0.0029451626716272246, 0.0029225454189359683, 0.002899853416015462, 0.0028770823058289967, 0.0028542273168381985, 0.0028312942028804098, 0.002808289155056215, 0.00278520751368993, 0.0027620441665596666, 0.002738805200732458, 0.002715497180975006, 0.0026921151165756846, 0.0026686535209825175, 0.0026451188441835257, 0.0026215180600122068, 0.002597845814466621, 0.0025740962081962533, 0.0025502760879849754, 0.00252639287738533, 0.002502440822293173, 0.0024784135663443014, 0.002454318391950843, 0.0024301632193235606, 0.0024059418520241804, 0.0023816474255563412, 0.0023572877027127643, 0.002332871154882404, 0.0023083910945681076, 0.002283840089667744, 0.0022592264352261303, 0.0022345592175454193, 0.002209831201507626, 0.0021850343177344657, 0.0021601774540208397, 0.0021352703866189507, 0.0021103052666933977, 0.0020852733053521146, 0.002060184054186014, 0.002035048068429977, 0.002009856807725957, 0.0019846006657902758, 0.00195928994206817, 0.0019339360773296312, 0.0019085297473711007, 0.0018830604109507608, 0.0018575392156482725, 0.0018319786165107877, 0.0018063683949691585, 0.00178069693216468, 0.0017549763445423654, 0.0017292202586409347, 0.0017034174279280823, 0.0016775549808421297, 0.001651646149530077, 0.00162570592631277, 0.0015997218734367048, 0.001573679648994387, 0.0015475937814620998, 0.0015214808723062155, 0.0014953270906152233, 0.0014691163496581476, 0.0014428646992844813, 0.0014165906596466105, 0.0013902787534589855, 0.0013639107972643685, 0.0013375046467437846, 0.0013110811414257816, 0.0012846228351825408, 0.0012581089880279953, 0.0012315596269869729, 0.001204998440311574, 0.001178405595046257, 0.0011517571804948782, 0.0011250758736229627, 0.001098388927592197, 0.001071673569688066, 0.0010449018765211608, 0.0010180998154806183, 0.0009912992014234517, 0.0009644735729341865, 0.0009375898032692254, 0.000910678029455875, 0.0008837760635201092, 0.0008568527124191105, 0.0008298678975834106, 0.0008028571692830543, 0.0007758664924465403, 0.0007488584417971681, 0.000721783296218569, 0.0006946838416533995, 0.0006676176085676541, 0.000640538694936538, 0.0006133833418229547, 0.0005862043554614876, 0.000559076615802472, 0.0005319422306224783, 0.0005047156371895406, 0.0004774641248931814, 0.0004502906679796702, 0.00042311960183722124, 0.00039582827667671103, 0.00036850595632271756, 0.00034130643330288764, 0.0003141263938549482, 0.0002867709233374423, 0.0002593637611755845, 0.0002321680227330003, 0.00020503768373677231, 0.00017760205102980336, 0.00015002890258022111, 0.00012290072040175952, 9.605899747384604e-05, 6.850298129895686e-05, 4.012227180096977e-05, 1.4313385518582305e-05],
}
kronrod_points = {
# 2: [-0.9258200997725493, -0.5773502691896243, 4.440892098500626e-16, 0.5773502691896262, 0.9258200997725514],
# 3: [-0.9604912687080189, -0.7745966692414805, -0.4342437493468012, 5.551115123125783e-16, 0.43424374934680354, 0.7745966692414835, 0.9604912687080203],
# 4: [-0.9765602507375716, -0.8611363115940519, -0.6402862174963088, -0.3399810435848555, -3.3306690738754696e-16, 0.3399810435848566, 0.6402862174963104,
# 0.8611363115940526, 0.9765602507375731
# ],
# 5: [-0.9840853600948419, -0.9061798459386637, -0.7541667265708493, -0.5384693101056838, -0.2796304131617827, -5.551115123125783e-16, 0.2796304131617834,
# 0.5384693101056831, 0.7541667265708492, 0.9061798459386639, 0.9840853600948425
# ],
# 6: [-0.9887032026126787, -0.9324695142031516, -0.821373340865027, -0.6612093864662647, -0.4631182124753035, -0.23861918608319632, -
# 2.220446049250313e-16, 0.23861918608319654, 0.4631182124753045, 0.6612093864662645, 0.821373340865028, 0.9324695142031519, 0.9887032026126789
# ],
# 7: [-0.9914553711208121, -0.949107912342757, -0.8648644233597671, -0.7415311855993938, -0.5860872354676903, -0.40584515137739663, -0.20778495500789784,
# 3.3306690738754696e-16, 0.20778495500789873, 0.40584515137739796, 0.5860872354676913, 0.7415311855993948, 0.8648644233597691,
# 0.9491079123427586, 0.9914553711208126
# ],
# 8: [-0.9933798758817153, -0.9602898564975361, -0.8941209068474557, -0.7966664774136257, -0.6723540709451575, -0.5255324099163289, -0.3607010979281312, -
# 0.18343464249564911, 4.440892098500626e-16, 0.1834346424956501, 0.3607010979281319, 0.5255324099163294, 0.6723540709451585, 0.7966664774136267,
# 0.8941209068474564, 0.9602898564975363, 0.9933798758817162
# ],
# 9: [-0.9946781606773386, -0.9681602395076251, -0.9149635072496775, -0.8360311073266354, -0.7344867651839325, -0.6133714327005891, -0.475462479112459, -
# 0.3242534234038089, -0.16422356361498636, 3.3306690738754696e-16, 0.16422356361498702, 0.3242534234038096, 0.4754624791124603,
# 0.613371432700591, 0.7344867651839341, 0.8360311073266359, 0.914963507249678, 0.9681602395076261, 0.9946781606773403
# ],
10: [-0.9956571630258076, -0.9739065285171714, -0.9301574913557086, -0.8650633666889832, -0.7808177265864168, -0.679409568299023, -0.562757134668605, -
0.4333953941292482, -0.29439286270146015, -0.14887433898163127, 2.220446049250313e-16, 0.1488743389816316, 0.2943928627014607,
0.43339539412924755, 0.5627571346686051, 0.6794095682990244, 0.7808177265864169, 0.8650633666889844, 0.9301574913557082, 0.9739065285171717,
0.9956571630258081
],
# 11: [-0.9963696138895425, -0.9782286581460574, -0.9416771085780676, -0.8870625997680958, -0.8160574566562212, -0.7301520055740492, -0.6305995201619655, -
# 0.5190961292068118, -0.39794414095237773, -0.26954315595234524, -0.13611300079936217, -4.440892098500626e-16, 0.13611300079936206,
# 0.2695431559523449, 0.39794414095237773, 0.5190961292068117, 0.6305995201619654, 0.7301520055740492, 0.816057456656221, 0.8870625997680953,
# 0.9416771085780679, 0.978228658146057, 0.9963696138895426
# ],
# 12: [-0.9969339225295953, -0.9815606342467201, -0.950537795943121, -0.9041172563704741, -0.8435581241611524, -0.7699026741943046, -0.6840598954700551, -
# 0.5873179542866177, -0.4813394504781564, -0.3678314989981798, -0.24850574832046946, -0.12523340851146914, -3.3306690738754696e-16,
# 0.1252334085114689, 0.24850574832046957, 0.36783149899818013, 0.4813394504781572, 0.5873179542866174, 0.6840598954700562, 0.7699026741943048,
# 0.8435581241611532, 0.9041172563704747, 0.9505377959431213, 0.9815606342467192, 0.9969339225295955
# ],
# 13: [-0.9973661769948244, -0.984183054718588, -0.95755246838608, -0.9175983992229771, -0.8653331602663435, -0.8015780907333098, -0.7269488493206314, -
# 0.64234933944034, -0.5490799579565359, -0.4484927510364468, -0.34183246302180625, -0.23045831595513466, -0.11597108974493386, -
# 3.3306690738754696e-16, 0.11597108974493409, 0.2304583159551351, 0.3418324630218067, 0.44849275103644715, 0.5490799579565372,
# 0.6423493394403403, 0.726948849320632, 0.80157809073331, 0.8653331602663444, 0.917598399222978, 0.9575524683860812, 0.9841830547185881,
# 0.9973661769948249
# ],
# 14: [-0.9977205937565432, -0.9862838086968115, -0.9631583382788527, -0.9284348836635736, -0.8829146632520561, -0.8272013150697641, -0.7617567525622055, -
# 0.6872929048116849, -0.6047893659409216, -0.5152486363581534, -0.41965589764297806, -0.31911236892788875, -0.21483591853348383, -
# 0.108054948707343, 5.551115123125783e-16, 0.10805494870734478, 0.21483591853348527, 0.3191123689278901, 0.41965589764297917, 0.5152486363581541,
# 0.6047893659409218, 0.6872929048116857, 0.7617567525622057, 0.8272013150697651, 0.8829146632520571, 0.9284348836635736, 0.9631583382788532,
# 0.9862838086968123, 0.9977205937565431
# ],
# 15: [-0.9980022986933965, -0.9879925180204847, -0.9677390756791384, -0.937273392400706, -0.8972645323440815, -0.8482065834104267, -0.7904185014424661, -
# 0.7244177313601698, -0.6509967412974171, -0.5709721726085399, -0.48508186364023964, -0.3941513470775635, -0.2991800071531687, -
# 0.20119409399743393, -0.1011420669187173, 1.1102230246251565e-16, 0.10114206691871763, 0.20119409399743426, 0.2991800071531686,
# 0.3941513470775634, 0.48508186364023986, 0.570972172608539, 0.6509967412974169, 0.7244177313601701, 0.7904185014424661, 0.8482065834104272,
# 0.897264532344082, 0.937273392400706, 0.9677390756791392, 0.9879925180204855, 0.9980022986933971
# ],
# 16: [-0.9982392741454447, -0.9894009349916497, -0.9715059509693929, -0.9445750230732326, -0.9091576670123429, -0.8656312023878314, -0.8142402870624446, -
# 0.7554044083550029, -0.6897411066817623, -0.6178762444026438, -0.5404076763521388, -0.45801677765722726, -0.37148378087841594, -
# 0.28160355077925914, -0.18916857901808393, -0.09501250983763732, -2.220446049250313e-16, 0.0950125098376372, 0.18916857901808315,
# 0.2816035507792588, 0.3714837808784164, 0.45801677765722737, 0.5404076763521395, 0.6178762444026438, 0.6897411066817624, 0.7554044083550031,
# 0.8142402870624446, 0.8656312023878316, 0.9091576670123429, 0.9445750230732325, 0.9715059509693925, 0.9894009349916499, 0.9982392741454444
# ],
# 17: [-0.998432970606058, -0.9905754753144171, -0.9746592569674308, -0.9506755217687672, -0.9190961368038919, -0.8802391537269854, -0.8342740928501335, -
# 0.7815140038968009, -0.722472287372409, -0.6576711592166902, -0.587569212334035, -0.5126905370864765, -0.43368729520979854, -0.3512317634538762, -
# 0.2659465074516818, -0.17848418149584755, -0.08958563942522657, 0.0, 0.0895856394252269, 0.17848418149584822, 0.26594650745168247,
# 0.3512317634538764, 0.43368729520979965, 0.5126905370864772, 0.5875692123340355, 0.6576711592166908, 0.7224722873724099, 0.7815140038968015,
# 0.8342740928501343, 0.8802391537269859, 0.9190961368038917, 0.9506755217687678, 0.974659256967431, 0.9905754753144174, 0.9984329706060581
# ],
# 18: [-0.998599165412682, -0.9915651684209306, -0.9773103807748602, -0.9558239495713969, -0.927504501573343, -0.8926024664975549, -0.8512493734337165, -
# 0.8037049589725229, -0.7503804817033572, -0.6916870430603526, -0.6280037548638335, -0.5597708310739471, -0.48750904258507766, -
# 0.4117511614628424, -0.3330234227914082, -0.2518862256915051, -0.16893682806654864, -0.08477501304173507, 0.0, 0.0847750130417354,
# 0.1689368280665493, 0.2518862256915053, 0.33302342279140795, 0.41175116146284263, 0.48750904258507877, 0.5597708310739478, 0.6280037548638338,
# 0.6916870430603532, 0.7503804817033577, 0.803704958972523, 0.8512493734337176, 0.8926024664975558, 0.9275045015733433, 0.9558239495713977,
# 0.977310380774861, 0.9915651684209309, 0.9985991654126828
# ],
# 19: [-0.9987380120803147, -0.9924068438435842, -0.9795723007892643, -0.9602081521348296, -0.9346640001655193, -0.903155903614818, -0.865773542685335, -
# 0.822714656537143, -0.7743288590095345, -0.7209661773352292, -0.6629230657449079, -0.6005453046616815, -0.5342756325305535, -
# 0.46457074137596144, -0.3918512308715205, -0.3165640999636299, -0.23922492831824171, -0.16035864564022484, -0.0804519227440117, -
# 3.3306690738754696e-16, 0.08045192274401136, 0.16035864564022517, 0.23922492831824105, 0.31656409996363, 0.3918512308715202, 0.464570741375961,
# 0.5342756325305533, 0.6005453046616811, 0.6629230657449078, 0.7209661773352294, 0.7743288590095347, 0.8227146565371429, 0.8657735426853352,
# 0.9031559036148178, 0.9346640001655193, 0.9602081521348299, 0.9795723007892634, 0.9924068438435844, 0.9987380120803145
# ],
# 87: [-0.9999373393176647, -0.999622350432484, -0.998981834567236, -0.9980107215629824, -0.9967203521912877, -0.9951134581379919, -0.9931850143689511, -0.9909336501109647, -0.9883633935160456, -0.985476606068421, -0.9822719826624027, -0.978749341003817, -0.9749114465404709, -0.9707605197472842, -0.9662966427216388, -0.961520436936073, -0.9564344462027763, -0.9510410013893145, -0.945341012434413, -0.9393357199742063, -0.9330277577952324, -0.9264196798912376, -0.9195130155009865, -0.9123095290941232, -0.9048120659287133, -0.8970234547675697, -0.8889457425315686, -0.8805811598520423, -0.8719328161808033, -0.8630038376297071, -0.8537967282834917, -0.8443141443970357, -0.8345594815785893, -0.8245361702557805, -0.8142471292361737, -0.8036954080581786, -0.7928846943811525, -0.7818187205454386, -0.7705007861856665, -0.7589343057213496, -0.7471232552715923, -0.735071660505314, -0.7227831721000328, -0.7102615427114733, -0.6975110271436125, -0.6845359314028241, -0.6713402293006723, -0.6579279856713498, -0.6443037198655162, -0.6304720018972505, -0.6164371014898609, -0.6022033695423357, -0.5877755725413023, -0.5731585255345304, -0.5583567669734248, -0.5433749073022942, -0.5282179401678413, -0.5128909045194527, -0.49739858004223114, -0.4817458096226672, -0.4659377920214407, -0.449979767165285, -0.43387672799250576, -0.417633722072869, -0.4012561295371335, -0.3847493668670974, -0.3681186117187589, -0.3513690879260418, -0.33450633184746614, -0.3175359108501159, -0.30046315821599157, -0.28329344500409226, -0.266032437514764, -0.24868582730667765, -0.2312590736832678, -0.21375766534010188, -0.19618737131686093, -0.17855397985304466, -0.16086304622927927, -0.14312014673100815, -0.12533112522788015, -0.10750183850894302, -0.08963790744155298, -0.07174496550149989, -0.05382890297085785, -0.03589561662680141, -0.017950762293751588, 0.0, 0.017950762293751477, 0.03589561662680074, 0.05382890297085752, 0.071744965501499, 0.08963790744155298, 0.10750183850894268, 0.1253311252278798, 0.14312014673100815, 0.16086304622927938, 0.17855397985304444, 0.19618737131686126, 0.21375766534010154, 0.23125907368326792, 0.2486858273066771, 0.2660324375147639, 0.28329344500409204, 0.30046315821599134, 0.3175359108501157, 0.3345063318474658, 0.3513690879260414, 0.3681186117187585, 0.38474936686709693, 0.4012561295371332, 0.4176337220728691, 0.4338767279925052, 0.4499797671652843, 0.46593779202144003, 0.4817458096226668, 0.49739858004223125, 0.5128909045194523, 0.5282179401678414, 0.5433749073022933, 0.5583567669734248, 0.5731585255345304, 0.5877755725413025, 0.6022033695423353, 0.6164371014898609, 0.6304720018972505, 0.6443037198655157, 0.6579279856713494, 0.671340229300672, 0.6845359314028239, 0.6975110271436127, 0.7102615427114729, 0.7227831721000324, 0.7350716605053138, 0.7471232552715918, 0.7589343057213493, 0.7705007861856658, 0.7818187205454378, 0.7928846943811524, 0.8036954080581777, 0.8142471292361735, 0.8245361702557805, 0.8345594815785895, 0.8443141443970352, 0.8537967282834915, 0.8630038376297067, 0.8719328161808031, 0.8805811598520419, 0.8889457425315681, 0.8970234547675693, 0.9048120659287131, 0.9123095290941229, 0.9195130155009866, 0.9264196798912372, 0.933027757795232, 0.9393357199742057, 0.9453410124344126, 0.9510410013893136, 0.9564344462027765, 0.9615204369360731, 0.9662966427216388, 0.9707605197472843, 0.9749114465404707, 0.9787493410038163, 0.9822719826624021, 0.9854766060684204, 0.988363393516045, 0.9909336501109646, 0.9931850143689511, 0.995113458137992, 0.9967203521912877, 0.9980107215629823, 0.998981834567236, 0.9996223504324843, 0.9999373393176647],
# 300: [-0.9999946872996457, -0.9999679782184366, -0.9999136584901585, -0.9998312829844194, -0.9997217884834974, -0.9995853734488863, -0.9994215723741114, -0.9992302218632736, -0.9990116062590783, -0.9987658603530949, -0.9984928023779717, -0.9981923380734435, -0.9978646126899144, -0.9975097171758793, -0.9971275560703853, -0.996718072051, -0.9962813600745217, -0.9958174891208241, -0.9953264031603122, -0.9948080667630033, -0.9942625517027517, -0.9936899152742682, -0.9930901239339065, -0.9924631568471005, -0.9918090737598455, -0.9911279255509896, -0.990419693459469, -0.9896843673150096, -0.9889220003217568, -0.9881326399103605, -0.9873162780530513, -0.9864729129322606, -0.9856025942467834, -0.9847053677808956, -0.9837812338860811, -0.9828301976412723, -0.9818523070673794, -0.9808476074619001, -0.9798161060814252, -0.9787578139322586, -0.9776727785275657, -0.9765610454590224, -0.9754226279104833, -0.9742575421410374, -0.9730658359415845, -0.9718475557430342, -0.9706027199771077, -0.9693313496680812, -0.9680334934315086, -0.9667091989287729, -0.9653584893488589, -0.9639813901171553, -0.9625779510657028, -0.9611482213733913, -0.9596922286202931, -0.9582100023531643, -0.9567015939075111, -0.9551670541938286, -0.9536064149019075, -0.9520197094793031, -0.9504069909786793, -0.9487683122037178, -0.9471037087320028, -0.9454132177338136, -0.9436968941399522, -0.9419547927700981, -0.9401869529103559, -0.9383934153067652, -0.9365742368903639, -0.9347294745903799, -0.9328591712533739, -0.9309633710773335, -0.929042133086303, -0.9270955163900743, -0.9251235672708156, -0.9231263332721165, -0.9211038755812251, -0.9190562555418369, -0.9169835227643917, -0.9148857280450582, -0.9127629347867887, -0.9106152066064295, -0.9084425963487075, -0.9062451579796027, -0.9040229571561673, -0.901776059796223, -0.8995045218950815, -0.8972084005137191, -0.894887763590253, -0.8925426793619207, -0.8901732068988839, -0.8877794062884896, -0.8853613477675033, -0.8829191019031915, -0.8804527307710444, -0.8779622974209855, -0.8754478743981893, -0.8729095346039717, -0.8703473430544713, -0.8677613657021737, -0.8651516774038297, -0.8625183533931811, -0.8598614615661291, -0.8571810707206511, -0.8544772580226088, -0.8517501010316768, -0.848999670465588, -0.846226037913026, -0.8434292828416308, -0.8406094851262689, -0.8377667182508701, -0.8349010565417854, -0.832012581756866, -0.8291013760716741, -0.8261675156824684, -0.8232110776015575, -0.8202321458616895, -0.8172308049213011, -0.8142071336364427, -0.8111612116546523, -0.8080931252649417, -0.8050029611877987, -0.8018908008875274, -0.7987567265968607, -0.7956008268394583, -0.7924231905743322, -0.7892239018232119, -0.786003045354458, -0.7827607119020659, -0.7794969926375797, -0.7762119740898052, -0.7729057435134399, -0.7695783938260492, -0.7662300183834612, -0.7628607061714925, -0.7594705468820133, -0.7560596355871452, -0.752628067796661, -0.7491759349034655, -0.7457033289874226, -0.7422103472441275, -0.7386970873050263, -0.7351636429201902, -0.7316101085081914, -0.7280365833550897, -0.7244431671799338, -0.7208299560399418, -0.7171970466429054, -0.7135445403305545, -0.709872538873781, -0.706181140586744, -0.7024704444166954, -0.6987405537245666, -0.69499157229575, -0.6912236006508845, -0.6874367399265875, -0.6836310954649563, -0.679806773027049, -0.675963875289201, -0.6721025055269298, -0.6682227710239814, -0.6643247794768312, -0.6604086356663699, -0.6564744449561277, -0.6525223165305882, -0.6485523599800562, -0.6445646821384352, -0.640559390405937, -0.6365365958255456, -0.632496409838541, -0.6284389412798634, -0.6243642995346044, -0.6202725974607572, -0.6161639483065122, -0.612038462855417, -0.6078962524251541, -0.6037374316440418, -0.5995621155219637, -0.5953704167381737, -0.591162448490157, -0.5869383271307362, -0.5826981693851709, -0.5784420897750377, -0.5741702033243279, -0.569882628063465, -0.5655794823857194, -0.5612608826011143, -0.5569269455063359, -0.552577790761474, -0.5482135383794409, -0.5438343064043345, -0.539440213351214, -0.5350313804609139, -0.5306079293166595, -0.5261699796417558, -0.5217176516148028, -0.5172510680075144, -0.512770351923185, -0.5082756247089657, -0.5037670081516556, -0.4992446265030859, -0.4947086043354987, -0.49015906456404057, -0.48559613052787265, -0.4810199279073166, -0.47643058269160643, -0.4718282193075505, -0.4672129625903425, -0.4625849395963533, -0.4579442776790468, -0.45329110272009054, -0.4486255409938984, -0.4439477208796667, -0.43925777104156594, -0.4345558187588534, -0.4298419916878913, -0.42511641947672607, -0.42037923204598227, -0.415630558014791, -0.4108705263637342, -0.4060992679550248, -0.40131691391079194, -0.3965235941318921, -0.39171943886495786, -0.38690458013101003, -0.3820791501980705, -0.3772432801901535, -0.37239710156135253, -0.36754074743549325, -0.36267435117025193, -0.3577980450538263, -0.35291196168878125, -0.3480162352451315, -0.34311100011337237, -0.338196389686529, -0.3332725376562593, -0.3283395791815773, -0.323397649628395, -0.31844688343484195, -0.31348741532192625, -0.30851938137992496, -0.3035429178922302, -0.29855816028200666, -0.29356524423952535, -0.28856430672807254, -0.28355548489008364, -0.27853891507336437, -0.27351473387703384, -0.26848307907865343, -0.2634440886207914, -0.258397899715193, -0.25334464980911076, -0.24828447743519133, -0.2432175212767862, -0.23814391934859436, -0.23306380988500508, -0.22797733211414206, -0.22288462540037246, -0.21778582850010708, -0.21268108037361766, -0.20757052088450112, -0.2024542900179942, -0.1973325272107358, -0.19220537208739352, -0.18707296508667115, -0.1819354467541754, -0.17679295714507726, -0.17164563648674025, -0.16649362573227822, -0.1613370659268425, -0.15617609768225016, -0.15101086176667544, -0.14584149958664194, -0.1406681526257254, -0.13549096199033794, -0.13031006892741814, -0.12512561523562193, -0.1199377427755659, -0.11474659308606205, -0.10955230783063419, -0.10435502913854622, -0.09915489918583553, -0.09395205988140298, -0.08874665324306696, -0.0835388216689601, -0.07832870758870736, -0.07311645321890214, -0.06790220086927956, -0.06268609314491269, -0.05746827266700372, -0.0522488818973752, -0.04702806337524312, -0.04180595985053315, -0.03658271407386193, -0.03135846868977743, -0.026133366404510694, -0.020907550050621282, -0.01568116244584883, -0.010454346354956456, -0.0052272445887175945, 0.0, 0.0052272445887177055, 0.0104543463549569, 0.01568116244584905, 0.020907550050621393, 0.026133366404511027, 0.03135846868977776, 0.036582714073862044, 0.04180595985053359, 0.04702806337524368, 0.052248881897375865, 0.057468272667004605, 0.06268609314491314, 0.0679022008692799, 0.07311645321890248, 0.07832870758870769, 0.08353882166896032, 0.08874665324306752, 0.09395205988140376, 0.09915489918583587, 0.10435502913854666, 0.10955230783063508, 0.1147465930860625, 0.11993774277556657, 0.12512561523562216, 0.13031006892741892, 0.13549096199033805, 0.14066815262572618, 0.14584149958664216, 0.1510108617666761, 0.15617609768225016, 0.16133706592684272, 0.16649362573227855, 0.17164563648674003, 0.17679295714507792, 0.18193544675417572, 0.18707296508667137, 0.1922053720873934, 0.19733252721073624, 0.2024542900179942, 0.20757052088450112, 0.21268108037361744, 0.21778582850010697, 0.22288462540037235, 0.22797733211414206, 0.23306380988500508, 0.23814391934859414, 0.2432175212767861, 0.24828447743519155, 0.25334464980911076, 0.2583978997151932, 0.2634440886207915, 0.2684830790786531, 0.27351473387703407, 0.27853891507336426, 0.2835554848900833, 0.2885643067280719, 0.29356524423952524, 0.2985581602820062, 0.30354291789222965, 0.30851938137992485, 0.3134874153219265, 0.31844688343484184, 0.323397649628395, 0.3283395791815772, 0.33327253765625897, 0.33819638968652843, 0.3431110001133719, 0.34801623524513126, 0.3529119616887808, 0.3577980450538262, 0.3626743511702518, 0.36754074743549336, 0.37239710156135264, 0.3772432801901534, 0.38207915019807037, 0.3869045801310097, 0.39171943886495786, 0.3965235941318921, 0.4013169139107917, 0.4060992679550246, 0.410870526363734, 0.4156305580147909, 0.4203792320459817, 0.42511641947672574, 0.42984199168789106, 0.43455581875885274, 0.4392577710415656, 0.44394772087966616, 0.44862554099389795, 0.45329110272008966, 0.45794427767904666, 0.46258493959635283, 0.4672129625903423, 0.4718282193075505, 0.4764305826916061, 0.4810199279073162, 0.4855961305278721, 0.49015906456404, 0.4947086043354981, 0.49924462650308543, 0.5037670081516556, 0.508275624708965, 0.5127703519231843, 0.517251068007514, 0.5217176516148028, 0.5261699796417558, 0.5306079293166588, 0.5350313804609135, 0.5394402133512137, 0.5438343064043343, 0.5482135383794404, 0.5525777907614735, 0.5569269455063353, 0.5612608826011143, 0.5655794823857192, 0.5698826280634648, 0.5741702033243274, 0.578442089775038, 0.5826981693851705, 0.5869383271307357, 0.5911624484901564, 0.5953704167381735, 0.5995621155219635, 0.6037374316440416, 0.6078962524251535, 0.6120384628554165, 0.6161639483065119, 0.6202725974607567, 0.6243642995346039, 0.6284389412798628, 0.6324964098385406, 0.6365365958255453, 0.6405593904059368, 0.6445646821384348, 0.6485523599800556, 0.6525223165305876, 0.6564744449561274, 0.6604086356663694, 0.6643247794768309, 0.6682227710239813, 0.6721025055269294, 0.6759638752892005, 0.6798067730270486, 0.6836310954649557, 0.687436739926587, 0.6912236006508838, 0.69499157229575, 0.6987405537245661, 0.7024704444166952, 0.706181140586744, 0.7098725388737805, 0.713544540330554, 0.7171970466429054, 0.7208299560399416, 0.7244431671799337, 0.7280365833550895, 0.7316101085081913, 0.7351636429201899, 0.7386970873050263, 0.742210347244127, 0.7457033289874225, 0.7491759349034652, 0.752628067796661, 0.7560596355871447, 0.7594705468820128, 0.7628607061714925, 0.7662300183834609, 0.7695783938260488, 0.7729057435134394, 0.7762119740898051, 0.77949699263758, 0.7827607119020656, 0.7860030453544584, 0.7892239018232124, 0.7924231905743324, 0.7956008268394587, 0.7987567265968609, 0.8018908008875274, 0.8050029611877982, 0.8080931252649417, 0.8111612116546523, 0.8142071336364427, 0.8172308049213008, 0.8202321458616895, 0.8232110776015571, 0.826167515682468, 0.8291013760716742, 0.8320125817568655, 0.8349010565417858, 0.8377667182508699, 0.8406094851262688, 0.8434292828416307, 0.846226037913026, 0.848999670465588, 0.8517501010316768, 0.8544772580226087, 0.8571810707206517, 0.859861461566129, 0.8625183533931813, 0.8651516774038295, 0.8677613657021737, 0.870347343054471, 0.8729095346039718, 0.8754478743981893, 0.8779622974209857, 0.8804527307710446, 0.8829191019031915, 0.8853613477675031, 0.88777940628849, 0.890173206898884, 0.8925426793619202, 0.8948877635902533, 0.8972084005137192, 0.8995045218950817, 0.9017760597962232, 0.9040229571561679, 0.9062451579796031, 0.9084425963487072, 0.9106152066064294, 0.9127629347867888, 0.9148857280450583, 0.9169835227643919, 0.9190562555418367, 0.9211038755812248, 0.9231263332721162, 0.9251235672708154, 0.927095516390074, 0.9290421330863031, 0.9309633710773336, 0.932859171253374, 0.93472947459038, 0.9365742368903638, 0.9383934153067653, 0.940186952910356, 0.9419547927700982, 0.9436968941399521, 0.9454132177338137, 0.9471037087320029, 0.948768312203718, 0.9504069909786793, 0.9520197094793031, 0.9536064149019075, 0.9551670541938287, 0.9567015939075112, 0.9582100023531646, 0.9596922286202932, 0.9611482213733913, 0.9625779510657029, 0.9639813901171553, 0.965358489348859, 0.9667091989287728, 0.9680334934315088, 0.9693313496680812, 0.9706027199771078, 0.9718475557430342, 0.9730658359415845, 0.9742575421410374, 0.9754226279104833, 0.9765610454590226, 0.9776727785275656, 0.9787578139322587, 0.9798161060814253, 0.9808476074619004, 0.9818523070673794, 0.9828301976412724, 0.9837812338860812, 0.9847053677808958, 0.9856025942467834, 0.9864729129322606, 0.9873162780530514, 0.9881326399103604, 0.9889220003217569, 0.9896843673150097, 0.9904196934594691, 0.9911279255509898, 0.9918090737598456, 0.9924631568471006, 0.9930901239339065, 0.9936899152742682, 0.9942625517027519, 0.9948080667630034, 0.9953264031603122, 0.9958174891208242, 0.9962813600745218, 0.9967180720510002, 0.9971275560703854, 0.9975097171758793, 0.9978646126899146, 0.9981923380734435, 0.9984928023779718, 0.998765860353095, 0.9990116062590781, 0.9992302218632736, 0.9994215723741117, 0.9995853734488863, 0.9997217884834975, 0.9998312829844194, 0.9999136584901583, 0.9999679782184367, 0.9999946872996458],
}
legendre_weights = {
# 2: [1.0, 1.0],
# 3: [0.5555555555555557, 0.8888888888888888, 0.5555555555555557],
# 4: [0.3478548451374537, 0.6521451548625462, 0.6521451548625462, 0.3478548451374537],
# 5: [0.23692688505618942, 0.4786286704993662, 0.568888888888889, 0.4786286704993662, 0.23692688505618942],
# 6: [0.17132449237916975, 0.36076157304813894, 0.46791393457269137, 0.46791393457269137, 0.36076157304813894, 0.17132449237916975],
# 7: [0.12948496616887065, 0.2797053914892766, 0.3818300505051183, 0.41795918367346896, 0.3818300505051183, 0.2797053914892766, 0.12948496616887065],
# 8: [0.10122853629037669, 0.22238103445337434, 0.31370664587788705, 0.36268378337836177, 0.36268378337836177, 0.31370664587788705, 0.22238103445337434,
# 0.10122853629037669
# ],
# 9: [0.08127438836157472, 0.18064816069485712, 0.26061069640293566, 0.3123470770400028, 0.33023935500125967, 0.3123470770400028, 0.26061069640293566,
# 0.18064816069485712, 0.08127438836157472
# ],
10: [0.06667134430868807, 0.14945134915058036, 0.219086362515982, 0.2692667193099965, 0.295524224714753, 0.295524224714753, 0.2692667193099965,
0.219086362515982, 0.14945134915058036, 0.06667134430868807
],
# 11: [0.055668567116173164, 0.1255803694649047, 0.18629021092773443, 0.23319376459199068, 0.26280454451024676, 0.2729250867779009, 0.26280454451024676,
# 0.23319376459199068, 0.18629021092773443, 0.1255803694649047, 0.055668567116173164
# ],
# 12: [0.04717533638651202, 0.10693932599531888, 0.1600783285433461, 0.20316742672306565, 0.23349253653835464, 0.2491470458134027, 0.2491470458134027,
# 0.23349253653835464, 0.20316742672306565, 0.1600783285433461, 0.10693932599531888, 0.04717533638651202
# ],
# 13: [0.04048400476531588, 0.0921214998377286, 0.13887351021978736, 0.17814598076194552, 0.20781604753688857, 0.22628318026289715, 0.2325515532308739,
# 0.22628318026289715, 0.20781604753688857, 0.17814598076194552, 0.13887351021978736, 0.0921214998377286, 0.04048400476531588
# ],
# 14: [0.035119460331752374, 0.0801580871597603, 0.12151857068790296, 0.1572031671581934, 0.18553839747793763, 0.20519846372129555, 0.21526385346315766,
# 0.21526385346315766, 0.20519846372129555, 0.18553839747793763, 0.1572031671581934, 0.12151857068790296, 0.0801580871597603,
# 0.035119460331752374
# ],
# 15: [0.030753241996118647, 0.07036604748810807, 0.10715922046717177, 0.1395706779261539, 0.16626920581699378, 0.18616100001556188, 0.19843148532711125,
# 0.2025782419255609, 0.19843148532711125, 0.18616100001556188, 0.16626920581699378, 0.1395706779261539, 0.10715922046717177, 0.07036604748810807,
# 0.030753241996118647
# ],
# 16: [0.027152459411754037, 0.062253523938647706, 0.09515851168249259, 0.12462897125553403, 0.14959598881657676, 0.16915651939500262, 0.1826034150449236,
# 0.18945061045506859, 0.18945061045506859, 0.1826034150449236, 0.16915651939500262, 0.14959598881657676, 0.12462897125553403,
# 0.09515851168249259, 0.062253523938647706, 0.027152459411754037
# ],
# 17: [0.02414830286854952, 0.0554595293739866, 0.08503614831717908, 0.11188384719340365, 0.13513636846852523, 0.15404576107681012, 0.16800410215644995,
# 0.17656270536699253, 0.17944647035620653, 0.17656270536699253, 0.16800410215644995, 0.15404576107681012, 0.13513636846852523,
# 0.11188384719340365, 0.08503614831717908, 0.0554595293739866, 0.02414830286854952
# ],
# 18: [0.02161601352648413, 0.04971454889496922, 0.07642573025488925, 0.10094204410628699, 0.12255520671147836, 0.14064291467065063, 0.15468467512626521,
# 0.16427648374583273, 0.16914238296314363, 0.16914238296314363, 0.16427648374583273, 0.15468467512626521, 0.14064291467065063,
# 0.12255520671147836, 0.10094204410628699, 0.07642573025488925, 0.04971454889496922, 0.02161601352648413
# ],
# 19: [0.01946178822972761, 0.04481422676569981, 0.06904454273764107, 0.09149002162244985, 0.11156664554733375, 0.1287539625393362, 0.14260670217360638,
# 0.15276604206585945, 0.15896884339395415, 0.16105444984878345, 0.15896884339395415, 0.15276604206585945, 0.14260670217360638,
# 0.1287539625393362, 0.11156664554733375, 0.09149002162244985, 0.06904454273764107, 0.04481422676569981, 0.01946178822972761
# ],
# 87: [0.0009691097381757348, 0.0022546907537549384, 0.003539271655388117, 0.004819456238501684, 0.00609346204763528, 0.007359623648817653, 0.008616302838488783, 0.009861877713702014, 0.011094741940560695, 0.012313306030048123, 0.013515999118245947, 0.0147012708872398, 0.015867593518826113, 0.017013463643001287, 0.0181374042653544, 0.01923796666535654, 0.020313732260655384, 0.021363314433802724, 0.022385360318485367, 0.02337855254266003, 0.024341610926167583, 0.025273294130557043, 0.026172401258933563, 0.027037773403735973, 0.02786829514042919, 0.028662895965176235, 0.02942055167462312, 0.03014028568601895, 0.030821170295962166, 0.031462327876150824, 0.032062932004589706, 0.03262220853080143, 0.03313943657366203, 0.03361394945057692, 0.034045135536799345, 0.03443243905378225, 0.03477536078554787, 0.03507345872215154, 0.03532634862941022, 0.03553370454416061, 0.035695259194409426, 0.03581080434383377, 0.03588019106018702, 0.03590332990726553, 0.03588019106018702, 0.03581080434383377, 0.035695259194409426, 0.03553370454416061, 0.03532634862941022, 0.03507345872215154, 0.03477536078554787, 0.03443243905378225, 0.034045135536799345, 0.03361394945057692, 0.03313943657366203, 0.03262220853080143, 0.032062932004589706, 0.031462327876150824, 0.030821170295962166, 0.03014028568601895, 0.02942055167462312, 0.028662895965176235, 0.02786829514042919, 0.027037773403735973, 0.026172401258933563, 0.025273294130557043, 0.024341610926167583, 0.02337855254266003, 0.022385360318485367, 0.021363314433802724, 0.020313732260655384, 0.01923796666535654, 0.0181374042653544, 0.017013463643001287, 0.015867593518826113, 0.0147012708872398, 0.013515999118245947, 0.012313306030048123, 0.011094741940560695, 0.009861877713702014, 0.008616302838488783, 0.007359623648817653, 0.00609346204763528, 0.004819456238501684, 0.003539271655388117, 0.0022546907537549384, 0.0009691097381757348],
# 300: [8.217779368318766e-05, 0.000191285544654933, 0.00030053396541231163, 0.0004097635734033533, 0.0005189512134602094, 0.0006280829779724268, 0.0007371464159049574, 0.0008461294290789873, 0.0009550200344351969, 0.0010638062980465963, 0.001172476313703897, 0.001281018195428937, 0.0013894200749916825, 0.0014976701014677357, 0.0016057564416445678, 0.0017136672808561744, 0.0018213908240185923, 0.0019289152967680268, 0.0020362289466670158, 0.0021433200444213973, 0.002250176885138956, 0.002356787789583519, 0.002463141105430975, 0.0025692252085409055, 0.002675028504212449, 0.002780539428452415, 0.0028857464492311412, 0.0029906380677445906, 0.0030952028196669814, 0.0031994292764019384, 0.003303306046330757, 0.003406821776058694, 0.0035099651516518333, 0.0036127248998770794, 0.0037150897894316927, 0.0038170486321696183, 0.003918590284326712, 0.004019703647735881, 0.004120377671042578, 0.004220601350909488, 0.004320363733222272, 0.0044196539142855205, 0.004518461042012614, 0.004616774317114607, 0.004714582994277626, 0.004811876383340857, 0.004908643850461695, 0.005004874819279474, 0.0051005587720714925, 0.0051956852509013034, 0.005290243858763116, 0.0053842242607182395, 0.0054776161850220466, 0.005570409424251355, 0.005662593836414576, 0.005754159346065033, 0.005845095945399296, 0.005935393695350927, 0.006025042726679271, 0.006114033241045046, 0.006202355512083302, 0.0062899998864659286, 0.00637695678495604, 0.006463216703456925, 0.006548770214047811, 0.006633607966017162, 0.006717720686882713, 0.0068010991834066194, 0.006883734342598478, 0.0069656171327117265, 0.00704673860423293, 0.007127089890856632, 0.007206662210456636, 0.0072854468660452166, 0.007363435246723478, 0.00744061882862333, 0.007516989175837821, 0.00759253794134379, 0.007667256867914979, 0.007741137789022482, 0.007814172629730136, 0.007886353407574561, 0.007957672233438363, 0.008028121312413226, 0.008097692944651201, 0.008166379526205846, 0.008234173549864183, 0.008301067605967079, 0.008367054383218206, 0.008432126669483946, 0.00849627735258214, 0.00855949942105765, 0.0086217859649506, 0.00868313017655067, 0.008743525351140993, 0.008802964887731923, 0.008861442289781127, 0.008918951165904783, 0.008975485230575371, 0.009031038304809223, 0.009085604316841996, 0.009139177302791153, 0.009191751407309061, 0.009243320884222412, 0.009293880097160322, 0.009343423520170318, 0.00939194573832249, 0.009439441448300992, 0.009485905458984029, 0.009531332692011101, 0.009575718182337876, 0.009619057078779164, 0.009661344644538864, 0.009702576257727958, 0.009742747411869234, 0.00978185371639035, 0.00981989089710335, 0.009856854796671895, 0.009892741375065664, 0.009927546710002122, 0.009961266997374775, 0.009993898551669387, 0.010025437806366347, 0.01005588131433098, 0.01008522574818994, 0.010113467900694973, 0.010140604685073598, 0.010166633135366204, 0.010191550406750467, 0.010215353775852252, 0.010238040641043068, 0.010259608522724598, 0.010280055063599757, 0.010299378028930195, 0.010317575306780569, 0.010334644908249447, 0.010350584967686661, 0.010365393742897078, 0.010379069615331337, 0.010391611090262378, 0.010403016796949039, 0.01041328548878585, 0.010422416043439223, 0.010430407462970154, 0.010437258873943282, 0.01044296952752239, 0.010447538799552137, 0.010450966190626462, 0.010453251326142981, 0.010454393956344087, 0.010454393956344087, 0.010453251326142981, 0.010450966190626462, 0.010447538799552137, 0.01044296952752239, 0.010437258873943282, 0.010430407462970154, 0.010422416043439223, 0.01041328548878585, 0.010403016796949039, 0.010391611090262378, 0.010379069615331337, 0.010365393742897078, 0.010350584967686661, 0.010334644908249447, 0.010317575306780569, 0.010299378028930195, 0.010280055063599757, 0.010259608522724598, 0.010238040641043068, 0.010215353775852252, 0.010191550406750467, 0.010166633135366204, 0.010140604685073598, 0.010113467900694973, 0.01008522574818994, 0.01005588131433098, 0.010025437806366347, 0.009993898551669387, 0.009961266997374775, 0.009927546710002122, 0.009892741375065664, 0.009856854796671895, 0.00981989089710335, 0.00978185371639035, 0.009742747411869234, 0.009702576257727958, 0.009661344644538864, 0.009619057078779164, 0.009575718182337876, 0.009531332692011101, 0.009485905458984029, 0.009439441448300992, 0.00939194573832249, 0.009343423520170318, 0.009293880097160322, 0.009243320884222412, 0.009191751407309061, 0.009139177302791153, 0.009085604316841996, 0.009031038304809223, 0.008975485230575371, 0.008918951165904783, 0.008861442289781127, 0.008802964887731923, 0.008743525351140993, 0.00868313017655067, 0.0086217859649506, 0.00855949942105765, 0.00849627735258214, 0.008432126669483946, 0.008367054383218206, 0.008301067605967079, 0.008234173549864183, 0.008166379526205846, 0.008097692944651201, 0.008028121312413226, 0.007957672233438363, 0.007886353407574561, 0.007814172629730136, 0.007741137789022482, 0.007667256867914979, 0.00759253794134379, 0.007516989175837821, 0.00744061882862333, 0.007363435246723478, 0.0072854468660452166, 0.007206662210456636, 0.007127089890856632, 0.00704673860423293, 0.0069656171327117265, 0.006883734342598478, 0.0068010991834066194, 0.006717720686882713, 0.006633607966017162, 0.006548770214047811, 0.006463216703456925, 0.00637695678495604, 0.0062899998864659286, 0.006202355512083302, 0.006114033241045046, 0.006025042726679271, 0.005935393695350927, 0.005845095945399296, 0.005754159346065033, 0.005662593836414576, 0.005570409424251355, 0.0054776161850220466, 0.0053842242607182395, 0.005290243858763116, 0.0051956852509013034, 0.0051005587720714925, 0.005004874819279474, 0.004908643850461695, 0.004811876383340857, 0.004714582994277626, 0.004616774317114607, 0.004518461042012614, 0.0044196539142855205, 0.004320363733222272, 0.004220601350909488, 0.004120377671042578, 0.004019703647735881, 0.003918590284326712, 0.0038170486321696183, 0.0037150897894316927, 0.0036127248998770794, 0.0035099651516518333, 0.003406821776058694, 0.003303306046330757, 0.0031994292764019384, 0.0030952028196669814, 0.0029906380677445906, 0.0028857464492311412, 0.002780539428452415, 0.002675028504212449, 0.0025692252085409055, 0.002463141105430975, 0.002356787789583519, 0.002250176885138956, 0.0021433200444213973, 0.0020362289466670158, 0.0019289152967680268, 0.0018213908240185923, 0.0017136672808561744, 0.0016057564416445678, 0.0014976701014677357, 0.0013894200749916825, 0.001281018195428937, 0.001172476313703897, 0.0010638062980465963, 0.0009550200344351969, 0.0008461294290789873, 0.0007371464159049574, 0.0006280829779724268, 0.0005189512134602094, 0.0004097635734033533, 0.00030053396541231163, 0.000191285544654933, 8.217779368318766e-05],
}
#legendre_points = {
# 2: [-0.5773502691896257, 0.5773502691896257],
# 3: [-0.7745966692414834, 0.0, 0.7745966692414834],
# 4: [-0.8611363115940526, -0.33998104358485626, 0.33998104358485626, 0.8611363115940526],
# 5: [-0.906179845938664, -0.5384693101056831, 0.0, 0.5384693101056831, 0.906179845938664],
# 6: [-0.932469514203152, -0.6612093864662645, -0.23861918608319693, 0.23861918608319693, 0.6612093864662645, 0.932469514203152],
# 7: [-0.9491079123427585, -0.7415311855993945, -0.4058451513773972, 0.0, 0.4058451513773972, 0.7415311855993945, 0.9491079123427585],
# 8: [-0.9602898564975362, -0.7966664774136267, -0.525532409916329, -0.18343464249564978, 0.18343464249564978, 0.525532409916329, 0.7966664774136267,
# 0.9602898564975362
# ],
# 9: [-0.9681602395076261, -0.8360311073266358, -0.6133714327005904, -0.3242534234038089, 0.0, 0.3242534234038089, 0.6133714327005904, 0.8360311073266358,
# 0.9681602395076261
# ],
# 10: [-0.9739065285171717, -0.8650633666889845, -0.6794095682990244, -0.4333953941292472, -0.14887433898163122, 0.14887433898163122, 0.4333953941292472,
# 0.6794095682990244, 0.8650633666889845, 0.9739065285171717
# ],
# 11: [-0.978228658146057, -0.8870625997680953, -0.7301520055740494, -0.5190961292068118, -0.26954315595234496, 0.0, 0.26954315595234496,
# 0.5190961292068118, 0.7301520055740494, 0.8870625997680953, 0.978228658146057
# ],
# 12: [-0.9815606342467192, -0.9041172563704748, -0.7699026741943047, -0.5873179542866175, -0.3678314989981802, -0.1252334085114689, 0.1252334085114689,
# 0.3678314989981802, 0.5873179542866175, 0.7699026741943047, 0.9041172563704748, 0.9815606342467192
# ],
# 13: [-0.9841830547185881, -0.9175983992229779, -0.8015780907333099, -0.6423493394403402, -0.4484927510364468, -0.23045831595513477, 0.0,
# 0.23045831595513477, 0.4484927510364468, 0.6423493394403402, 0.8015780907333099, 0.9175983992229779, 0.9841830547185881
# ],
# 14: [-0.9862838086968123, -0.9284348836635735, -0.827201315069765, -0.6872929048116855, -0.5152486363581541, -0.31911236892788974, -0.10805494870734367,
# 0.10805494870734367, 0.31911236892788974, 0.5152486363581541, 0.6872929048116855, 0.827201315069765, 0.9284348836635735, 0.9862838086968123
# ],
# 15: [-0.9879925180204854, -0.937273392400706, -0.8482065834104272, -0.7244177313601701, -0.5709721726085388, -0.3941513470775634, -0.20119409399743451,
# 0.0, 0.20119409399743451, 0.3941513470775634, 0.5709721726085388, 0.7244177313601701, 0.8482065834104272, 0.937273392400706, 0.9879925180204854
# ],
# 16: [-0.9894009349916499, -0.9445750230732326, -0.8656312023878318, -0.755404408355003, -0.6178762444026438, -0.45801677765722737, -0.2816035507792589, -
# 0.09501250983763745, 0.09501250983763745, 0.2816035507792589, 0.45801677765722737, 0.6178762444026438, 0.755404408355003, 0.8656312023878318,
# 0.9445750230732326, 0.9894009349916499
# ],
# 17: [-0.9905754753144174, -0.9506755217687678, -0.8802391537269859, -0.7815140038968014, -0.6576711592166908, -0.5126905370864769, -0.3512317634538763, -
# 0.17848418149584785, 0.0, 0.17848418149584785, 0.3512317634538763, 0.5126905370864769, 0.6576711592166908, 0.7815140038968014,
# 0.8802391537269859, 0.9506755217687678, 0.9905754753144174
# ],
# 18: [-0.9915651684209309, -0.9558239495713978, -0.8926024664975557, -0.8037049589725231, -0.6916870430603532, -0.5597708310739475, -0.41175116146284263, -
# 0.2518862256915055, -0.08477501304173529, 0.08477501304173529, 0.2518862256915055, 0.41175116146284263, 0.5597708310739475, 0.6916870430603532,
# 0.8037049589725231, 0.8926024664975557, 0.9558239495713978, 0.9915651684209309
# ],
# 19: [-0.9924068438435844, -0.96020815213483, -0.9031559036148179, -0.8227146565371428, -0.7209661773352294, -0.600545304661681, -0.46457074137596094, -
# 0.31656409996362983, -0.1603586456402254, 0.0, 0.1603586456402254, 0.31656409996362983, 0.46457074137596094, 0.600545304661681,
# 0.7209661773352294, 0.8227146565371428, 0.9031559036148179, 0.96020815213483, 0.9924068438435844
# ],
## 87: [-0.9996223504324843, -0.9980107215629823, -0.995113458137992, -0.9909336501109646, -0.9854766060684204, -0.9787493410038163, -0.9707605197472843, -0.9615204369360731, -0.9510410013893136, -0.9393357199742057, -0.9264196798912372, -0.9123095290941229, -0.8970234547675694, -0.8805811598520419, -0.8630038376297066, -0.8443141443970352, -0.8245361702557805, -0.8036954080581777, -0.7818187205454378, -0.7589343057213493, -0.7350716605053138, -0.7102615427114729, -0.6845359314028236, -0.6579279856713494, -0.6304720018972505, -0.6022033695423352, -0.5731585255345304, -0.5433749073022933, -0.5128909045194523, -0.4817458096226668, -0.44997976716528437, -0.4176337220728691, -0.3847493668670969, -0.3513690879260413, -0.31753591085011573, -0.28329344500409187, -0.24868582730667713, -0.2137576653401016, -0.17855397985304422, -0.14312014673100815, -0.10750183850894277, -0.07174496550149943, -0.035895616626800894, 0.0, 0.035895616626800894, 0.07174496550149943, 0.10750183850894277, 0.14312014673100815, 0.17855397985304422, 0.2137576653401016, 0.24868582730667713, 0.28329344500409187, 0.31753591085011573, 0.3513690879260413, 0.3847493668670969, 0.4176337220728691, 0.44997976716528437, 0.4817458096226668, 0.5128909045194523, 0.5433749073022933, 0.5731585255345304, 0.6022033695423352, 0.6304720018972505, 0.6579279856713494, 0.6845359314028236, 0.7102615427114729, 0.7350716605053138, 0.7589343057213493, 0.7818187205454378, 0.8036954080581777, 0.8245361702557805, 0.8443141443970352, 0.8630038376297066, 0.8805811598520419, 0.8970234547675694, 0.9123095290941229, 0.9264196798912372, 0.9393357199742057, 0.9510410013893136, 0.9615204369360731, 0.9707605197472843, 0.9787493410038163, 0.9854766060684204, 0.9909336501109646, 0.995113458137992, 0.9980107215629823, 0.9996223504324843],
## 300: [-0.9999679782184367, -0.9998312829844194, -0.9995853734488863, -0.9992302218632736, -0.998765860353095, -0.9981923380734435, -0.9975097171758793, -0.9967180720510002, -0.9958174891208242, -0.9948080667630034, -0.9936899152742682, -0.9924631568471006, -0.9911279255509899, -0.9896843673150097, -0.9881326399103604, -0.9864729129322606, -0.9847053677808957, -0.9828301976412724, -0.9808476074619004, -0.9787578139322587, -0.9765610454590226, -0.9742575421410374, -0.9718475557430343, -0.9693313496680812, -0.9667091989287728, -0.9639813901171553, -0.9611482213733913, -0.9582100023531646, -0.9551670541938287, -0.9520197094793031, -0.948768312203718, -0.9454132177338137, -0.9419547927700982, -0.9383934153067653, -0.93472947459038, -0.9309633710773336, -0.927095516390074, -0.9231263332721162, -0.9190562555418367, -0.9148857280450583, -0.9106152066064294, -0.9062451579796031, -0.9017760597962232, -0.8972084005137192, -0.8925426793619202, -0.88777940628849, -0.8829191019031915, -0.8779622974209857, -0.8729095346039718, -0.8677613657021737, -0.8625183533931814, -0.8571810707206516, -0.8517501010316768, -0.846226037913026, -0.8406094851262689, -0.8349010565417858, -0.8291013760716742, -0.8232110776015571, -0.817230804921301, -0.8111612116546523, -0.8050029611877982, -0.7987567265968609, -0.7924231905743324, -0.7860030453544584, -0.77949699263758, -0.7729057435134394, -0.7662300183834609, -0.7594705468820128, -0.752628067796661, -0.7457033289874226, -0.7386970873050261, -0.7316101085081913, -0.7244431671799336, -0.7171970466429053, -0.7098725388737805, -0.7024704444166952, -0.6949915722957499, -0.6874367399265869, -0.6798067730270485, -0.6721025055269295, -0.664324779476831, -0.6564744449561274, -0.6485523599800557, -0.6405593904059368, -0.6324964098385406, -0.6243642995346039, -0.6161639483065119, -0.6078962524251537, -0.5995621155219635, -0.5911624484901564, -0.5826981693851706, -0.5741702033243276, -0.5655794823857192, -0.5569269455063353, -0.5482135383794405, -0.5394402133512136, -0.530607929316659, -0.5217176516148028, -0.5127703519231844, -0.5037670081516558, -0.4947086043354983, -0.4855961305278722, -0.4764305826916062, -0.4672129625903424, -0.45794427767904683, -0.44862554099389806, -0.43925777104156566, -0.42984199168789095, -0.4203792320459818, -0.410870526363734, -0.40131691391079155, -0.3917194388649578, -0.38207915019807054, -0.37239710156135264, -0.36267435117025176, -0.35291196168878075, -0.34311100011337214, -0.333272537656259, -0.32339764962839507, -0.3134874153219266, -0.3035429178922298, -0.29356524423952524, -0.2835554848900835, -0.27351473387703407, -0.26344408862079155, -0.25334464980911087, -0.24321752127678611, -0.233063809885005, -0.22288462540037263, -0.21268108037361766, -0.2024542900179944, -0.19220537208739363, -0.18193544675417583, -0.17164563648674022, -0.16133706592684258, -0.15101086176667575, -0.140668152625726, -0.1303100689274186, -0.1199377427755664, -0.10955230783063467, -0.0991548991858358, -0.08874665324306741, -0.07832870758870747, -0.0679022008692799, -0.057468272667004265, -0.0470280633752434, -0.03658271407386212, -0.02613336640451104, -0.015681162445849026, -0.005227244588717748, 0.005227244588717748, 0.015681162445849026, 0.02613336640451104, 0.03658271407386212, 0.0470280633752434, 0.057468272667004265, 0.0679022008692799, 0.07832870758870747, 0.08874665324306741, 0.0991548991858358, 0.10955230783063467, 0.1199377427755664, 0.1303100689274186, 0.140668152625726, 0.15101086176667575, 0.16133706592684258, 0.17164563648674022, 0.18193544675417583, 0.19220537208739363, 0.2024542900179944, 0.21268108037361766, 0.22288462540037263, 0.233063809885005, 0.24321752127678611, 0.25334464980911087, 0.26344408862079155, 0.27351473387703407, 0.2835554848900835, 0.29356524423952524, 0.3035429178922298, 0.3134874153219266, 0.32339764962839507, 0.333272537656259, 0.34311100011337214, 0.35291196168878075, 0.36267435117025176, 0.37239710156135264, 0.38207915019807054, 0.3917194388649578, 0.40131691391079155, 0.410870526363734, 0.4203792320459818, 0.42984199168789095, 0.43925777104156566, 0.44862554099389806, 0.45794427767904683, 0.4672129625903424, 0.4764305826916062, 0.4855961305278722, 0.4947086043354983, 0.5037670081516558, 0.5127703519231844, 0.5217176516148028, 0.530607929316659, 0.5394402133512136, 0.5482135383794405, 0.5569269455063353, 0.5655794823857192, 0.5741702033243276, 0.5826981693851706, 0.5911624484901564, 0.5995621155219635, 0.6078962524251537, 0.6161639483065119, 0.6243642995346039, 0.6324964098385406, 0.6405593904059368, 0.6485523599800557, 0.6564744449561274, 0.664324779476831, 0.6721025055269295, 0.6798067730270485, 0.6874367399265869, 0.6949915722957499, 0.7024704444166952, 0.7098725388737805, 0.7171970466429053, 0.7244431671799336, 0.7316101085081913, 0.7386970873050261, 0.7457033289874226, 0.752628067796661, 0.7594705468820128, 0.7662300183834609, 0.7729057435134394, 0.77949699263758, 0.7860030453544584, 0.7924231905743324, 0.7987567265968609, 0.8050029611877982, 0.8111612116546523, 0.817230804921301, 0.8232110776015571, 0.8291013760716742, 0.8349010565417858, 0.8406094851262689, 0.846226037913026, 0.8517501010316768, 0.8571810707206516, 0.8625183533931814, 0.8677613657021737, 0.8729095346039718, 0.8779622974209857, 0.8829191019031915, 0.88777940628849, 0.8925426793619202, 0.8972084005137192, 0.9017760597962232, 0.9062451579796031, 0.9106152066064294, 0.9148857280450583, 0.9190562555418367, 0.9231263332721162, 0.927095516390074, 0.9309633710773336, 0.93472947459038, 0.9383934153067653, 0.9419547927700982, 0.9454132177338137, 0.948768312203718, 0.9520197094793031, 0.9551670541938287, 0.9582100023531646, 0.9611482213733913, 0.9639813901171553, 0.9667091989287728, 0.9693313496680812, 0.9718475557430343, 0.9742575421410374, 0.9765610454590226, 0.9787578139322587, 0.9808476074619004, 0.9828301976412724, 0.9847053677808957, 0.9864729129322606, 0.9881326399103604, 0.9896843673150097, 0.9911279255509899, 0.9924631568471006, 0.9936899152742682, 0.9948080667630034, 0.9958174891208242, 0.9967180720510002, 0.9975097171758793, 0.9981923380734435, 0.998765860353095, 0.9992302218632736, 0.9995853734488863, 0.9998312829844194, 0.9999679782184367],
#}
def jacobian(f, x0, scalar=True, perturbation=1e-9, zero_offset=1e-7, args=(),
**kwargs):
"""def test_fun(x):
# test case - 2 inputs, 3 outputs - should work fine
x2 = x[0]*x[0]
return np.array([x2*exp(x[1]), x2*sin(x[1]), x2*cos(x[1])])
def easy_fun(x):
x = x[0]
return 5*x*x - 3*x - 100
"""
# For scalar - returns list, size of input variables
# For vector - returns list of list - size of input variables * output variables
# Could add backwards/complex, multiple evaluations, detection of poor condition
# types and limits
base = f(x0, *args, **kwargs)
if not scalar:
base = list(base) # copy the base point
x = list(x0)
nx = len(x0)
gradient = []
for i in range(nx):
delta = x0[i]*(perturbation)
if delta == 0:
delta = zero_offset
x[i] += delta
point = f(x, *args, **kwargs)
if scalar:
dy = (point - base)/delta
gradient.append(dy)
else:
delta_inv = 1.0/delta
dys = [delta_inv*(p - b) for p, b in zip(point, base)]
gradient.append(dys)
x[i] -= delta
if not scalar:
# Transpose to be in standard form
return list(map(list, zip(*gradient)))
return gradient
def hessian(f, x0, scalar=True, perturbation=1e-9, zero_offset=1e-7, full=True, args=(), **kwargs):
# Takes n**2/2 + 3*n/2 + 1 function evaluations! Can still be quite fast.
# For scalar - returns list[list], size of input variables
# For vector - returns list of list of list - size of input variables * input variables * output variables
# Could add backwards/complex, multiple evaluations, detection of poor condition
# types and limits, jacobian as output, fevals
base = f(x0, *args, **kwargs)
nx = len(x0)
if not isinstance(base, (float, int, complex)):
try:
ny = len(base)
except:
ny = 1
else:
ny = 1
deltas = []
for i in range(nx):
delta = x0[i]*(perturbation)
if delta == 0.0:
delta = zero_offset
deltas.append(delta)
deltas_inv = [1.0/di for di in deltas]
x_perturb = list(x0)
fs_perturb_i = []
for i in range(nx):
x_perturb[i] += deltas[i]
f_perturb_i = f(x_perturb, *args, **kwargs)
fs_perturb_i.append(f_perturb_i)
x_perturb[i] -= deltas[i]
if full:
hessian = [[None]*nx for _ in range(nx)]
else:
hessian = []
for i in range(nx):
if not full:
row = []
f_perturb_i = fs_perturb_i[i]
x_perturb[i] += deltas[i]
for j in range(i+1):
f_perturb_j = fs_perturb_i[j]
x_perturb[j] += deltas[j]
f_perturb_ij = f(x_perturb, *args, **kwargs)
if scalar:
dii0 = (f_perturb_i - base)*deltas_inv[i]
dii1 = (f_perturb_ij - f_perturb_j)*deltas_inv[i]
dij = (dii1 - dii0)*deltas_inv[j]
else:
# dii0s = [(fi - bi)*deltas_inv[i] for fi, bi in zip(f_perturb_i, base)]
# dii1s = [(fij - fj)*deltas_inv[i] for fij, fj in zip(f_perturb_ij, f_perturb_j)]
# dij = [(di1 - di0)*deltas_inv[j] for di1, di0 in zip(dii1s, dii0s)]
# Saves a good amount of time
dij = [((f_perturb_ij[m] - f_perturb_j[m]) - (f_perturb_i[m] - base[m]))*deltas_inv[j]*deltas_inv[i]
for m in range(ny)]
if not full:
row.append(dij)
else:
hessian[i][j] = hessian[j][i] = dij
x_perturb[j] -= deltas[j]
if not full:
hessian.append(row)
x_perturb[i] -= deltas[i]
return hessian
def stable_poly_to_unstable(coeffs, low, high):
if high != low:
# Handle the case of no transformation, no limits
my_poly = Polynomial([-0.5*(high + low)*2.0/(high - low), 2.0/(high - low)])
coeffs = horner(coeffs, my_poly).coef[::-1].tolist()
return coeffs
def horner_backwards(x, coeffs):
return horner(coeffs, x)
def exp_horner_backwards(x, coeffs):
return exp(horner(coeffs, x))
def exp_horner_backwards_and_der(x, coeffs):
poly_val, poly_der = horner_and_der(coeffs, x)
val = exp(poly_val)
der = poly_der*val
return val, der
def exp_horner_backwards_and_der2(x, coeffs):
poly_val, poly_der, poly_der2 = horner_and_der2(coeffs, x)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
return val, der, der2
def exp_horner_backwards_and_der3(x, coeffs):
poly_val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, x)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
return val, der, der2, der3
def horner_backwards_ln_tau(T, Tc, coeffs):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
return horner(coeffs, lntau)
def horner_backwards_ln_tau_and_der(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der = horner_and_der(coeffs, lntau)
der = -poly_der/(Tc*(-T/Tc + 1))
return val, der
def horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der, poly_der2 = horner_and_der2(coeffs, lntau)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
return val, der, der2
def horner_backwards_ln_tau_and_der3(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0, 0.0, 00
lntau = log(1.0 - T/Tc)
val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, lntau)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)
return val, der, der2, der3
def exp_horner_backwards_ln_tau(T, Tc, coeffs):
# This formulation has the nice property of being linear-linear when plotted
# for surface tension
if T >= Tc:
return 0.0
# No matter what the polynomial term does to it, as tau goes to 1, x goes to a large negative value
# So long as the polynomial has the right derivative at the end (and a reasonable constant) it will always converge to 0.
lntau = log(1.0 - T/Tc)
# Guarantee it is larger than 0 with the exp
# This is a linear plot as well because both variables are transformed into a log basis.
return exp(horner(coeffs, lntau))
def exp_horner_backwards_ln_tau_and_der(T, Tc, coeffs):
if T >= Tc:
return 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_der_val = horner_and_der(coeffs, lntau)
val = exp(poly_val)
return val, -val*poly_der_val/(Tc*tau)
def exp_horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
if T >= Tc:
return 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_val_der, poly_val_der2 = horner_and_der2(coeffs, lntau)
val = exp(poly_val)
der = -val*poly_val_der/(Tc*tau)
der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))
return val, der, der2
def exp_poly_ln_tau_coeffs2(T, Tc, val, der):
'''
from sympy import *
T, Tc, T0, T1, T2, sigma0, sigma1, sigma2 = symbols('T, Tc, T0, T1, T2, sigma0, sigma1, sigma2')
val, der = symbols('val, der')
from sympy.abc import a, b, c
from fluids.numerics import horner
coeffs = [a, b]
lntau = log(1 - T/Tc)
sigma = exp(horner(coeffs, lntau))
d0 = diff(sigma, T)
Eq0 = Eq(sigma,val)
Eq1 = Eq(d0, der)
s = solve([Eq0, Eq1], [a, b])
'''
c0 = der*(T - Tc)/val
c1 = (-T*der*log((-T + Tc)/Tc) + Tc*der*log((-T + Tc)/Tc) + val*log(val))/val
return [c0, c1]
def exp_poly_ln_tau_coeffs3(T, Tc, val, der, der2):
'''
from sympy import *
T, Tc, T0, T1, T2, sigma0, sigma1, sigma2 = symbols('T, Tc, T0, T1, T2, sigma0, sigma1, sigma2')
val, der, der2 = symbols('val, der, der2')
from sympy.abc import a, b, c
from fluids.numerics import horner
coeffs = [a, b, c]
lntau = log(1 - T/Tc)
sigma = exp(horner(coeffs, lntau))
d0 = diff(sigma, T)
Eq0 = Eq(sigma,val)
Eq1 = Eq(d0, der)
Eq2 = Eq(diff(d0, T), der2)
# s = solve([Eq0, Eq1], [a, b])
s = solve([Eq0, Eq1, Eq2], [a, b, c])
'''
return [(-T**2*der**2 + T**2*der2*val + 2*T*Tc*der**2 - 2*T*Tc*der2*val + T*der*val - Tc**2*der**2 + Tc**2*der2*val - Tc*der*val)/(2*val**2),
(T**2*der**2*log((-T + Tc)/Tc) - T**2*der2*val*log((-T + Tc)/Tc) - 2*T*Tc*der**2*log((-T + Tc)/Tc) + 2*T*Tc*der2*val*log((-T + Tc)/Tc) - T*der*val*log((-T + Tc)/Tc) + T*der*val + Tc**2*der**2*log((-T + Tc)/Tc) - Tc**2*der2*val*log((-T + Tc)/Tc) + Tc*der*val*log((-T + Tc)/Tc) - Tc*der*val)/val**2,
(-T**2*der**2*log((-T + Tc)/Tc)**2 + T**2*der2*val*log((-T + Tc)/Tc)**2 + 2*T*Tc*der**2*log((-T + Tc)/Tc)**2 - 2*T*Tc*der2*val*log((-T + Tc)/Tc)**2 + T*der*val*log((-T + Tc)/Tc)**2 - 2*T*der*val*log((-T + Tc)/Tc) - Tc**2*der**2*log((-T + Tc)/Tc)**2 + Tc**2*der2*val*log((-T + Tc)/Tc)**2 - Tc*der*val*log((-T + Tc)/Tc)**2 + 2*Tc*der*val*log((-T + Tc)/Tc) + 2*val**2*log(val))/(2*val**2)]
def horner_domain(x, coeffs, xmin, xmax):
r'''Evaluates a polynomial defined by coefficienfs `coeffs` and domain
(`xmin`, `xmax`) which maps the input variable into the window
(-1, 1) where the polynomial can be evaluated most acccurately.
The evaluation uses horner's method.
Note that the coefficients are reversed compared to the common form; the
first value is the coefficient of the highest-powered x term, and the last
value in `coeffs` is the constant offset value.
Parameters
----------
x : float
Point at which to evaluate the polynomial, [-]
coeffs : iterable[float]
Coefficients of polynomial, [-]
xmin : float
Low value, [-]
xmax : float
High value, [-]
Returns
-------
val : float
The evaluated value of the polynomial, [-]
Notes
-----
'''
range_inv = 1.0/(xmax - xmin)
off = (-xmax - xmin)*range_inv
scl = 2.0*range_inv
x = off + scl*x
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot
def polynomial_offset_scale(xmin, xmax):
range_inv = 1.0/(xmax - xmin)
offset = (-xmax - xmin)*range_inv
scale = 2.0*range_inv
return offset, scale
def horner_stable(x, coeffs, offset, scale):
x = offset + scale*x
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot
def horner_stable_and_der(x, coeffs, offset, scale):
x = offset + scale*x
f = 0.0
der = 0.0
for a in coeffs:
der = x*der + f
f = x*f + a
return (f, der*scale)
def horner_stable_and_der2(x, coeffs, offset, scale):
x = offset + scale*x
f, der, der2 = 0.0, 0.0, 0.0
for a in coeffs:
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der*scale, scale*scale*(der2 + der2))
def horner_stable_and_der3(x, coeffs, offset, scale):
x = offset + scale*x
f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
scale2 = scale*scale
return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0)
def horner_stable_and_der4(x, coeffs, offset, scale):
x = offset + scale*x
f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der4 = x*der4 + der3
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
scale2 = scale*scale
return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0, scale2*scale2*der4*24.0)
def horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
return horner_stable(lntau, coeffs, offset, scale)
def horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der = horner_stable_and_der(lntau, coeffs, offset, scale)
der = -poly_der/(Tc*(-T/Tc + 1))
return val, der
def horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der, poly_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
return val, der, der2
def horner_stable_ln_tau_and_der3(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0, 00
lntau = log(1.0 - T/Tc)
val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(lntau, coeffs, offset, scale)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)
return val, der, der2, der3
def exp_horner_stable(x, coeffs, offset, scale):
return trunc_exp(horner_stable(x, coeffs, offset, scale))
def exp_horner_stable_and_der(x, coeffs, offset, scale):
poly_val, poly_der = horner_stable_and_der(x, coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
return val, der
def exp_horner_stable_and_der2(x, coeffs, offset, scale):
poly_val, poly_der, poly_der2 = horner_stable_and_der2(x, coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
return val, der, der2
def exp_horner_stable_and_der3(x, coeffs, offset, scale):
poly_val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(x, coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
return val, der, der2, der3
def exp_horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
return exp(horner_stable(lntau, coeffs, offset, scale))
def exp_horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_der_val = horner_stable_and_der(lntau, coeffs, offset, scale)
val = exp(poly_val)
return val, -val*poly_der_val/(Tc*tau)
def exp_horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_val_der, poly_val_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
val = exp(poly_val)
der = -val*poly_val_der/(Tc*tau)
der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))
return val, der, der2
def exp_cheb(x, coeffs, offset, scale):
y = chebval(x, coeffs, offset, scale)
return trunc_exp(y)
def exp_cheb_and_der(x, coeffs, der_coeffs, offset, scale):
poly_val = chebval(x, coeffs, offset, scale)
poly_der = chebval(x, der_coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
return val, der
def exp_cheb_and_der2(x, coeffs, der_coeffs, der2_coeffs, offset, scale):
poly_val = chebval(x, coeffs, offset, scale)
poly_der = chebval(x, der_coeffs, offset, scale)
poly_der2 = chebval(x, der2_coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
return val, der, der2
def exp_cheb_and_der3(x, coeffs, der_coeffs, der2_coeffs, der3_coeffs, offset, scale):
poly_val = chebval(x, coeffs, offset, scale)
poly_der = chebval(x, der_coeffs, offset, scale)
poly_der2 = chebval(x, der2_coeffs, offset, scale)
poly_der3 = chebval(x, der3_coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
return val, der, der2, der3
def exp_cheb_ln_tau(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
y = chebval(lntau, coeffs, offset, scale)
return trunc_exp(y)
def exp_cheb_ln_tau_and_der(T, Tc, coeffs, der_coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val = chebval(lntau, coeffs, offset, scale)
poly_der_val = chebval(lntau, der_coeffs, offset, scale)
val = exp(poly_val)
return val, -val*poly_der_val/(Tc*tau)
def exp_cheb_ln_tau_and_der2(T, Tc, coeffs, der_coeffs, der2_coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val = chebval(lntau, coeffs, offset, scale)
poly_val_der = chebval(lntau, der_coeffs, offset, scale)
poly_val_der2 = chebval(lntau, der2_coeffs, offset, scale)
val = exp(poly_val)
der = -val*poly_val_der/(Tc*tau)
der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))
return val, der, der2
def chebval_ln_tau(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
poly_val = chebval(lntau, coeffs, offset, scale)
return poly_val
def chebval_ln_tau_and_der(T, Tc, coeffs, der_coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0
lntau = log(1.0 - T/Tc)
val = chebval(lntau, coeffs, offset, scale)
poly_der = chebval(lntau, der_coeffs, offset, scale)
der = -poly_der/(Tc*(-T/Tc + 1))
return val, der
def chebval_ln_tau_and_der2(T, Tc, coeffs, der_coeffs, der2_coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0
lntau = log(1.0 - T/Tc)
val = chebval(lntau, coeffs, offset, scale)
poly_der = chebval(lntau, der_coeffs, offset, scale)
poly_der2 = chebval(lntau, der2_coeffs, offset, scale)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
return val, der, der2
def chebval_ln_tau_and_der3(T, Tc, coeffs, der_coeffs, der2_coeffs, der3_coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0, 00
lntau = log(1.0 - T/Tc)
val = chebval(lntau, coeffs, offset, scale)
poly_der = chebval(lntau, der_coeffs, offset, scale)
poly_der2 = chebval(lntau, der2_coeffs, offset, scale)
poly_der3 = chebval(lntau, der3_coeffs, offset, scale)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)
return val, der, der2, der3
def horner(coeffs, x):
r'''Evaluates a polynomial defined by coefficienfs `coeffs` at a specified
scalar `x` value, using the horner method. This is the most efficient
formula to evaluate a polynomial (assuming non-zero coefficients for all
terms). This has been added to the `fluids` library because of the need to
frequently evaluate polynomials; and `NumPy`'s polyval is actually quite
slow for scalar values.
Note that the coefficients are reversed compared to the common form; the
first value is the coefficient of the highest-powered x term, and the last
value in `coeffs` is the constant offset value.
Parameters
----------
coeffs : iterable[float]
Coefficients of polynomial, [-]
x : float
Point at which to evaluate the polynomial, [-]
Returns
-------
val : float
The evaluated value of the polynomial, [-]
Notes
-----
For maximum speed, provide a list of Python floats and `x` should also be
of type `float` to avoid either `NumPy` types or slow python ints.
Compare the speed with numpy via:
>>> coeffs = np.random.uniform(0, 1, size=15)
>>> coeffs_list = coeffs.tolist()
%timeit np.polyval(coeffs, 10.0)
`np.polyval` takes on the order of 15 us; `horner`, 1 us.
Examples
--------
>>> horner([1.0, 3.0], 2.0)
5.0
>>> horner([21.24288737657324, -31.326919865992743, 23.490607246508382, -14.318875366457021, 6.993092901276407, -2.6446094897570775, 0.7629439408284319, -0.16825320656035953, 0.02866101768198035, -0.0038190069303978003, 0.0004027586707189051, -3.394447111198843e-05, 2.302586717011523e-06, -1.2627393196517083e-07, 5.607585274731649e-09, -2.013760843818914e-10, 5.819957519561292e-12, -1.3414794055766234e-13, 2.430101267966631e-15, -3.381444175898971e-17, 3.4861255675373234e-19, -2.5070616549039004e-21, 1.122234904781319e-23, -2.3532795334141448e-26], 300.0)
1.9900667478569642e+58
References
----------
.. [1] "Horner’s Method." Wikipedia, October 6, 2018.
https://en.wikipedia.org/w/index.php?title=Horner%27s_method&oldid=862709437.
'''
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot
def horner_and_der(coeffs, x):
# Coefficients in same order as for horner
f = 0.0
der = 0.0
for a in coeffs:
der = x*der + f
f = x*f + a
return (f, der)
def horner_and_der2(coeffs, x):
# Coefficients in same order as for horner
f, der, der2 = 0.0, 0.0, 0.0
for a in coeffs:
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der, der2 + der2)
def horner_and_der3(coeffs, x):
# Coefficients in same order as for horner
# Tested
f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der, der2 + der2, der3*6.0)
def horner_and_der4(coeffs, x):
# Coefficients in same order as for horner
# Tested
f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der4 = x*der4 + der3
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der, der2 + der2, der3*6.0, der4*24.0)
def quadratic_from_points(x0, x1, x2, f0, f1, f2):
'''
from sympy import *
f, a, b, c, x, x0, x1, x2, f0, f1, f2 = symbols('f, a, b, c, x, x0, x1, x2, f0, f1, f2')
func = a*x**2 + b*x + c
Eq0 = Eq(func.subs(x, x0), f0)
Eq1 = Eq(func.subs(x, x1), f1)
Eq2 = Eq(func.subs(x, x2), f2)
sln = solve([Eq0, Eq1, Eq2], [a, b, c])
cse([sln[a], sln[b], sln[c]], optimizations='basic', symbols=utilities.iterables.numbered_symbols(prefix='v'))
'''
v0 = -x2
v1 = f0*(v0 + x1)
v2 = f2*(x0 - x1)
v3 = f1*(v0 + x0)
v4 = x2*x2
v5 = x0*x0
v6 = x1*x1
v7 = 1.0/(v4*x0 + v5*x1 + v6*x2 - (v4*x1 + v5*x2 + v6*x0))
v8 = -v4
a = v7*(v1 + v2 - v3)
b = -v7*(f0*(v6 + v8) - f1*(v5 + v8) + f2*(v5 - v6))
c = v7*(v1*x1*x2 + v2*x0*x1 - v3*x0*x2)
return (a, b, c)
def quadratic_from_f_ders(x, v, d1, d2):
'''from sympy import *
f, a, b, c, x, v, d1, d2 = symbols('f, a, b, c, x, v, d1, d2')
f0 = a*x**2 + b*x + c
f1 = diff(f0, x)
f2 = diff(f0, x, 2)
solve([Eq(f0, v), Eq(f1, d1), Eq(f2, d2)], [a, b, c])
'''
a = d2*0.5
b = d1 - d2*x
c = -d1*x + d2*x*x*0.5 + v
return [a, b, c]
def is_poly_positive(poly, domain=None, rand_pts=10, j_tol=1e-12, root_perturb=1e-12):
# Returns True if positive everywhere in the specified domain (or globally)
if domain is None:
# 1e-100 to 1e100
pts = logspace(-100, 100, rand_pts//2)
pts += [-i for i in pts]
else:
pts = linspace(domain[0], domain[1], rand_pts)
for p in pts:
if horner(poly, p) < 0.0:
return False
roots = np.roots(poly)
for root in roots:
r = root.real
if abs(root.imag/r) < j_tol:
if (domain is not None) and (r < domain[0] or r > domain[1]):
continue
eps_high, eps_low = r*(1.0 + root_perturb), r*(1.0 - root_perturb)
if horner(poly, eps_high) < 0:
return False
if horner(poly, eps_low) < 0:
return False
return True
def is_poly_negative(poly, domain=None, rand_pts=10, j_tol=1e-12, root_perturb=1e-12):
# Returns True if negative everywhere in the specified domain (or globally)
poly = [-i for i in poly]# Changes the sign of all polynomial calculated values
return is_poly_positive(poly, domain=domain, rand_pts=rand_pts, j_tol=j_tol, root_perturb=root_perturb)
def min_max_ratios(actual, calculated):
'''Given known and calculated data, compare
the two and provide two numbers describing
how far away from the known data the calculated
data is.
The numbers are the ratio of the lowest relative
calc, and the highest relative calc.
'''
min_ratio = max_ratio = 1.0
for i in range(len(actual)):
if actual[i] == 0.0:
r = 1.0 if calculated[i] == actual[i] else 10.0
else:
r = calculated[i]/actual[i]
if r < min_ratio:
min_ratio = r
elif r > max_ratio:
max_ratio = r
return min_ratio, max_ratio
def std(data):
'''Fast implementation of numpy's std function
for 1d inputs only, with double precision only always.
'''
tot = 0.0
N = len(data)
for i in range(N):
tot += data[i]
mean = tot/N
tot = 0.0
for i in range(N):
v = (data[i] - mean)
tot += v*v
return sqrt(tot/N)
def polyder(c, m=1, scl=1, axis=0):
"""not quite a copy of numpy's version because this was faster to
implement."""
cnt = m
if cnt == 0:
return c
n = len(c)
if cnt >= n:
c = c[:1]*0
else:
for i in range(cnt): # normally only happens once
n = n - 1
der = [0.0]*n
for j in range(n, 0, -1):
der[j - 1] = j*c[j]
c = der
return c
def polyint(coeffs):
"""not quite a copy of numpy's version because this was faster to
implement.
Tried out a bunch of optimizations, and this hits a good balance
between CPython and pypy speed."""
# return ([0.0] + [c/(i+1) for i, c in enumerate(coeffs[::-1])])[::-1]
N = len(coeffs)
out = [0.0]*(N+1)
for i in range(N):
out[i] = coeffs[i]/(N-i)
return out
def polyint_over_x(coeffs):
N = len(coeffs)
log_coef = coeffs[-1]
Nm1 = N - 1
poly_terms = [0.0]*N
for i in range(Nm1):
poly_terms[i] = coeffs[i]/(Nm1-i)
return poly_terms, log_coef
# N = len(coeffs)
# log_coef = coeffs[-1]
# Nm1 = N - 1
# poly_terms = [coeffs[Nm1-i]/i for i in range(N-1, 0, -1)]
# poly_terms.append(0.0)
# return poly_terms, log_coef
# coeffs = coeffs[::-1]
# log_coef = coeffs[0]
# poly_terms = [0.0]
# for i in range(1, len(coeffs)):
# poly_terms.append(coeffs[i]/i)
# return list(reversed(poly_terms)), log_coef
#
def horner_log(coeffs, log_coeff, x):
"""Technically possible to save one addition of the last term of coeffs is
removed but benchmarks said nothing was saved."""
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot + log_coeff*log(x)
def fit_integral_linear_extrapolation(T1, T2, int_coeffs, Tmin, Tmax,
Tmin_value, Tmax_value,
Tmin_slope, Tmax_slope):
# Order T1, T2 so T2 is always larger for simplicity
flip = T1 > T2
if flip:
T1, T2 = T2, T1
tot = 0.0
if T1 < Tmin:
T2_low = T2 if T2 < Tmin else Tmin
x1 = Tmin_value - Tmin_slope*Tmin
tot += T2_low*(0.5*Tmin_slope*T2_low + x1) - T1*(0.5*Tmin_slope*T1 + x1)
if (Tmin <= T1 <= Tmax) or (Tmin <= T2 <= Tmax) or (T1 <= Tmin and T2 >= Tmax):
T1_mid = T1 if T1 > Tmin else Tmin
T2_mid = T2 if T2 < Tmax else Tmax
tot += (horner(int_coeffs, T2_mid) - horner(int_coeffs, T1_mid))
if T2 > Tmax:
T1_high = T1 if T1 > Tmax else Tmax
x1 = Tmax_value - Tmax_slope*Tmax
tot += T2*(0.5*Tmax_slope*T2 + x1) - T1_high*(0.5*Tmax_slope*T1_high + x1)
if flip:
return -tot
return tot
def poly_fit_integral_value(T, int_coeffs, Tmin, Tmax, Tmin_value, Tmax_value,
Tmin_slope, Tmax_slope):
# Can still save 1 horner evaluation (all of them for height T), but will be VERY messy.
if T < Tmin:
x1 = Tmin_value - Tmin_slope*Tmin
tot = T*(0.5*Tmin_slope*T + x1)
return tot
if (Tmin <= T <= Tmax):
tot1 = horner(int_coeffs, T) - horner(int_coeffs, Tmin)
x1 = Tmin_value - Tmin_slope*Tmin
tot = Tmin*(0.5*Tmin_slope*Tmin + x1)
return tot + tot1
else:
x1 = Tmin_value - Tmin_slope*Tmin
tot = Tmin*(0.5*Tmin_slope*Tmin + x1)
tot1 = horner(int_coeffs, Tmax) - horner(int_coeffs, Tmin)
x1 = Tmax_value - Tmax_slope*Tmax
tot2 = T*(0.5*Tmax_slope*T + x1) - Tmax*(0.5*Tmax_slope*Tmax + x1)
return tot1 + tot + tot2
def fit_integral_over_T_linear_extrapolation(T1, T2, T_int_T_coeffs,
poly_fit_log_coeff, Tmin, Tmax,
Tmin_value, Tmax_value,
Tmin_slope, Tmax_slope):
# Order T1, T2 so T2 is always larger for simplicity
flip = T1 > T2
if flip:
T1, T2 = T2, T1
tot = 0.0
if T1 < Tmin:
T2_low = T2 if T2 < Tmin else Tmin
x1 = Tmin_value - Tmin_slope*Tmin
tot += (Tmin_slope*T2_low + x1*log(T2_low)) - (Tmin_slope*T1 + x1*log(T1))
if (Tmin <= T1 <= Tmax) or (Tmin <= T2 <= Tmax) or (T1 <= Tmin and T2 >= Tmax):
T1_mid = T1 if T1 > Tmin else Tmin
T2_mid = T2 if T2 < Tmax else Tmax
tot += (horner_log(T_int_T_coeffs, poly_fit_log_coeff, T2_mid)
- horner_log(T_int_T_coeffs, poly_fit_log_coeff, T1_mid))
if T2 > Tmax:
T1_high = T1 if T1 > Tmax else Tmax
x1 = Tmax_value - Tmax_slope*Tmax
tot += (Tmax_slope*T2 + x1*log(T2)) - (Tmax_slope*T1_high + x1*log(T1_high))
if flip:
return -tot
return tot
def poly_fit_integral_over_T_value(T, T_int_T_coeffs, poly_fit_log_coeff,
Tmin, Tmax, Tmin_value, Tmax_value,
Tmin_slope, Tmax_slope):
if T < Tmin:
x1 = Tmin_value - Tmin_slope*Tmin
tot = (Tmin_slope*T + x1*log(T))
return tot
if (Tmin <= T <= Tmax):
tot1 = (horner_log(T_int_T_coeffs, poly_fit_log_coeff, T)
- horner_log(T_int_T_coeffs, poly_fit_log_coeff, Tmin))
x1 = Tmin_value - Tmin_slope*Tmin
tot = (Tmin_slope*Tmin + x1*log(Tmin))
return tot + tot1
else:
x1 = Tmin_value - Tmin_slope*Tmin
tot = (Tmin_slope*Tmin + x1*log(Tmin))
tot1 = (horner_log(T_int_T_coeffs, poly_fit_log_coeff, Tmax)
- horner_log(T_int_T_coeffs, poly_fit_log_coeff, Tmin))
x2 = Tmax_value -Tmax*Tmax_slope
tot2 = (-Tmax_slope*(Tmax - T) + x2*log(T) - x2*log(Tmax))
return tot1 + tot + tot2
def evaluate_linear_fits(data, x):
calc = []
low_limits, high_limits, coeffs = data[0], data[3], data[6]
for i in range(len(data[0])):
if x < low_limits[i]:
v = (x - low_limits[i])*data[1][i] + data[2][i]
elif x > high_limits[i]:
v = (x - high_limits[i])*data[4][i] + data[5][i]
else:
v = 0.0
for c in coeffs[i]:
v = v*x + c
# v = horner(coeffs[i], x)
calc.append(v)
return calc
def evaluate_linear_fits_d(data, x):
calc = []
low_limits, high_limits, dcoeffs = data[0], data[3], data[7]
for i in range(len(data[0])):
if x < low_limits[i]:
dv = data[1][i]
elif x > high_limits[i]:
dv = data[4][i]
else:
dv = 0.0
for c in dcoeffs[i]:
dv = dv*x + c
calc.append(dv)
return calc
def evaluate_linear_fits_d2(data, x):
calc = []
low_limits, high_limits, d2coeffs = data[0], data[3], data[8]
for i in range(len(data[0])):
d2v = 0.0
if low_limits[i] < x < high_limits[i]:
for c in d2coeffs[i]:
d2v = d2v*x + c
calc.append(d2v)
return calc
def chebval(x, c, offset=0.0, scale=1.0):
# Pure Python implementation of numpy.polynomial.chebyshev.chebval
# This routine is faster in CPython as well as PyPy
# Approxximately 2 adds and a multiply per coefficient
x = offset + scale*x
len_c = len(c)
if len_c == 1:
c0, c1 = c[0], 0.0
elif len_c == 2:
c0, c1 = c[0], c[1]
else:
x2 = 2.0*x
c0, c1 = c[-2], c[-1]
for i in range(3, len_c + 1):
c0_prev = c0
c0 = c[-i] - c1
c1 = c0_prev + c1*x2
return c0 + c1*x
def chebder(c, m=1, scl=1.0):
"""not quite a copy of numpy's version because this was faster to
implement.
This does not evaluate the value of a cheb series at a point; it returns
a new chebyshev seriese to be evaluated by chebval.
"""
c = list(c)
cnt = int(m)
if cnt == 0:
return c
n = len(c)
if cnt >= n:
c = []
else:
for i in range(cnt):
n = n - 1
if scl != 1.0:
for j in range(len(c)):
c[j] *= scl
der = [0.0 for _ in range(n)]
for j in range(n, 2, -1):
der[j - 1] = (j + j)*c[j]
c[j - 2] += (j*c[j])/(j - 2.0)
if n > 1:
der[1] = 4.0*c[2]
der[0] = c[1]
c = der
return c
def chebint(c, m=1, lbnd=0, scl=1):
# k=[], is used by numpy to provide integration constants
cnt = int(m) # the order of integration
if cnt < 0:
raise ValueError("Negative integration error not allowed")
# if len(k) > cnt:
# raise ValueError("Size of integration constants not consistent with order of integration")
if cnt == 0:
return c
# k = list(k) + [0]*(cnt - len(k))
n = len(c)
c2 = [0.0]*n # Make a copy of c
for i in range(n):
c2[i] = c[i]
c = c2
for i in range(cnt):
n = len(c)
for o in range(n):
c[o] *= scl
if n == 1 and c[0] == 0:
pass
# c[0] += k[i]
else:
tmp = [0.0]*(n+1)
tmp[1] = c[0]
if n > 1:
tmp[2] = c[1]/4
for j in range(2, n):
cval = c[j]
tmp[j + 1] = cval/(2.0*(j + 1.0))
tmp[j - 1] -= cval/(2.0*(j - 1.0))
# Scale is handled separately
# tmp[0] += k[i] - chebval(lbnd, tmp)
tmp[0] -= chebval(lbnd, tmp)
c = tmp
return c
def binary_search(key, arr, size=None):
if size is None:
size = len(arr)
imin = 0
imax = size
if key > arr[size - 1]:
return size
while imin < imax:
imid = imin + ((imax - imin) >> 1)
if key >= arr[imid]: imin = imid + 1
else: imax = imid
return imin - 1
def isclose(a, b, rel_tol=1e-9, abs_tol=0.0):
"""Pure python and therefore slow version of the standard library isclose.
Works on older versions of python though! Hasn't been unit tested, but has
been tested.
manual unit testing:
from math import isclose as isclose2
from random import uniform
for i in range(10000000):
a = uniform(-1, 1)
b = uniform(-1, 1)
rel_tol = uniform(0, 1)
abs_tol = uniform(0, .001)
ans1 = isclose(a, b, rel_tol, abs_tol)
ans2 = isclose2(a, b, rel_tol=rel_tol, abs_tol=abs_tol)
try:
assert ans1 == ans2
except:
print(a, b, rel_tol, abs_tol)
"""
if (rel_tol < 0.0 or abs_tol < 0.0 ):
raise ValueError('Negative tolerances')
if ((a.real == b.real) and (a.imag == b.imag)):
return True
if (isinf(a.real) or isinf(a.imag) or
isinf(b.real) or isinf(b.imag)):
return False
diff = abs(a - b)
return (((diff <= rel_tol*abs(b)) or
(diff <= rel_tol*abs(a))) or (diff <= abs_tol))
try:
from math import isclose
except ImportError:
pass
def assert_close(a, b, rtol=1e-7, atol=0.0):
if a is b:
# Nice to handle None
return True
if __debug__:
# Do not run these branches in -O, -OO mode
try:
try:
assert isclose(a, b, rel_tol=rtol, abs_tol=atol)
return
except:
assert cisclose(a, b, rel_tol=rtol, abs_tol=atol)
return
except:
pass
from numpy.testing import assert_allclose
return assert_allclose(a, b, rtol=rtol, atol=atol)
def assert_close1d(a, b, rtol=1e-7, atol=0.0):
N = len(a)
if N != len(b):
raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
for i in range(N):
assert_close(a[i], b[i], rtol=rtol, atol=atol)
def assert_close2d(a, b, rtol=1e-7, atol=0.0):
# N = len(a)
# if N != len(b):
# raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
# for i in range(N):
# assert_close1d(a[i], b[i], rtol=rtol, atol=atol)
N = len(a)
if N != len(b):
raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
if not __debug__:
# Do not run these branches in -O, -OO mode
from numpy.testing import assert_allclose
return assert_allclose(a, b, rtol=rtol, atol=atol)
for i in range(N):
a0, b0 = a[i], b[i]
N0 = len(a0)
if N0 != len(b0):
raise ValueError("Variables are not the same length: %d, %d" %(N0, len(b0)))
for j in range(N0):
# assert_close(a0[j], b0[j], rtol=rtol, atol=atol)
good = True
a1, b1 = a0[j], b0[j]
if a1 is b1:
# Nice to handle None
pass
else:
try:
try:
good = isclose(a1, b1, rel_tol=rtol, abs_tol=atol)
except:
good = cisclose(a1, b1, rel_tol=rtol, abs_tol=atol)
except:
pass
if not good:
from numpy.testing import assert_allclose
return assert_allclose(a1, b1, rtol=rtol, atol=atol)
def assert_close3d(a, b, rtol=1e-7, atol=0.0):
N = len(a)
if N != len(b):
raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
for i in range(N):
assert_close2d(a[i], b[i], rtol=rtol, atol=atol)
def assert_close4d(a, b, rtol=1e-7, atol=0.0):
N = len(a)
if N != len(b):
raise ValueError("Variables are not the same length: %d, %d" %(N, len(b)))
# for i in range(N):
# assert_close3d(a[i], b[i], rtol=rtol, atol=atol)
for i in range(N):
a0, b0 = a[i], b[i]
N0 = len(a0)
if N0 != len(b0):
raise ValueError("Variables are not the same length: %d, %d" %(N0, len(b0)))
for j in range(N0):
assert_close2d(a0[j], b0[j], rtol=rtol, atol=atol)
def zeros(shape, dtype=float, fill_value=0.0):
if dtype is float:
zero = float(fill_value)
elif dtype is int:
zero = int(fill_value)
else:
raise ValueError("dtype is not supported")
t = type(shape)
if t is int:
return [zero]*shape
if t is tuple:
l = len(shape)
if l == 1:
return [zero]*shape[0]
elif l == 2:
s1 = shape[1]
return [[zero]*s1 for _ in range(shape[0])]
elif l == 3:
s1 = shape[1]
s2 = shape[2]
return [[[zero]*s2 for _ in range(s1)] for _ in range(shape[0])]
elif l == 4:
s1 = shape[1]
s2 = shape[2]
s3 = shape[3]
return [[[[zero]*s3 for _ in range(s2)] for _ in range(s1)] for _ in range(shape[0])]
raise ValueError("Shape not implemented")
def full(shape, fill_value, dtype=float):
return zeros(shape, dtype, fill_value)
def interp(x, dx, dy, left=None, right=None, extrapolate=False):
"""One-dimensional linear interpolation routine inspired/ reimplemented from
NumPy for extra speed for scalar values (and also numpy).
Returns the one-dimensional piecewise linear interpolant to a function
with a given value at discrete data-points.
Parameters
----------
x : float
X-coordinate of the interpolated values, [-]
dx : list[float]
X-coordinates of the data points, must be increasing, [-]
dy : list[float]
Y-coordinates of the data points; same length as `dx`, [-]
left : float, optional
Value to return for `x < dx[0]`, default is `dy[0]`, [-]
right : float, optional
Value to return for `x > dx[-1]`, default is `dy[-1]`, [-]
extrapolate : bool, optional
If True, for the cases of `left` and/or `right` not given, a linear
extrapolation will be performed outside of bounds, [-]
Returns
-------
y : float
The interpolated value, [-]
Notes
-----
This function is "unsafe" in that it assumes the x-coordinates
are increasing. It also does not check for nan's, that `dx` and `dy`
are the same length, and that `x` is scalar.
Performance is 40-50% of that of NumPy under CPython.
Examples
--------
>>> interp(2.5, [1, 2, 3], [3, 2, 0])
1.0
"""
lendx = len(dx)
j = binary_search(x, dx, lendx)
if (j == -1):
if left is not None:
return left
elif extrapolate:
j = 0
return (dy[j + 1] - dy[j])/(dx[j + 1] - dx[j])*(x - dx[j]) + dy[j]
else:
return dy[0]
elif (j == lendx - 1):
return dy[j]
elif (j == lendx):
if right is not None:
return right
elif extrapolate:
j = -2
return (dy[j + 1] - dy[j])/(dx[j + 1] - dx[j])*(x - dx[j]) + dy[j]
else:
return dy[-1]
else:
return (dy[j + 1] - dy[j])/(dx[j + 1] - dx[j])*(x - dx[j]) + dy[j]
def interp2d_linear(x, y, xs, ys, vals):
# Same as RectBivariateSpline, s=0, kx=1, ky=1 (and better performance)
if y < ys[0]:
i0, i1 = 0, 1
y_dat = ys[i0], ys[i1]
elif y > ys[-1]:
i0, i1 = -2, -1
else:
for i in range(len(ys)):
if ys[i] >= y:
i0, i1 = i-1, i
break
y_low, y_high = ys[i0], ys[i1]
v_low = interp(x, xs, vals[i0], extrapolate=True)
v_high = interp(x, xs, vals[i1], extrapolate=True)
return v_low + (y-y_low)/(y_high-y_low)*(v_high-v_low)
try:
_array = np.array
Polynomial = np.polynomial.Polynomial
except:
pass
def implementation_optimize_tck(tck, force_numpy=False):
"""Converts 1-d or 2-d splines calculated with SciPy's `splrep` or.
`bisplrep` to a format for fastest computation - lists in PyPy, and numpy
arrays otherwise.
Only implemented for 3 and 5 length `tck`s.
"""
if IS_PYPY_OR_SKIP_DEPENDENCIES and not force_numpy:
return tuple(tck)
else:
size = len(tck)
if size == 3:
return (_array(tck[0]), _array(tck[1]), tck[2])
elif size == 5:
return (_array(tck[0]), _array(tck[1]), _array(tck[2]), tck[3], tck[4])
else:
raise NotImplementedError
def tck_interp2d_linear(x, y, z, kx=1, ky=1):
if kx != 1 or ky != 1:
raise ValueError("Only linear formulations are currently implemented")
# copy is not a method of lists in python 2
x = list(x)
x.insert(0, x[0])
x.append(x[-1])
y = list(y)
y.insert(0, y[0])
y.append(y[-1])
# c needs to be transposed, and made 1d
c = [z[j][i] for i in range(len(z[0])) for j in range(len(z))]
tck = [x, y, c, 1, 1]
return implementation_optimize_tck(tck)
def caching_decorator(f, full=False):
from functools import wraps
cache = {}
info_cache = {}
wraps = my_wraps()
@wraps(f)
def wrapper(x, *args, **kwargs):
has_info = 'info' in kwargs
if x in cache:
if 'info' in kwargs:
kwargs['info'][:] = info_cache[x]
return cache[x]
err = f(x, *args, **kwargs)
cache[x] = err
if has_info:
info_cache[x] = list(kwargs['info'])
return err
if full:
return wrapper, cache, info_cache
return wrapper
def translate_bound_func(func, bounds=None, low=None, high=None):
if bounds is not None:
low = [i[0] for i in bounds]
high = [i[1] for i in bounds]
def new_f(x, *args, **kwargs):
"""Function for a solver to call when using the bounded variables."""
x = [float(i) for i in x]
for i in range(len(x)):
x[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
# Return the actual results
return func(x, *args, **kwargs)
def translate_into(x):
x = [float(i) for i in x]
for i in range(len(x)):
x[i] = -log((high[i] - x[i])/(x[i] - low[i]))
return x
def translate_outof(x):
x = [float(i) for i in x]
for i in range(len(x)):
x[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
return x
return new_f, translate_into, translate_outof
def translate_bound_jac(jac, bounds=None, low=None, high=None):
if bounds is not None:
low = [i[0] for i in bounds]
high = [i[1] for i in bounds]
def new_j(x):
x_base = [float(i) for i in x]
N = len(x)
for i in range(N):
x_base[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
jac_base = jac(x_base)
try:
jac_base = [i for i in jac_base]
for i in range(N):
v = (high[i] - low[i])*exp(-x[i])*jac_base[i]
v *= (1.0 + exp(-x[i]))**-2
jac_base[i] = v
return jac_base
except:
raise NotImplementedError("Fail")
def translate_into(x):
x = [float(i) for i in x]
for i in range(len(x)):
x[i] = -log((high[i] - x[i])/(x[i] - low[i]))
return x
def translate_outof(x):
x = [float(i) for i in x]
for i in range(len(x)):
x[i] = (low[i] + (high[i] - low[i])/(1.0 + exp(-x[i])))
return x
return new_j, translate_into, translate_outof
def translate_bound_f_jac(f, jac, bounds=None, low=None, high=None,
inplace_jac=False, as_np=False):
if bounds is not None:
low = [i[0] for i in bounds]
high = [i[1] for i in bounds]
exp_terms = [0.0]*len(low)
def new_f_j(x, *args):
x_base = [i for i in x]
N = len(x)
for i in range(N):
exp_terms[i] = ei = trunc_exp(-x[i])
x_base[i] = (low[i] + (high[i] - low[i])/(1.0 + ei))
if jac is True:
f_base, jac_base = f(x_base, *args)
else:
f_base = f(x_base, *args)
jac_base = jac(x_base, *args)
try:
if type(jac_base[0]) is list or (isinstance(jac_base, np.ndarray) and len(jac_base.shape) == 2):
if not inplace_jac:
jac_base = [[j for j in i] for i in jac_base]
for i in range(len(jac_base)):
for j in range(len(jac_base[i])):
# Checked numerically
t = (1.0 + exp_terms[j])
jac_base[i][j] = (high[j] - low[j])*exp_terms[j]*jac_base[i][j]/(t*t)
else:
if not inplace_jac:
jac_base = [i for i in jac_base]
for i in range(N):
t = (1.0 + exp_terms[i])
jac_base[i] = (high[i] - low[i])*exp_terms[i]*jac_base[i]/(t*t)
if as_np:
jac_base = np.array(jac_base)
return f_base, jac_base
except:
raise NotImplementedError("Fail")
def translate_into(x):
#x = [float(i) for i in x]
for i in range(len(x)):
x[i] = -trunc_log((high[i] - x[i])/(x[i] - low[i]))
return x
def translate_outof(x):
#x = [float(i) for i in x]
for i in range(len(x)):
x[i] = (low[i] + (high[i] - low[i])/(1.0 + trunc_exp(-x[i])))
return x
return new_f_j, translate_into, translate_outof
class OscillationError(Exception):
"""Error raised when a derivative-based method is not converging."""
class UnconvergedError(Exception):
"""Error raised when maxiter has been reached in an optimization problem."""
def __repr__(self):
return ('UnconvergedError("Failed to converge; maxiter (%d) reached, value=%g, error %g)"' %(self.maxiter, self.point, self.err))
def __init__(self, message, iterations=None, err=None, point=None):
super(UnconvergedError, self).__init__(message)
self.point = point
self.iterations = iterations
self.err = err
class SamePointError(UnconvergedError):
"""Error raised when two trial points in a root finding problem have the
same error."""
def __repr__(self):
return 'TODO'
def __init__(self, message, iterations=None, err=None, q1=None, p1=None, q0=None, p0=None):
super(UnconvergedError, self).__init__(message)
self.q1 = q1
self.p1 = p1
self.q0 = q0
self.p0 = p0
self.iterations = iterations
self.err = err
class NoSolutionError(Exception):
"""Error raised when detected that there is no actual solution to a
problem."""
class NotBoundedError(Exception):
"""Error raised when a bisection type algorithm fails because its initial
bounds do not bound the solution."""
class DiscontinuityError(Exception):
"""Error raised when a bisection type algorithm fails because there is a
discontinuity."""
def damping_maintain_sign(x, step, damping=1.0, factor=0.5):
"""Damping function which will maintain the sign of the variable being
manipulated. If the step puts it at the other sign, the distance between `x`
and `step` will be shortened by the multiple of `factor`; i.e. if factor is
`x`, the new value of `x` will be 0 exactly.
The provided `damping` is applied as well.
Parameters
----------
x : float
Previous value in iteration, [-]
step : float
Change in `x`, [-]
damping : float, optional
The damping factor to be applied always, [-]
factor : float, optional
If the calculated step changes sign, this factor will be used instead
of the step, [-]
Returns
-------
x_new : float
The new value in the iteration, [-]
Notes
-----
Examples
--------
>>> damping_maintain_sign(100, -200, factor=.5)
50.0
"""
if isinstance(x, list):
return [damping_maintain_sign(x[i], step[i], damping, factor) for i in range(len(x))]
positive = x > 0.0
step_x = x + step
if (positive and step_x < 0) or (not positive and step_x > 0.0):
# print('damping')
step = -factor*x
return x + step*damping
def make_damp_initial(steps=5, damping=1.0, *args):
steps_holder = [steps]
def damping_func(x, step, damping=damping, *args):
if steps_holder[0] <= 0:
# Do not dampen at all
if isinstance(x, list):
return [xi + dxi for xi, dxi in zip(x, step)]
return x + step
else:
steps_holder[0] -= 1
if isinstance(x, list):
return [xi + dxi*damping for xi, dxi in zip(x, step)]
return x + step*damping
return damping_func
def make_max_step_initial(max_step, steps=5, *args):
steps_holder = [steps]
def damping_func(x, step, *args):
if steps_holder[0] <= 0:
# Do not dampen at all
if isinstance(x, list):
return [xi + dxi for xi, dxi in zip(x, step)]
return x + step
else:
steps_holder[0] -= 1
if isinstance(x, list):
next = []
for i in range(len(x)):
the_step = step[i]
if abs(the_step) > max_step:
next.append(x[i] + copysign(max_step[i], the_step))
else:
next.append(x[i] + the_step)
return next
the_step = step
if abs(the_step) > max_step:
return x + copysign(max_step, the_step)
return x + the_step
return damping_func
def oscillation_checking_wrapper(f, minimum_progress=0.3,
both_sides=False, full=True,
good_err=None):
checker = oscillation_checker(minimum_progress=minimum_progress,
both_sides=both_sides, good_err=good_err)
wraps = my_wraps()
@wraps(f)
def wrapper(x, *args, **kwargs):
err_test = err = f(x, *args, **kwargs)
if not isinstance(err, (float, int, complex)):
err_test = err[0]
try:
oscillating = checker(x, err_test)
except:
oscillating = False # Zero division error probably
if oscillating:
raise OscillationError("Oscillating")
return err
if full:
return wrapper, checker
return wrapper
class oscillation_checker(object):
def __init__(self, minimum_progress=0.3, both_sides=False, good_err=None):
self.minimum_progress = minimum_progress
self.both_sides = both_sides
self.xs_neg = []
self.xs_pos = []
self.ys_neg = []
self.ys_pos = []
# Provide a number that if the error is under this, no longer be able to return False
# For example, near phase boundaries newton could be bisecting as it overshoots
# each step, but is still converging fine
self.good_err = good_err
def clear(self):
self.xs_neg = []
self.xs_pos = []
self.ys_neg = []
self.ys_pos = []
def is_solve_oscilating(self, x, y):
if y == 0.0:
return False
xs_neg, xs_pos, ys_neg, ys_pos = self.xs_neg, self.xs_pos, self.ys_neg, self.ys_pos
minimum_progress = self.minimum_progress
if y < 0.0:
xs_neg.append(x)
ys_neg.append(y)
else:
xs_pos.append(x)
ys_pos.append(y)
if len(xs_pos) > 1 and len(xs_neg) > 1:
if y < 0:
dy_cur = y - ys_neg[-2]
dy_other = ys_pos[-1] - ys_pos[-2]
gain_neg = abs(dy_cur/y)
gain_pos = abs(dy_other/ys_pos[-1])
else:
dy_cur = y - ys_pos[-2]
dy_other = ys_neg[-1] - ys_neg[-2]
gain_pos = abs(dy_cur/y)
gain_neg = abs(dy_other/ys_neg[-1])
# print(gain_pos, gain_neg, y)
if self.both_sides:
if gain_pos < minimum_progress and gain_neg < minimum_progress:
if self.good_err is not None and min(abs(ys_neg[-1]), abs(ys_pos[-1])) < self.good_err:
return False
return True
else:
if gain_pos < minimum_progress or gain_neg < minimum_progress:
if self.good_err is not None and min(abs(ys_neg[-1]), abs(ys_pos[-1])) < self.good_err:
return False
return True
return False
__call__ = is_solve_oscilating
def best_bounding_bounds(low, high, f=None, xs_pos=None, ys_pos=None,
xs_neg=None, ys_neg=None, fa=None, fb=None):
r'''Given:
1) A presumed bracketing interval such as very far out limits on
physical bounds
2) A history of a non-bounded search algorithm which did not converge
Find the best bracketing points which get the algorithm as close to the
solution as possible.
Parameters
----------
low : float
Low bracketing interval (`f` has opposite sign at `low` than `high`),
[-]
high : float
High bracketing interval (`f` has opposite sign at `high` than `low`),
[-]
f : callable, optional
1D function to be solved, [-]
xs_pos : list[float]
Unsorted list of `x` values of points with positive `y` values
previously evaluated, [-]
ys_pos : list[float]
Unsorted list of `y` values of points with positive `y` values
previously evaluated, [-]
xs_neg : list[float]
Unsorted list of `x` values of points with negative `y` values
previously evaluated, [-]
ys_neg : list[float]
Unsorted list of `y` values of points with negative `y` values
previously evaluated, [-]
fa : float, optional
Value of function at `low`, used instead of recalculating if provided,
[-]
fb : float, optional
Value of function at `high`, used instead of recalculating if provided,
[-]
Returns
-------
low : float
Low bracketing interval (`f` has opposite sign at `low` than `high`),
[-]
high : float
High bracketing interval (`f` has opposite sign at `high` than `low`),
[-]
fa : float
Value of function at `low`, [-]
fb : float, optional
Value of function at `high`, [-]
Notes
-----
Negative and/or positive history values can be omitted, but both the `x`
and `y` lists should be skipped if so.
More work could be done to handle better the case if the bounds not
bracketing the root but the function history doing so.
'''
if fa is None:
fa = f(low)
if fb is None:
fb = f(high)
if ys_pos:
y_min_pos = min(ys_pos)
x_min_pos = xs_pos[ys_pos.index(y_min_pos)]
if fa > 0:
if y_min_pos < fa:
fa, low = y_min_pos, x_min_pos
else:
if y_min_pos < fb:
fb, high = y_min_pos, x_min_pos
if ys_neg:
y_min_neg = max(ys_neg)
x_min_neg = xs_neg[ys_neg.index(y_min_neg)]
if fa < 0:
if y_min_neg > fa:
fa, low = y_min_neg, x_min_neg
else:
if y_min_pos > fb:
fb, high = y_min_neg, x_min_neg
if fa*fb > 0:
raise ValueError("Bounds and previous history do not contain bracketing points")
return low, high, fa, fb
def bisect(f, a, b, args=(), xtol=1e-12, rtol=2.220446049250313e-16, maxiter=100,
ytol=None):
"""Port of SciPy's C bisect routine."""
fa = f(a, *args)
fb = f(b, *args)
if fa*fb > 0.0:
raise ValueError("f(a) and f(b) must have different signs")
elif fa == 0.0:
return a
elif fb == 0.0:
return b
dm = b - a
# iterations = 0.0
for i in range(maxiter):
dm *= 0.5
xm = a + dm
fm = f(xm, *args)
if fm*fa >= 0.0:
a = xm
abs_dm = fabs(dm)
if fm == 0.0:
return xm
elif ytol is not None:
if (abs_dm < (xtol + rtol*abs_dm)) and abs(fm) < ytol:
return xm
elif (abs_dm < (xtol + rtol*abs_dm)):
return xm
# elif gap_detection:
# dy_dx = abs((fm - fa)/(a-b))
# if dy_dx > dy_dx_limit:
# raise DiscontinuityError("Discontinuity detected")
raise UnconvergedError("Failed to converge after %d iterations" %maxiter)
def ridder(f, a, b, args=(), xtol=_xtol, rtol=_rtol, maxiter=_iter,
full_output=False, disp=True):
a_abs, b_abs = fabs(a), fabs(b)
tol = xtol + rtol*(a_abs if a_abs < b_abs else b_abs)
fa = f(a, *args)
fb = f(b, *args)
if fa*fb > 0.0:
raise ValueError("f(a) and f(b) must have different signs")
elif fa == 0.0:
return a
elif fb == 0.0:
return b
for i in range(maxiter):
dm = 0.5*(b - a)
xm = a + dm
fm = f(xm, *args)
dn = copysign(1.0/sqrt(fm*fm - fa*fb), fb - fa)*fm*dm
dn_abs, dm_abs_tol = fabs(dn), fabs(dm) - 0.5*tol
xn = xm - copysign((dn_abs if dn_abs < dm_abs_tol else dm_abs_tol), dn)
fn = f(xn, *args)
if (fn*fm < 0.0):
a = xn
fa = fn
b = xm
fb = fm
elif (fn*fa < 0.0):
b = xn
fb = fn
else:
a = xn
fa = fn
tol = xtol + rtol*xn
if (fn == 0.0 or fabs(b - a) < tol):
return xn
raise UnconvergedError("Failed to converge after %d iterations" %maxiter) # numba: delete
# raise UnconvergedError("Failed to converge") # numba: uncomment
def brenth(f, xa, xb, args=(),
xtol=1e-12, rtol=4.440892098500626e-16, maxiter=100, ytol=None,
full_output=False, disp=True, q=False,
fa=None, fb=None, kwargs={}):
xpre = xa
xcur = xb
xblk = 0.0
fblk = 0.0
spre = 0.0
scur = 0.0
if fa is None:
fpre = f(xpre, *args, **kwargs)
else:
fpre = fa
if fb is None:
fcur = f(xcur, *args, **kwargs)
else:
fcur = fb
if fpre*fcur > 0.0:
raise NotBoundedError("f(a) and f(b) must have different signs")
elif fpre == 0.0:
return xa
elif fcur == 0.0:
return xb
for i in range(maxiter):
if fpre*fcur < 0.0:
xblk = xpre
fblk = fpre
spre = scur = xcur - xpre
# Breaks a bunch of tests
# if fpre == fcur:
# raise UnconvergedError("Failed to converge - reached equal points after %d iterations" %i)
if abs(fblk) < abs(fcur):
xpre = xcur
xcur = xblk
xblk = xpre
fpre = fcur
fcur = fblk
fblk = fpre
delta = 0.5*(xtol + rtol*abs(xcur))
sbis = 0.5*(xblk - xcur)
if ytol is not None:
if fcur == 0.0 or (abs(sbis) < delta) and abs(fcur) < ytol:
return xcur
else:
if fcur == 0.0 or (abs(sbis) < delta):
return xcur
if (abs(spre) > delta and abs(fcur) < abs(fpre)):
if xpre == xblk:
# interpolate
stry = -fcur*(xcur - xpre)/(fcur - fpre)
else:
# extrapolate
dpre = (fpre - fcur)/(xpre - xcur)
dblk = (fblk - fcur)/(xblk - xcur)
if q:
stry = -fcur*(fblk*dblk - fpre*dpre)/(dblk*dpre*(fblk - fpre))
else:
stry = -fcur*(fblk - fpre)/(fblk*dpre - fpre*dblk)
if (abs(stry + stry) < min(abs(spre), 3.0*abs(sbis) - delta)):
# accept step
spre = scur
scur = stry
else:
# bisect
spre = sbis
scur = sbis
else:
# bisect
spre = sbis
scur = sbis
xpre = xcur
fpre = fcur
if abs(scur) > delta:
xcur += scur
else:
if sbis > 0.0:
xcur += delta
else:
xcur -= delta
fcur = f(xcur, *args, **kwargs)
raise UnconvergedError("Failed to converge after %d iterations" %maxiter)
def secant(func, x0, args=(), maxiter=100, low=None, high=None, damping=1.0,
xtol=1.48e-8, ytol=None, x1=None, require_eval=False,
f0=None, f1=None, bisection=False, same_tol=1.0, kwargs={},
require_xtol=True):
p0 = 1.0*x0
# Logic to take a small step to calculate the approximate derivative
if x1 is not None:
p1 = x1
else:
if x0 >= 0.0:
p1 = x0*1.0001 + 1e-4
else:
p1 = x0*1.0001 - 1e-4
# May need to truncate p1
if low is not None and p1 < low:
p1 = low
if high is not None and p1 > high:
p1 = high
# Are we already converged on either point? Do not consider checking xtol
# if so.
if f0 is None:
q0 = func(p0, *args, **kwargs)
else:
q0 = f0
if (ytol is not None and abs(q0) < ytol and not require_xtol) or q0 == 0.0:
return p0
if f1 is None:
q1 = func(p1, *args, **kwargs)
else:
q1 = f1
if (ytol is not None and abs(q1) < ytol and not require_xtol) or q1 == 0.0:
return p1
if bisection:
a, b = None, None
if q1 < 0.0:
a = p1
else:
b = p1
if q0 < 0.0:
a = p0
else:
b = p0
for i in range(maxiter):
# Calculate new point, and truncate if necessary
if q1 != q0:
p = p1 - q1*(p1 - p0)/(q1 - q0)*damping
else:
p = p1
if low is not None and p < low:
p = low
if high is not None and p > high:
p = high
# After computing new point
if bisection and a is not None and b is not None:
if not (a < p < b) or (b < p < a):
p = 0.5*(a + b)
# Check the exit conditions
if ytol is not None and xtol is not None:
# Meet both tolerance - new value is under ytol, and old value
if abs(q1) < ytol and (not require_xtol or abs(p0 - p1) <= abs(xtol*p0)):
# if abs(p0 - p1) <= abs(xtol*p0) and abs(q1) < ytol:
if require_eval:
return p1
return p
elif xtol is not None:
if abs(p0 - p1) <= abs(xtol*p0) and not (p0 == p1 and (p0 == low or p0 == high)):
if require_eval:
return p1
return p
elif ytol is not None:
if abs(q1) < ytol:
if require_eval:
return p1
return p
# Check to quit after convergence check - may meet criteria
if q1 == q0:
# Are we close enough? Run the checks again
if xtol is not None:
xtol *= same_tol
if ytol is not None:
ytol *= same_tol
if ytol is not None and xtol is not None:
# Meet both tolerance - new value is under ytol, and old value
if abs(p0 - p1) <= abs(xtol * p0) and abs(q1) < ytol:
return p
elif xtol is not None:
if abs(p0 - p1) <= abs(xtol * p0) and not (p0 == p1 and (p0 == low or p0 == high)):
return p
elif ytol is not None:
if abs(q1) < ytol:
return p
# Cannot proceed, raise an error
raise SamePointError("Convergence failed - previous points are the same", q1=q1, p1=p1, q0=q0, p0=p0)
# Swap the points around
p0 = p1
q0 = q1
p1 = p
q1 = func(p1, *args, **kwargs)
if q1 == 0.0:
return p1
if bisection:
if q1 < 0.0:
a = p1
else:
b = p1
raise UnconvergedError("Failed to converge", iterations=i, point=p, err=q1)
# start with 0.99 and try taking powers of two off of 1
line_search_factors = []
remove = 0.01
for i in range(7):
line_search_factors.append(1-remove)
remove*= 2
# once under 0.36, jump to 0.1 and go down by orders of magnitude to 1e-10
tmp = []
remove = 1e-10
for i in range(10):
tmp.append(remove)
remove *= 10
tmp.sort(reverse=True)
line_search_factors.extend(tmp)
line_search_factors_low_prec = line_search_factors[3:]
newton_line_search_factors = [1.0] + line_search_factors
newton_line_search_factors_disabled = [1.0]
def one_sided_secant(f, x0, x_flat, args=tuple(), maxiter=100, xtol=1.48e-8,
ytol=None, require_xtol=True, damping=1.0, x1=None,
y_flat=None, max_quadratic_iter=7, low_prec_ls_iter=3,
y0=None, y1=None,
kwargs={}):
if x1 is None:
if x0 >= 0.0:
x1 = x0*1.0001 + 1e-4
else:
x1 = x0*1.0001 - 1e-4
if y0 is None:
y0 = f(x0, *args, **kwargs)
# print(f'Start point: x={x0}, y={y0}')
if y1 is None:
y1 = f(x1, *args, **kwargs)
# print(f'Start point: x={x1}, y={y1}')
flat_higher_than_x = x_flat > x0
# this is the flat value - all other y values that are flat must be this number
# we only need to calculate it if not provided
if y_flat is None:
y_flat = f(x_flat, *args, **kwargs)
if y0 == y_flat:
raise ValueError("The initial y value is the same as the value in the zero-derivative region")
if y0 == y1:
raise ValueError("The initial points have the same value, cannot start the search")
if y1 == y_flat:
raise ValueError("The second point is also flat, cannot start the search")
# store some other points for higher order steps
x2 = x3 = y2 = y3 = None
for i in range(maxiter):
# # guess the new value based on the two points
has_step = False
if x2 is not None and i < max_quadratic_iter:
try:
# print('Points for quadratic', [x0, x1, x2], [y0, y1, y2])
a, b, c = quadratic_from_points(x0, x1, x2, y0, y1, y2)
# print('Quadratic coefficients', (a, b, c))
sln = roots_quadratic(a, b, c)
# print('Quadratic solutions', sln)
if sln[0].imag == 0:
if len(sln) == 2:
a_step = (sln[0] - x1)
another_step = (sln[1] - x1)
# use the closest one
if abs(a_step) < abs(another_step):
# print('Using quadratic solution', sln[0])
step = a_step
else:
# print('Using quadratic solution', sln[1])
step = another_step
else:
# only got a single step
# print('Using quadratic solution', sln[0])
step = (sln[0] - x1)
has_step = True
# print(f'Quadratic desired point: x={x1 + step}')
except:
# print('Quadratic had a numerical error')
pass
# secant can always work
if not has_step:
step = - y1*(x1 - x0)/(y1 - y0)*damping
# print(f'Secant desired point: x={x1 + step}')
force_line_search = x_flat <= (x1 + step) if flat_higher_than_x else x_flat >= (x1 + step)
if not force_line_search:
x = x1 + step
y = f(x, *args, **kwargs)
# print(f'Iteration: x={x}, y={y}, flat={y==y_flat}')
if y == y_flat:
x_flat = x
else:
pass
# print(f'Secant desired point lower than flat point: x={x1 + step}, x_flat={x_flat}')
if force_line_search or y == y_flat:
# If the step is too big (overshoots the known flat point), recalculate it to be the limit
if flat_higher_than_x:
if x_flat <= (x0 + step):
step = x_flat - x0
else:
if x_flat >= (x0 + step):
step = x_flat - x0
# Must use linesearch to find a x that gives a working y
for line_search_factor in (line_search_factors if i > low_prec_ls_iter else line_search_factors_low_prec):
x = x0 + step*line_search_factor
y = f(x, *args, **kwargs)
# print(f'Line search: x={x}, y={y}, flat={y==y_flat}, x_flat={x_flat}')
if y != y_flat:
break
else:
x_flat = x
if y == y_flat:
raise ValueError("The line search has finished and no point to continue with was found")
# Check if we converged, but note this really requires a ytol as the xtol doesn't work well with lsearch
if ytol is not None and xtol is not None:
# Meet both tolerance - new value is under ytol, and old value
if abs(y) < ytol and (abs(x - x0) <= abs(xtol*x)):
return x
elif xtol is not None:
if abs(x - x0) <= abs(xtol*x):
return x
elif ytol is not None:
if abs(y) < ytol:
return x
# change the points around, forgetting about one of the values
x0, x1, x2, x3 = x, x0, x1, x2
y0, y1, y2, y3 = y, y0, y1, y2
raise UnconvergedError("Failed to converge", iterations=i, point=x, err=y)
def halley_compat_numba(func, x, *args):
a, b = func(x, *args)
return a, b, 0.0
def newton(func, x0, fprime=None, args=(), tol=None, maxiter=100,
fprime2=None, low=None, high=None, damping=1.0, ytol=None,
xtol=1.48e-8, require_eval=False, damping_func=None,
bisection=False, gap_detection=False, dy_dx_limit=1e100,
max_bound_hits=4, kwargs={}):
"""Newton's method designed to be mostly compatible with SciPy's
implementation, with a few features added and others now implemented.
1) No tracking of how many iterations have progressed.
2) No ability to return a RootResults object
3) No warnings on some cases of bad input (low tolerance, no iterations)
4) Ability to accept True for either fprime or fprime2, which means that
they are included in the return value of func
5) No handling for inf or nan!
6) Special handling for functions which need to ensure an evaluation at
the final point
7) Damping as a constant or a fraction
8) Ability to perform bisection, optionally specifying a maximum range
9) Ability to specify minimum and maximum iteration values
10) Ability to specify a tolerance in the `y` direction
11) Ability to pass in keyword arguments as well as positional arguments
From scipy, with some modifications!
https://github.com/scipy/scipy/blob/v1.1.0/scipy/optimize/zeros.py#L66-L206
"""
if tol is not None:
xtol = tol
p0 = 1.0*x0
# p1 = p0 = 1.0*x0
# fval0 = None
if bisection:
a, b = None, None
fa, fb = None, None
fprime2_included = fprime2 == True
fprime_included = fprime == True
if fprime2_included:
func2 = func
hit_low, hit_high = 0, 0
for it in range(maxiter):
# if fprime2_included: # numba: uncomment
# fval, fder, fder2 = func(p0, *args) # numba: uncomment
# else: # numba: uncomment
# fval, fder = func(p0, *args) # numba: uncomment
# fder2 = 0.0 # numba: uncomment
if fprime2_included: # numba: DELETE
fval, fder, fder2 = func2(p0, *args, **kwargs) # numba: DELETE
elif fprime_included: # numba: DELETE
fval, fder = func(p0, *args, **kwargs)
elif fprime2 is not None: #numba: DELETE
fval = func(p0, *args, **kwargs) #numba: DELETE
fder = fprime(p0, *args, **kwargs) #numba: DELETE
fder2 = fprime2(p0, *args, **kwargs) #numba: DELETE
else: #numba: DELETE
fval = func(p0, *args, **kwargs) #numba: DELETE
fder = fprime(p0, *args, **kwargs) #numba: DELETE
if fval == 0.0:
return p0 # Cannot continue or already finished
elif fder == 0.0:
if ytol is None or abs(fval) < ytol:
return p0
else:
raise UnconvergedError("Derivative became zero; maxiter (%d) reached, value=%f " %(maxiter, p0))
if bisection:
if fval < 0.0:
a = p0
fa = fval
else:
b = p0 # b always has positive value of error
fb = fval
fder_inv = 1.0/fder
# Compute the next point
step = fval*fder_inv
if damping_func is not None:
if fprime2 is not None:
step = step/(1.0 - 0.5*step*fder2*fder_inv)
p = damping_func(p0, -step, damping)
# variable, derivative, damping_factor
elif fprime2 is None:
p = p0 - step*damping
else:
p = p0 - step/(1.0 - 0.5*step*fder2*fder_inv)*damping
if bisection and a is not None and b is not None:
if (not (a < p < b) and not (b < p < a)):
# if p < 0.0:
# if p < a:
# print('bisecting')
p = 0.5*(a + b)
# else:
# if p > b:
# p = 0.5*(a + b)
if gap_detection:
# Change in function value required to get goal in worst case
dy_dx = abs((fa- fb)/(a-b))
if dy_dx > dy_dx_limit: #or dy_dx > abs(fder)*10:
raise DiscontinuityError("Discontinuity detected")
if low is not None and p < low:
hit_low += 1
if p0 == low and hit_low > max_bound_hits:
if abs(fval) < ytol:
return low
else:
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
# Stuck - not going to converge, hammering the boundary. Check ytol
p = low
if high is not None and p > high:
hit_high += 1
if p0 == high and hit_high > max_bound_hits:
if abs(fval) < ytol:
return high
else:
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
p = high
# p0 is last point (fval at that point), p is new
if ytol is not None and xtol is not None:
# Meet both tolerance - new value is under ytol, and old value
if abs(p - p0) < abs(xtol*p) and abs(fval) < ytol:
if require_eval:
return p0
return p
elif xtol is not None:
if abs(p - p0) < abs(xtol*p):
if require_eval:
return p0
return p
elif ytol is not None:
if abs(fval) < ytol:
if require_eval:
return p0
return p
# fval0, fval1 = fval, fval0
# p0, p1 = p, p0
# need a history of fval also
p0 = p
# else:
# return secant(func, x0, args=args, maxiter=maxiter, low=low, high=high,
# damping=damping,
# xtol=xtol, ytol=ytol, kwargs=kwargs)
#
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " %(maxiter, p))
def halley(func, x0, args=(), maxiter=100,
low=None, high=None, damping=1.0, ytol=None,
xtol=1.48e-8, require_eval=False, damping_func=None,
bisection=False,
max_bound_hits=4, kwargs={}, max_2nd_ratio=1.5):
p0 = 1.0*x0
if bisection:
a, b = None, None
fa, fb = None, None
hit_low, hit_high = 0, 0
for it in range(maxiter):
fval, fder, fder2 = func(p0, *args)
if fval == 0.0:
return p0 # Cannot continue or already finished
elif fder == 0.0:
if ytol is None or abs(fval) < ytol:
return p0
else:
raise UnconvergedError("Derivative became zero; maxiter (%d) reached, value=%f " %(maxiter, p0))
if bisection:
if fval < 0.0:
a = p0
fa = fval
else:
b = p0 # b always has positive value of error
fb = fval
fder_inv = 1.0/fder
# Compute the next point
step = fval*fder_inv
skipped_halley = False
if damping_func is not None:
step = step/(1.0 - 0.5*step*fder2*fder_inv)
p = damping_func(p0, -step, damping)
else:
step2 = step/(1.0 - 0.5*step*fder2*fder_inv)*damping
if max_2nd_ratio is not None and abs(1.0-step2/step) > max_2nd_ratio:
skipped_halley = True
p = p0 - step
else:
p = p0 - step2
if bisection and a is not None and b is not None:
if (not (a < p < b) and not (b < p < a)):
p = 0.5*(a + b)
if low is not None and p < low:
hit_low += 1
if p0 == low and hit_low > max_bound_hits:
if abs(fval) < ytol:
return low
else:
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
# Stuck - not going to converge, hammering the boundary. Check ytol
p = low
if high is not None and p > high:
hit_high += 1
if p0 == high and hit_high > max_bound_hits:
if abs(fval) < ytol:
return high
else:
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " % (maxiter, p))
p = high
# p0 is last point (fval at that point), p is new
if not skipped_halley:
if ytol is not None and xtol is not None:
# Meet both tolerance - new value is under ytol, and old value
if abs(p - p0) < abs(xtol*p) and abs(fval) < ytol:
if require_eval:
return p0
return p
elif xtol is not None:
if abs(p - p0) < abs(xtol*p):
if require_eval:
return p0
return p
elif ytol is not None:
if abs(fval) < ytol:
if require_eval:
return p0
return p
p0 = p
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%f " %(maxiter, p))
def newton_err(F):
err = sum([abs(i) for i in F])
return err
def basic_damping(x, dx, damping, *args):
N = len(x)
x2 = [0.0]*N
for i in range(N):
x2[i] = x[i] + dx[i]*damping
return x2
def solve_2_direct(mat, vec):
ab = mat[0]
cd = mat[1]
a, b = ab[0], ab[1]
c, d = cd[0], cd[1]
e, f = vec[0], vec[1]
x0 = 1.0/(a*d - b*c)
sln = [0.0]*2
sln[0] = x0*(-b*f + d*e)
sln[1] = x0*(a*f - c*e)
return sln
def solve_3_direct(mat, vec):
a, b, c = mat[0]
d, e, f = mat[1]
g, h, i = mat[2]
j, k, l = vec
x0 = a*e
x1 = -b*d + x0
x2 = a*i - c*g
x3 = a*f - c*d
x4 = a*h - b*g
x5 = x1*x2 - x3*x4
x6 = 1.0/x5
x7 = b*x3 - c*x1
x8 = 1.0/x1
x9 = d*x4 - g*x1
x10 = j*x8
x11 = a*k
x12 = a*l
ans = [0.0]*3
ans[0] = x6*(-k*x8*(b*x5 + x4*x7) + l*x7 + x10*(x0*x5 + x7*x9)/a)
ans[1] = x6*(-x10*(d*x5 + x3*x9) + x11*x2 - x12*x3)
ans[2] = x6*(j*x9 + x1*x12 - x11*x4)
return ans
def solve_4_direct(mat, vec):
a, b, c, d = mat[0]
e, f, g, h = mat[1]
i, j, k, l = mat[2]
m, n, o, p = mat[3]
q, r, s, t = vec
x0 = a*f
x1 = -b*e + x0
x2 = x1*(a*k - c*i)
x3 = a*g - c*e
x4 = a*j - b*i
x5 = x2 - x3*x4
x6 = a*h - d*e
x7 = a*n - b*m
x8 = x1*(a*p - d*m) - x6*x7
x9 = x1*(a*l - d*i) - x4*x6
x10 = x1*(a*o - c*m) - x3*x7
x11 = -x10*x9 + x5*x8
x12 = 1.0/x11
x13 = -b*x3 + c*x1
x14 = x13*x9
x15 = x5*(-b*x6 + d*x1)
x16 = -x14 + x15
x17 = 1.0/x5
x18 = s*x17
x19 = x10*x4 - x5*x7
x20 = 1.0/x1
x21 = x17*x20
x22 = e*x4 - i*x1
x23 = x5*(e*x7 - m*x1)
x24 = x10*x22
x25 = x23 - x24
x26 = q*x17
x27 = x20*x26
x28 = x3*x9
x29 = x5*x6
x30 = a*t
x31 = -x28 + x29
x32 = a*r
x33 = a*s*x1
x34 = x1*x30
x35 = -x23 + x24
ans = [0.0]*4
ans[0] = x12*(-r*x21*(-x11*(-b*x5 + x13*x4) + x16*x19) + t*(x14 - x15)
- x18*(-x10*x16 + x11*x13) - x27*(-x11*(x0*x5 - x13*x22) + x16*x25)/a)
ans[1] = x12*(-a*x18*(-x10*x31 + x11*x3) - x21*x32*(-x11*x2 + x19*x31)
- x27*(x11*(e*x5 + x22*x3) + x25*x31) + x30*(x28 - x29))
ans[2] = x12*(-x17*x32*(x11*x4 + x19*x9) + x26*(x11*x22 + x35*x9) + x33*x8 - x34*x9)
ans[3] = x12*(-q*x35 - x10*x33 + x19*x32 + x34*x5)
return ans
def newton_system(f, x0, jac, xtol=None, ytol=None, maxiter=100, damping=1.0,
args=(), damping_func=None, solve_func=py_solve, line_search=False): # numba: delete
# args=(), damping_func=None, solve_func=np.linalg.solve, line_search=False): # numba: uncomment
jac_also = True if jac == True else False
if jac_also:
fcur, j = f(x0, *args)
else: # numba: delete
fcur = f(x0, *args) # numba: delete
err0 = 0.0
for v in fcur:
err0 += abs(v)
if xtol is None and (ytol is not None and err0 < ytol):
return x0, 0
else:
x = x0
if not jac_also: # numba: delete
j = jac(x, *args) # numba: delete
factors = newton_line_search_factors if line_search else newton_line_search_factors_disabled
iteration = 1
while iteration < maxiter:
dx = solve_func(j, [-v for v in fcur]) # numba: delete
# dx = solve_func(j, -fcur) # numba: uncomment
for factor in factors:
mult = factor*damping
if damping_func is None:
# xnew = x + dx*mult # numba: uncomment
xnew = [xi + dxi*mult for xi, dxi in zip(x, dx)] # numba: delete
else:
xnew = damping_func(x, dx, damping*factor, *args)
# try:
if jac_also:
fnew, jnew = f(xnew, *args)
else: # numba: delete
fnew = f(xnew, *args) # numba: delete
# except:
# print(f'Line search calculation with point failed')
# continue
err_new = 0.0
for v in fnew:
err_new += abs(v)
# print(f'Line search with error={err_new}, factor {mult}' )
if err_new < err0:
break
if line_search and err_new > err0:
raise ValueError("Completed line search without reducing the objective function error, cannot proceed")
fcur = fnew
j = jnew
err0 = err_new
x = xnew
iteration += 1
if xtol is not None:
if (norm2(fcur) < xtol) and (ytol is None or err0 < ytol):
break
elif ytol is not None:
if err0 < ytol:
break
if not jac_also: # numba: delete
j = jac(x, *args) # numba: delete
if xtol is not None and norm2(fcur) > xtol:
raise UnconvergedError("Failed to converge")
# raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s" %(maxiter, x))
if ytol is not None:
err0 = 0.0
for v in fcur:
err0 += abs(v)
if err0 > ytol:
# raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s" %(maxiter, x))
raise UnconvergedError("Failed to converge")
return x, iteration
def newton_minimize(f, x0, jac, hess, xtol=None, ytol=None, maxiter=100, damping=1.0,
args=(), damping_func=None):
jac_also = True if jac == True else False
hess_also = True if hess == True else False
def err(F):
err = sum([abs(i) for i in F])
return err
if hess_also:
fcur, j, h = f(x0, *args)
elif jac_also:
fcur, j = f(x0, *args)
h = hess(x0, *args)
else:
fcur = f(x0, *args)
j = jac(x0, *args)
h = hess(x0, *args)
iter = 0
x = x0
while iter < maxiter:
dx = py_solve(h, [-v for v in j])
if damping_func is None:
x = [xi + dxi*damping for xi, dxi in zip(x, dx)]
else:
x = damping_func(x, dx, damping)
if hess_also:
fcur, j, h = f(x, *args)
elif jac_also:
fcur, j = f(x, *args)
h = hess(x, *args)
else:
fcur = f(x, *args)
j = jac(x, *args)
h = hess(x, *args)
iter += 1
if xtol is not None and norm2(j) < xtol:
break
if ytol is not None and err(j) < ytol:
break
if xtol is not None and norm2(j) > xtol:
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s " %(maxiter, x))
if ytol is not None and err(j) > ytol:
raise UnconvergedError("Failed to converge; maxiter (%d) reached, value=%s " %(maxiter, x))
return x, iter
def broyden2(xs, fun, jac, xtol=1e-7, maxiter=100, jac_has_fun=False,
skip_J=False, args=()):
iter = 0
if skip_J:
fcur = fun(xs, *args)
N = len(fcur)
J = eye(N)
elif jac_has_fun:
fcur, J = jac(xs, *args)
J = inv(J)
else:
fcur = fun(xs, *args)
J = inv(jac(xs, *args))
N = len(fcur)
eqns = range(N)
err = 0.0
for fi in fcur:
err += abs(fi)
while err > xtol and iter < maxiter:
s = dot(J, fcur)
xs = [xs[i] - s[i] for i in eqns]
fnew = fun(xs, *args)
z = [fnew[i] - fcur[i] for i in eqns]
u = dot(J, z)
d = [-i for i in s]
dmu = [d[i]-u[i] for i in eqns]
dmu_d = inner_product(dmu, d)
den_inv = 1.0/inner_product(d, u)
factor = den_inv*dmu_d
J_delta = [[factor*j for j in row] for row in J]
for i in eqns:
for j in eqns:
J[i][j] += J_delta[i][j]
fcur = fnew
iter += 1
err = 0.0
for fi in fcur:
err += abs(fi)
return xs, iter
def normalize(values):
r'''Simple function which normalizes a series of values to be from 0 to 1,
and for their sum to add to 1.
.. math::
x = \frac{x}{sum_i x_i}
Parameters
----------
values : array-like
array of values
Returns
-------
fractions : array-like
Array of values from 0 to 1
Notes
-----
Does not work on negative values, or handle the case where the sum is zero.
Examples
--------
>>> normalize([3, 2, 1])
[0.5, 0.3333333333333333, 0.16666666666666666]
'''
tot_inv = 1.0/sum(values)
return [i*tot_inv for i in values]
# NOTE: the first value of each array is used; it is only the indexes that
# are adjusted for fortran
def func_35_splev(arg, t, l, l1, k2, nk1):
# minus 1 index
if arg >= t[l-1] or l1 == k2:
arg, t, l, l1, nk1, leave = func_40_splev(arg, t, l, l1, nk1)
# Always leaves here
return arg, t, l, l1, k2, nk1
l1 = l
l = l - 1
arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)
return arg, t, l, l1, k2, nk1
def func_40_splev(arg, t, l, l1, nk1):
if arg < t[l1-1] or l == nk1: # minus 1 index
return arg, t, l, l1, nk1, 1
l = l1
l1 = l + 1
arg, t, l, l1, nk1, leave = func_40_splev(arg, t, l, l1, nk1)
return arg, t, l, l1, nk1, leave
def py_splev(x, tck, ext=0, t=None, c=None, k=None):
"""Evaluate a B-spline using a pure-python port of FITPACK's splev. This is
not fully featured in that it does not support calculating derivatives.
Takes the knots and coefficients of a B-spline tuple, and returns the value
of the smoothing polynomial.
Parameters
----------
x : float or list[float]
An point or array of points at which to calculate and return the value
of the spline, [-]
tck : 3-tuple
Ssequence of length 3 returned by
`splrep` containing the knots, coefficients, and degree
of the spline, [-]
ext : int, optional, default 0
If `x` is not within the range of the spline, this handles the
calculation of the results.
* For ext=0, extrapolate the value
* For ext=1, return 0 as the value
* For ext=2, raise a ValueError on that point and fail to return values
* For ext=3, return the boundary value as the value
Returns
-------
y : list
The array of calculated values; the spline function evaluated at
the points in `x`, [-]
Notes
-----
The speed of this for a scalar value in CPython is approximately 15%
slower than SciPy's FITPACK interface. In PyPy, this is 10-20 times faster
than using it (benchmarked on PyPy 6).
There could be more bugs in this port.
"""
e = ext
if tck is not None:
t, c, k = tck
x = [x]
# if isinstance(x, (float, int, complex)):
# x = [x]
m = 1#len(x)
n = len(t)
y = [] # output array
k1 = k + 1
k2 = k1 + 1
nk1 = n - k1
tb = t[k1-1] # -1 to get right index
te = t[nk1 ] # -1 to get right index; + 1 - 1
l = k1
l1 = l + 1
for i in range(0, m): # m is only 1
# i only used in loop for 1
arg = x[i]
if arg < tb or arg > te:
if e == 0:
arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)
elif e == 1:
y.append(0.0)
continue
elif e == 2:
raise ValueError("X value not in domain; set `ext` to 0 to "
"extrapolate")
elif e == 3:
if arg < tb:
arg = tb
else:
arg = te
arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)
else:
arg, t, l, l1, k2, nk1 = func_35_splev(arg, t, l, l1, k2, nk1)
# Local arrays used in fpbspl and to carry its result
h = [0.0]*20
hh = [0.0]*19
fpbspl(t, n, k, arg, l, h, hh)
sp = 0.0E0
ll = l - k1
for j in range(0, k1):
ll = ll + 1
sp = sp + c[ll-1]*h[j] # -1 to get right index
y.append(sp)
return y[0]
# if len(y) == 1:
# return y[0]
# return y
def py_bisplev(x, y, tck, dx=0, dy=0):
"""Evaluate a bivariate B-spline or its derivatives. For scalars, returns a
float; for other inputs, mimics the formats of SciPy's `bisplev`.
Parameters
----------
x : float or list[float]
x value (rank 1), [-]
y : float or list[float]
y value (rank 1), [-]
tck : tuple(list, list, list, int, int)
Tuple of knot locations, coefficients, and the degree of the spline,
[tx, ty, c, kx, ky], [-]
dx : int, optional
Order of partial derivative with respect to `x`, [-]
dy : int, optional
Order of partial derivative with respect to `y`, [-]
Returns
-------
values : float or list[list[float]]
Calculated values from spline or their derivatives; according to the
same format as SciPy's `bisplev`, [-]
Notes
-----
Use `bisplrep` to generate the `tck` representation; there is no Python
port of it.
"""
tx, ty, c, kx, ky = tck
if isinstance(x, (float, int)):
x = [x]
if isinstance(y, (float, int)):
y = [y]
z = [[cy_bispev(tx, ty, c, kx, ky, [xi], [yi])[0] for yi in y] for xi in x]
if len(x) == len(y) == 1:
return z[0][0]
return z
def fpbspl(t, n, k, x, l, h, hh):
"""subroutine fpbspl evaluates the (k+1) non-zero b-splines of degree k at
t(l) <= x < t(l+1) using the stable recurrence relation of de boor and cox.
All arrays are 1d! Optimized the assignment and order and so on.
"""
h[0] = 1.0
for j in range(1, k + 1):
hh[0:j] = h[0:j]
h[0] = 0.0
for i in range(j):
li = l+i
f = hh[i]/(t[li] - t[li - j])
h[i] = h[i] + f*(t[li] - x)
h[i + 1] = f*(x - t[li - j])
def init_w(t, k, x, lx, w):
tb = t[k]
n = len(t)
m = len(x)
h = [0]*6
hh = [0]*5
te = t[n - k - 1]
l1 = k + 1
l2 = l1 + 1
for i in range(m):
arg = x[i]
if arg < tb:
arg = tb
if arg > te:
arg = te
while not (arg < t[l1] or l1 == (n - k - 1)):
l1 = l2
l2 = l1 + 1
fpbspl(t, n, k, arg, l1, h, hh)
lx[i] = l1 - k - 1
for j in range(k + 1):
w[i][j] = h[j]
def cy_bispev(tx, ty, c, kx, ky, x, y):
"""Possible optimization: Do not evaluate derivatives, ever."""
nx = len(tx)
ny = len(ty)
mx = len(x)
my = len(y)
kx1 = kx + 1
ky1 = ky + 1
nkx1 = nx - kx1
nky1 = ny - ky1
wx = [[0.0]*kx1]*mx
wy = [[0.0]*ky1]*my
lx = [0]*mx
ly = [0]*my
size_z = mx*my
z = [0.0]*size_z
init_w(tx, kx, x, lx, wx)
init_w(ty, ky, y, ly, wy)
for j in range(my):
for i in range(mx):
sp = 0.0
err = 0.0
for i1 in range(kx1):
for j1 in range(ky1):
l2 = lx[i]*nky1 + ly[j] + i1*nky1 + j1
a = c[l2]*wx[i][i1]*wy[j][j1] - err
tmp = sp + a
err = (tmp - sp) - a
sp = tmp
z[j*mx + i] += sp
return z
p_0_70 = array_if_needed([0.06184590404457956, -0.7460693871557973, 2.2435704485433376, -2.1944070385048526, 0.3382265629285811, 0.2791966558569478])
q_0_07 = array_if_needed([-0.005308735283483908, 0.1823421262956287, -1.2364596896290079, 2.9897802200092296, -2.9365321202088004, 1.0])
p_07_099 = array_if_needed([7543860.817140365, -10254250.429758755, -4186383.973408412, 7724476.972409749, -3130743.609030545, 600806.068543299, -62981.15051292659, 3696.7937385473397, -114.06795167646395, 1.4406337969700391])
q_07_099 = array_if_needed([-1262997.3422452002, 10684514.56076485, -16931658.916668657, 10275996.02842749, -3079141.9506451315, 511164.4690136096, -49254.56172495263, 2738.0399260270983, -81.36790509581284, 1.0])
p_099_1 = array_if_needed([8.548256176424551e+34, 1.8485781239087334e+35, -2.1706889553798647e+34, 8.318563643438321e+32, -1.559802348661511e+31, 1.698939241177209e+29, -1.180285031647229e+27, 5.531049937687143e+24, -1.8085903366375877e+22, 4.203276811951035e+19, -6.98211620300421e+16, 82281997048841.92, -67157299796.61345, 36084814.54808544, -11478.108105137717, 1.6370226052761176])
q_099_1 = array_if_needed([-1.9763570499484274e+35, 1.4813997374958851e+35, -1.4773854824041134e+34, 5.38853721252814e+32, -9.882387315028929e+30, 1.0635231532999732e+29, -7.334629044071992e+26, 3.420655574477631e+24, -1.1147787784365177e+22, 2.584530363912858e+19, -4.285376337404043e+16, 50430830490687.56, -41115254924.43107, 22072284.971253656, -7015.799744041691, 1.0])
def polylog2(x):
r'''Simple function to calculate PolyLog(2, x) from ranges 0 <= x <= 1,
with relative error guaranteed to be < 1E-7 from 0 to 0.99999. This
is a Pade approximation, with three coefficient sets with splits at 0.7
and 0.99. An exception is raised if x is under 0 or above 1.
Parameters
----------
x : float
Value to evaluate PolyLog(2, x) T
Returns
-------
y : float
Evaluated result
Notes
-----
Efficient (2-4 microseconds). No implementation of this function exists in
SciPy. Derived with mpmath's pade approximation.
Required for the entropy integral of
:obj:`thermo.heat_capacity.Zabransky_quasi_polynomial`.
Examples
--------
>>> polylog2(0.5)
0.5822405264516294
'''
if 0 <= x <= 0.7:
p = p_0_70
q = q_0_07
offset = 0.26
elif 0.7 < x <= 0.99:
p = p_07_099
q = q_07_099
offset = 0.95
elif 0.99 < x <= 1:
p = p_099_1
q = q_099_1
offset = 0.999
else:
raise ValueError('Approximation is valid between 0 and 1 only.')
x = x - offset
return horner(p, x)/horner(q, x)
def max_abs_error(data, calc):
max_err = 0.0
N = len(data)
for i in range(N):
diff = abs(data[i] - calc[i])
if diff > max_err:
max_err = diff
return max_err
def max_abs_rel_error(data, calc):
max_err = 0.0
N = len(data)
for i in range(N):
diff = abs((data[i] - calc[i])/data[i])
if diff > max_err:
max_err = diff
return max_err
def max_squared_error(data, calc):
max_err = 0.0
N = len(data)
for i in range(N):
diff = abs(data[i] - calc[i])
diff *= diff
if diff > max_err:
max_err = diff
return max_err
def max_squared_rel_error(data, calc):
max_err = 0.0
N = len(data)
for i in range(N):
diff = abs((data[i] - calc[i])/data[i])
diff *= diff
if diff > max_err:
max_err = diff
return max_err
def mean_abs_error(data, calc):
mean_err = 0.0
N = len(data)
for i in range(N):
mean_err += abs(data[i] - calc[i])
return mean_err/N
def mean_abs_rel_error(data, calc):
mean_err = 0.0
N = len(data)
for i in range(N):
if data[i] == 0.0:
if calc[i] == 0.0:
pass
else:
mean_err += 1.0
else:
mean_err += abs((data[i] - calc[i])/data[i])
return mean_err/N
def mean_squared_error(data, calc):
mean_err = 0.0
N = len(data)
for i in range(N):
err = abs(data[i] - calc[i])
mean_err += err*err
return mean_err/N
def mean_squared_rel_error(data, calc):
mean_err = 0.0
N = len(data)
for i in range(N):
err = abs((data[i] - calc[i])/data[i])
mean_err += err*err
return mean_err/N
global sp_root
sp_root = None
def root(*args, **kwargs):
global sp_root
if sp_root is None:
from scipy.optimize import root as sp_root
return sp_root(*args, **kwargs)
global sp_minimize
sp_minimize = None
def minimize(*args, **kwargs):
global sp_minimize
if sp_minimize is None:
from scipy.optimize import minimize as sp_minimize
return sp_minimize(*args, **kwargs)
global sp_fsolve
sp_fsolve = None
def fsolve(*args, **kwargs):
global sp_fsolve
if sp_fsolve is None:
from scipy.optimize import fsolve as sp_fsolve
return sp_fsolve(*args, **kwargs)
global sp_curve_fit
sp_curve_fit = None
def curve_fit(*args, **kwargs):
global sp_curve_fit
if sp_curve_fit is None:
from scipy.optimize import curve_fit as sp_curve_fit
return sp_curve_fit(*args, **kwargs)
global sp_leastsq
sp_leastsq = None
def leastsq(*args, **kwargs):
global sp_leastsq
if sp_leastsq is None:
from scipy.optimize import leastsq as sp_leastsq
return sp_leastsq(*args, **kwargs)
global sp_differential_evolution
sp_differential_evolution = None
def differential_evolution(*args, **kwargs):
global sp_differential_evolution
if sp_differential_evolution is None:
from scipy.optimize import differential_evolution as sp_differential_evolution
return sp_differential_evolution(*args, **kwargs)
global sp_lmder
sp_lmder = None
def lmder(*args, **kwargs):
global sp_lmder
if sp_lmder is None:
from scipy.optimize._minpack import _lmder as sp_lmder
return sp_lmder(*args, **kwargs)
global sp_lmfit
sp_lmfit = None
def lmfit(*args, **kwargs):
global sp_lmfit
if sp_lmfit is None:
from scipy.optimize._minpack import _lmfit as sp_lmfit
return sp_lmfit(*args, **kwargs)
def fixed_quad_Gauss_Kronrod(f, a, b, k_points, k_weights, l_weights, args):
'''
Note: This type of function cannot be fast in numba right now, the function
call is too slow!
https://numba.pydata.org/numba-doc/dev/user/faq.html#can-i-pass-a-function-as-an-argument-to-a-jitted-function
'''
val_gauss_kronrod = val_gauss_legendre = 0.0
diff = b - a
fact = 0.5*diff
N = len(k_points)
# center = N//2
# sp = [0.0]*N
# fx_gk = [0.0]*N
# fx_gl = [0.0]*center
k = 0
for i in range(N):
x0 = 0.5*(1.0 - k_points[i])
x1 = 0.5*(1.0 + k_points[i])
# sp[i] =
x = a*x0 + b*x1
# fx_gk[i] =
y = f(x, *args)
val_gauss_kronrod += fact*y*k_weights[i]
if i%2:
# fx_gl[k] = y
val_gauss_legendre += fact*y*l_weights[k]
k += 1
return val_gauss_kronrod, val_gauss_kronrod-val_gauss_legendre
def quad_adaptive(f, a, b, args=(), kronrod_points=array_if_needed(kronrod_points[10]),
kronrod_weights=array_if_needed(kronrod_weights[10]), legendre_weights=array_if_needed(legendre_weights[10]),
epsrel=1.49e-8, epsabs=1.49e-8, depth=0, points=None):
# Disregard `points` for now
area, err_abs = fixed_quad_Gauss_Kronrod(f, a, b, kronrod_points, kronrod_weights,
legendre_weights, args)
# Match behavior, documented at https://www.johndcook.com/blog/2012/03/20/scipy-integration/
#and with a good test case at https://www.johndcook.com/blog/2012/03/20/scipy-integration/
if (abs(err_abs) < epsabs or (area == 0.0 or abs(err_abs/area) < epsrel)) or depth > 6:
# print((a, b), area, abs(err_abs), epsabs, abs(err_abs/area), epsrel, depth)
return area, err_abs
mid = a + (b-a)*0.5
area_A, err_abs_A = quad_adaptive(f, a, mid, args, kronrod_points, kronrod_weights, legendre_weights,
epsrel=epsrel, epsabs=epsabs*0.5, depth=depth+1)
area_B, err_abs_B = quad_adaptive(f, mid, b, args, kronrod_points, kronrod_weights, legendre_weights,
epsrel=epsrel, epsabs=epsabs*0.5, depth=depth+1)
return area_A + area_B, abs(err_abs_A) + abs(err_abs_B)
global sp_quad
sp_quad = None
def lazy_quad(f, a, b, args=(), epsrel=1.49e-08, epsabs=1.49e-8, **kwargs):
global sp_quad
if not IS_PYPY:
if sp_quad is None:
from scipy.integrate import quad as sp_quad
return sp_quad(f, a, b, args, epsrel=epsrel, epsabs=epsabs, **kwargs)
else:
return quad_adaptive(f, a, b, args=args, epsrel=epsrel, epsabs=epsabs)
# n = 300
# return fixed_quad_Gauss_Kronrod(f, a, b, kronrod_points[n], kronrod_weights[n], legendre_weights[n], args)
def _call_nquad(x, func, range_funcs, epsrel, epsabs, *args):
return nquad(func, range_funcs, args=(x,) +args , epsrel=epsrel, epsabs=epsabs)
def nquad(func, ranges, args=(), epsrel=1.48e-8, epsabs=1.48e-8):
my_low, my_high = ranges[-1](*args)
if len(ranges) == 1:
return quad_adaptive(func, my_low, my_high, args=args, epsrel=epsrel, epsabs=epsabs)
#
return quad_adaptive(_call_nquad, my_low, my_high,
args=(func, ranges[:-1], epsrel, epsabs) +args,
epsrel=epsrel, epsabs=epsabs)
def dblquad(func, a, b, hfun, gfun, args=(), epsrel=1.48e-12, epsabs=1.48e-15):
"""Nominally working, but trying to use it has exposed the expected bugs in
`quad_adaptive`."""
def inner_func(y, *args):
full_args = (y,)+args
quad_fluids = quad_adaptive(func, hfun(y, *args), gfun(y, *args), args=full_args, epsrel=epsrel, epsabs=epsabs)[0]
# from scipy.integrate import quad as quad2
# quad_sp = quad2(func, hfun(y), gfun(y), args=full_args, epsrel=epsrel, epsabs=epsabs)[0]
# print(quad_fluids, quad_sp, hfun(y), gfun(y), full_args, )
return quad_fluids
# return quad(func, hfun(y), gfun(y), args=(y,)+args, epsrel=epsrel, epsabs=epsabs)[0]
return quad_adaptive(inner_func, a, b, args=args, epsrel=epsrel, epsabs=epsabs)
if IS_PYPY:
quad = quad_adaptive
else:
quad = lazy_quad
fit_minimization_targets = {'MeanAbsErr': mean_abs_error,
'MeanRelErr': mean_abs_rel_error,
'MeanSquareErr': mean_squared_error,
'MeanSquareRelErr': mean_squared_rel_error,
'MaxAbsErr': max_abs_error,
'MaxRelErr': max_abs_rel_error,
'MaxSquareErr': max_squared_error,
'MaxSquareRelErr': max_squared_rel_error,
}
def py_factorial(n):
if n < 0:
raise ValueError("Positive values only")
factorial = 1
for i in range(2, n + 1):
factorial *= i
return factorial
try:
from math import factorial
except:
factorial = py_factorial
# interp, horner, derivative methods (and maybe newton?) should always be used.
if not IS_PYPY:
def splev(*args, **kwargs):
from scipy.interpolate import splev
return splev(*args, **kwargs)
def bisplev(*args, **kwargs):
from scipy.interpolate import bisplev
return bisplev(*args, **kwargs)
else:
splev, bisplev = py_splev, py_bisplev
# Try out mpmath for special functions anyway
has_scipy = False
if not SKIP_DEPENDENCIES and not is_micropython and not is_ironpython:
has_scipy = True
# try:
# import scipy
# has_scipy = True
# except ImportError:
# has_scipy = False
else:
has_scipy = False
erf = None
try:
from math import erf
except ImportError:
# python 2.6 or other implementations?
pass
def _lambertw_err(x, y):
return x*exp(x) - y
def py_lambertw(y, k=0):
"""For x > 0, the is always only one real solution For -1/e < x < 0, two
real solutions.
Besides compatibility with scipy, the result should have a complex part
because micropython doesn't support .real on floats
"""
# Works for real inputs only, two main branches
if k == 0:
# Branches dead at -1
# -1 is hard limit for real in this branch
# 700 is safe upper limit for exp
# Input should be between -1 and +BIGNUMBER
return brenth(_lambertw_err, -1.0, 700.0, (y,)) + 0.0j
elif k == -1:
# Input should be between 0 and -1/e
# not a big input range!
return brenth(_lambertw_err, -700.0, -1.0, (y,)) + 0.0j
else:
raise ValueError("Other branches not supported")
#has_scipy = False
if IS_PYPY:
lambertw = py_lambertw
if has_scipy:
if not IS_PYPY:
def lambertw(*args, **kwargs):
from scipy.special import lambertw
return lambertw(*args, **kwargs)
def ellipe(m):
from scipy.special import ellipe
return ellipe(m)
def gammaincc(*args, **kwargs):
from scipy.special import gammaincc
return gammaincc(*args, **kwargs)
def i1(*args, **kwargs):
from scipy.special import i1
return i1(*args, **kwargs)
def i0(*args, **kwargs):
from scipy.special import i0
return i0(*args, **kwargs)
def k1(*args, **kwargs):
from scipy.special import k1
return k1(*args, **kwargs)
def k0(*args, **kwargs):
from scipy.special import k0
return k0(*args, **kwargs)
def iv(*args, **kwargs):
from scipy.special import iv
return iv(*args, **kwargs)
def hyp2f1(*args, **kwargs):
from scipy.special import hyp2f1
return hyp2f1(*args, **kwargs)
def ellipkinc(phi, m):
from scipy.special import ellipkinc
return ellipkinc(phi, m)
def ellipeinc(phi, m):
from scipy.special import ellipeinc
return ellipeinc(phi, m)
if erf is None:
def erf(*args, **kwargs):
from scipy.special import erf
return erf(*args, **kwargs)
# from scipy.special import lambertw, ellipe, gammaincc # fluids
# from scipy.special import i1, i0, k1, k0, iv # ht
# from scipy.special import hyp2f1
# if erf is None:
# from scipy.special import erf
else:
lambertw = py_lambertw
# scipy is not available... fall back to mpmath as a Pure-Python implementation
# However, lazy load all functions
# from mpmath import lambertw # Same branches as scipy, supports .real
# Figured out this definition from test_precompute_gammainc.py in scipy
if erf is None:
def erf(*args, **kwargs):
import mpmath
return mpmath.erf(*args, **kwargs)
def gammaincc(a, x):
import mpmath
return mpmath.gammainc(a, a=x, regularized=True)
def ellipe(*args, **kwargs):
import mpmath
return mpmath.ellipe(*args, **kwargs)
def gammaincc(a, x):
import mpmath
return mpmath.gammainc(a, a=x, regularized=True)
def iv(*args, **kwargs):
import mpmath
return mpmath.besseli(*args, **kwargs)
def hyp2f1(*args, **kwargs):
import mpmath
return mpmath.hyp2f1(*args, **kwargs)
def iv(*args, **kwargs):
import mpmath
return mpmath.besseli(*args, **kwargs)
def i1(x):
import mpmath
return mpmath.mpmath.besseli(1, x)
def i0(x):
import mpmath
return mpmath.mpmath.besseli(0, x)
def k1(x):
import mpmath
return mpmath.mpmath.besselk(1, x)
def k0(x):
import mpmath
return mpmath.mpmath.besselk(0, x)
def ellipkinc(phi, m):
import mpmath
return mpmath.mpmath.ellipf(phi, m)
def ellipeinc(phi, m):
import mpmath
return mpmath.ellipe.ellipeinc(phi, m)
try:
if FORCE_PYPY:
lambertw = py_lambertw
from scipy.special import ellipe, gammaincc, gamma, ellipkinc, ellipeinc # fluids
from scipy.special import i1, i0, k1, k0, iv # ht
from scipy.special import hyp2f1
if erf is None:
from scipy.special import erf
except:
pass
|