1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains models of earth's atmosphere. Models are empirical and
based on extensive research, primarily by NASA.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Atmospheres
-----------
.. autoclass:: ATMOSPHERE_1976
:members:
.. autoclass:: ATMOSPHERE_NRLMSISE00
:members:
.. autofunction:: airmass
Solar Radiation and Position
----------------------------
.. autofunction:: solar_position
.. autofunction:: solar_irradiation
.. autofunction:: sunrise_sunset
.. autofunction:: earthsun_distance
Wind Models (requires Fortran compiler!)
----------------------------------------
.. autofunction:: hwm93
.. autofunction:: hwm14
"""
import os
from math import cos, exp, pi, radians, sin, sqrt
from fluids.constants import N_A, R, au
from fluids.numerics import numpy as np
from fluids.numerics import quad, secant
try:
from datetime import datetime
except:
pass
__all__ = ['ATMOSPHERE_1976', 'ATMOSPHERE_NRLMSISE00', 'hwm93', 'hwm14',
'earthsun_distance', 'solar_position', 'solar_irradiation',
'sunrise_sunset']
no_gfortran_error = """This function uses f2py to encapsulate a fortran \
routine. However, f2py did not detect one on installation and could not compile \
this routine. """
try:
# Needed by hwm14
os.environ["HWMPATH"] = os.path.join(os.path.dirname(__file__), 'optional')
except:
pass
H_std = [0.0, 11E3, 20E3, 32E3, 47E3, 51E3, 71E3, 84852.0]
T_grad = [-6.5E-3, 0.0, 1E-3, 2.8E-3, 0.0, -2.8E-3, -2E-3, 0.0]
T_std = [288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 214.65, 186.946]
P_std = [101325, 22632.06397346291, 5474.8886696777745, 868.0186847552279,
110.90630555496608, 66.93887311868738, 3.956420428040732,
0.3733835899762159]
r0 = 6356766.0
P0 = 101325.0
M0 = 28.9644
g0 = 9.80665
gamma = 1.400
def H_for_P_ATMOSPHERE_1976_err(H, P1):
return ATMOSPHERE_1976(H, 0.0).P - P1
def to_int_dP_ATMOSPHERE_1976(Z, dT):
atm = ATMOSPHERE_1976(Z, dT)
return atm.g*atm.rho
class ATMOSPHERE_1976:
r'''US Standard Atmosphere 1976 class, which calculates `T`, `P`,
`rho`, `v_sonic`, `mu`, `k`, and `g` as a function of altitude above
sea level. Designed to provide reasonable results up to an elevation
of 86,000 m (0.4 Pa). The model is also valid under sea level, to
-610 meters.
Parameters
----------
Z : float
Elevation, [m]
dT : float, optional
Temperature difference from standard conditions used in determining
the properties of the atmosphere, [K]
Attributes
----------
T : float
Temperature of atmosphere at specified conditions, [K]
P : float
Pressure of atmosphere at specified conditions, [Pa]
rho : float
Mass density of atmosphere at specified conditions [kg/m^3]
H : float
Geopotential height, [m]
g : float
Acceleration due to gravity, [m/s^2]
mu : float
Viscosity of atmosphere at specified conditions, [Pa*s]
k : float
Thermal conductivity of atmosphere at specified conditions, [W/m/K]
v_sonic : float
Speed of sound of atmosphere at specified conditions, [m/s]
Examples
--------
>>> five_km = ATMOSPHERE_1976(5000)
>>> five_km.P, five_km.rho, five_km.mu
(54048.28614576141, 0.7364284207799743, 1.628248135362207e-05)
>>> five_km.k, five_km.g, five_km.v_sonic
(0.02273190295142526, 9.791241076982665, 320.5455196704035)
Notes
-----
Up to 32 km, the International Standard Atmosphere (ISA) and World
Meteorological Organization (WMO) standard atmosphere are identical.
This is a revision of the US 1962 atmosphere.
References
----------
.. [1] NOAA, NASA, and USAF. "U.S. Standard Atmosphere, 1976" October 15,
1976. http://ntrs.nasa.gov/search.jsp?R=19770009539.
.. [2] "ISO 2533:1975 - Standard Atmosphere." ISO.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=7472.
.. [3] Yager, Robert J. "Calculating Atmospheric Conditions (Temperature,
Pressure, Air Density, and Speed of Sound) Using C++," June 2013.
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA588839
'''
def __init__(self, Z, dT=0.0):
self.Z = Z
self.dT = dT
self.H = r0*Z/(r0+Z)
i = self._get_ind_from_H(self.H)
self.T_layer = T_std[i]
self.T_increase = T_grad[i]
self.P_layer = P_std[i]
self.H_layer = H_std[i]
self.H_above_layer = self.H - self.H_layer
self.T = self.T_layer + self.T_increase*self.H_above_layer
R = 8314.32
if self.T_increase == 0.0:
self.P = self.P_layer*exp(-g0*M0*(self.H_above_layer)/(R*self.T_layer))
else:
self.P = self.P_layer*(self.T_layer/self.T)**(g0*M0/(R*self.T_increase))
# Affects only the following properties
self.T += dT
self.rho = self.density(self.T, self.P)
self.v_sonic = self.sonic_velocity(self.T)
self.mu = self.viscosity(self.T)
self.k = self.thermal_conductivity(self.T)
self.g = self.gravity(self.Z)
@staticmethod
def _get_ind_from_H(H):
r'''Method defined in the US Standard Atmosphere 1976 for determining
the index of the layer a specified elevation is above. Levels are
0, 11E3, 20E3, 32E3, 47E3, 51E3, 71E3, 84852 meters respectively.
'''
if H <= 0.0:
return 0
for ind, Hi in enumerate(H_std):
if Hi >= H :
return ind - 1
return 7 # case for > 84852 m.
@staticmethod
def thermal_conductivity(T):
r'''Method defined in the US Standard Atmosphere 1976 for calculating
thermal conductivity of air as a function of `T` only.
.. math::
k_g = \frac{2.64638\times10^{-3}T^{1.5}}
{T + 245.4\cdot 10^{-12./T}}
Parameters
----------
T : float
Temperature, [K]
Returns
-------
kg : float
Thermal conductivity, [W/m/K]
'''
# 10**(-12./T) = exp(-12*log(10)/T) = -27.63102111...
return 2.64638E-3*T*sqrt(T)/(T + 245.4*exp(-27.63102111592855/T))
@staticmethod
def viscosity(T):
r'''Method defined in the US Standard Atmosphere 1976 for calculating
viscosity of air as a function of `T` only.
.. math::
\mu_g = \frac{1.458\times10^{-6}T^{1.5}}{T+110.4}
Parameters
----------
T : float
Temperature, [K]
Returns
-------
mug : float
Viscosity, [Pa*s]
'''
return 1.458E-6*T*sqrt(T)/(T + 110.4)
@staticmethod
def density(T, P):
r'''Method defined in the US Standard Atmosphere 1976 for calculating
density of air as a function of `T` and `P`. MW is defined as 28.9644
g/mol, and R as 8314.32 J/kmol/K
.. math::
\rho_g = \frac{P\cdot MW}{T\cdot R\cdot 1000}
Parameters
----------
T : float
Temperature, [K]
P : float
Pressure, [Pa]
Returns
-------
rho : float
Mass density, [kg/m^3]
'''
# 0.00348367635597379 = M0/R
return P*0.00348367635597379/T
@staticmethod
def sonic_velocity(T):
r'''Method defined in the US Standard Atmosphere 1976 for calculating
the speed of sound in air as a function of `T` only.
.. math::
c = \left(\frac{\gamma R T}{MW}\right)^{0.5}
Parameters
----------
T : float
Temperature, [K]
Returns
-------
c : float
Speed of sound, [m/s]
'''
# 401.87... = gamma*R/MO
return sqrt(401.87430086589046*T)
@staticmethod
def gravity(Z):
r'''Method defined in the US Standard Atmosphere 1976 for calculating
the gravitational acceleration above earth as a function of elevation
only.
.. math::
g = g_0\left(\frac{r_0}{r_0+Z}\right)^2
Parameters
----------
Z : float
Elevation above sea level, [m]
Returns
-------
g : float
Acceleration due to gravity, [m/s^2]
'''
x0 = (r0/(r0+Z))
return g0*x0*x0
@staticmethod
def pressure_integral(T1, P1, dH):
r'''Method to compute an integral of the pressure differential of an
elevation difference with a base elevation defined by temperature `T1`
and pressure `P1`. This is
similar to subtracting the pressures at two different elevations,
except it allows for local conditions (temperature and pressure) to be
taken into account. This is useful for e.x. evaluating the pressure
difference between the top and bottom of a natural draft cooling tower.
Parameters
----------
T1 : float
Temperature at the lower elevation condition, [K]
P1 : float
Pressure at the lower elevation condition, [Pa]
dH : float
Elevation difference for which to evaluate the pressure difference,
[m]
Returns
-------
delta_P : float
Pressure difference between the elevations, [Pa]
'''
# Compute the elevation to obtain the pressure specified
H_ref = secant(H_for_P_ATMOSPHERE_1976_err, x0=10.0, low=-610.0, high=86000.0, bisection=True, args=(P1,))
# Compute the temperature delta
dT = T1 - ATMOSPHERE_1976(H_ref, 0.0).T
return quad(to_int_dP_ATMOSPHERE_1976, H_ref, H_ref+dH, args=(dT,))[0]
class ATMOSPHERE_NRLMSISE00:
r'''NRLMSISE 00 model for calculating temperature and density of gases in
the atmosphere, from ground level to 1000 km, as a function of time of year,
longitude and latitude, solar activity and earth's geomagnetic disturbance.
NRLMSISE stands for the `US Naval Research Laboratory Mass Spectrometer and
Incoherent Scatter Radar Exosphere` model, released in 2001; see [1]_ for
details.
Parameters
----------
Z : float
Elevation, [m]
latitude : float, optional
Latitude, between -90 and 90 [degrees]
longitude : float, optional
Longitude, between -180 and 180 or 0 and 360, [degrees]
day : float, optional
Day of year, 0-366 [day]
seconds : float, optional
Seconds since start of day, in UT1 time; using UTC provides no loss in
accuracy [s]
f107 : float, optional
Daily average 10.7 cm solar flux measurement of the strength of solar
emissions on the 100 MHz band centered on 2800 MHz, averaged hourly; in
sfu units, which are multiples of 10^-22 W/m^2/Hz; use 150 as a default
[10^-22 W/m^2/Hz]
f107_avg : float, optional
81-day sfu average; centered on specified day if possible, otherwise
use the previous days [10^-22 W/m^2/Hz]
geomagnetic_disturbance_indices : list of float, optional
List of the 7 following `Ap` indexes also known as planetary magnetic
indexes. Has a negligible effect on the calculation. 4 is the default
value often used for each of these values, [-]
* Average daily `Ap`.
* 3-hour average `Ap` centered on the current time.
* 3-hour average `Ap` before the current time.
* 6-hour average `Ap` before the current time.
* 9-hour average `Ap` before the current time.
* Average `Ap` from 12 to 33 hours before the current time, based on
eight 3-hour average `Ap` values.
* Average `Ap` from 36 to 57 hours before the current time, based on
eight 3-hour average `Ap` values.
Attributes
----------
rho : float
Mass density [kg/m^3]
T : float
Temperature, [K]
P : float
Pressure, calculated with ideal gas law [Pa]
He_density : float
Density of helium atoms [count/m^3]
O_density : float
Density of monatomic oxygen [count/m^3]
N2_density : float
Density of nitrogen molecules [count/m^3]
O2_density : float
Density of oxygen molecules [count/m^3]
Ar_density : float
Density of Argon atoms [count/m^3]
H_density : float
Density of hydrogen atoms [count/m^3]
N_density : float
Density of monatomic nitrogen [count/m^3]
O_anomalous_density : float
Density of `anomalous` oxygen; see [1]_ for details [count/m^3]
particle_density : float
Total density of molecules [count/m^3]
components : list[str]
List of species making up the atmosphere [-]
zs : list[float]
Mole fractions of each molecule in the atmosphere, in order of
`components` [-]
Examples
--------
>>> atmosphere = ATMOSPHERE_NRLMSISE00(1E3, 45, 45, 150)
>>> atmosphere.T, atmosphere.rho
(285.5440860623, 1.10190620264)
Notes
-----
No full description has been published of this model; it has been defined by
its implementation only. It was written in FORTRAN, and is accessible
at ftp://hanna.ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/nrlmsise00/
A C port of the model by Dominik Brodowskihas become popular, and is
available on his website: http://www.brodo.de/space/nrlmsise/.
In 2013 Joshua Milas ported the C port to Python. This is an interface to
his excellent port. It is a 1000-sloc model, and has
been rigorously tested against the C version, and the online calculation
tool available at [3]_ for parametric inputs of latitude, longitude,
altitude, time of day and day of year.
This model is based on measurements other than gravity; it does not provide
a calculation method for `g`. It does not provide transport properties.
This model takes on the order of ~2 ms.
References
----------
.. [1] Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin.
"NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons
and Scientific Issues." Journal of Geophysical Research: Space Physics
107, no. A12 (December 1, 2002): 1468. doi:10.1029/2002JA009430.
.. [2] Tapping, K. F. "The 10.7 Cm Solar Radio Flux (F10.7)." Space Weather
11, no. 7 (July 1, 2013): 394-406. doi:10.1002/swe.20064.
.. [3] Natalia Papitashvili. "NRLMSISE-00 Atmosphere Model." Accessed
November 27, 2016. http://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php.
'''
components = ['N2', 'O2', 'Ar', 'He', 'O', 'H', 'N']
atrrs = ['N2_density', 'O2_density', 'Ar_density', 'He_density',
'O_density', 'H_density', 'N_density']
MWs = [28.0134, 31.9988, 39.948, 4.002602, 15.9994, 1.00794, 14.0067]
def __init__(self, Z, latitude=0.0, longitude=0.0, day=0, seconds=0.0,
f107=150., f107_avg=150., geomagnetic_disturbance_indices=None):
self.Z = Z
self.latitude = latitude
self.longitude = longitude
self.day = day
self.seconds = seconds
self.f107 = f107
self.f107_avg = f107_avg
self.geomagnetic_disturbance_indices = geomagnetic_disturbance_indices
from fluids.nrlmsise00 import ap_array, gtd7, nrlmsise_flags, nrlmsise_input, nrlmsise_output
alt = Z*1e-3
output_obj = nrlmsise_output()
input_obj = nrlmsise_input()
flags = nrlmsise_flags()
flags.switches = [0] + [1]*23
if geomagnetic_disturbance_indices:
aph = ap_array()
aph.a = geomagnetic_disturbance_indices
flags.switches[9] = -1
input_obj.ap = geomagnetic_disturbance_indices[0]
input_obj.ap_a = aph
input_obj.doy = day
input_obj.year = 0
input_obj.sec = seconds
input_obj.alt = alt
input_obj.g_lat = latitude
input_obj.g_long = longitude
input_obj.lst = seconds/3600. + longitude/15.
input_obj.f107A = f107_avg
input_obj.f107 = f107
gtd7(input_obj, flags, output_obj)
self.He_density = output_obj.d[0]*1E6 # 1/cm^3 to 1/m^3
self.O_density = output_obj.d[1]*1E6 # 1/cm^3 to 1/m^3
self.N2_density = output_obj.d[2]*1E6 # 1/cm^3 to 1/m^3
self.O2_density = output_obj.d[3]*1E6 # 1/cm^3 to 1/m^3
self.Ar_density = output_obj.d[4]*1E6 # 1/cm^3 to 1/m^3
self.rho = output_obj.d[5]*1000 # gram/cm^3 to kg/m^3
self.H_density = output_obj.d[6]*1E6 # 1/cm^3 to 1/m^3
self.N_density = output_obj.d[7]*1E6 # 1/cm^3 to 1/m^3
self.O_anomalous_density = output_obj.d[8]*1E6 # 1/cm^3 to 1/m^3
self.T_exospheric = output_obj.t[0]
self.T = output_obj.t[1]
# Calculate pressure with the ideal gas law PV = nRT with V = 1 m^3
self.P = sum([getattr(self, a) for a in self.atrrs])*self.T*R/N_A
# Calculate mass density with known MWs
self.rho_calculated = sum([getattr(self, a)*MW for c, a, MW in
zip(self.components, self.atrrs, self.MWs)])/(1000.*N_A)
self.particle_density = sum(getattr(self, a) for a in self.atrrs)
self.zs = [getattr(self, a)/self.particle_density for a in self.atrrs]
def hwm93(Z, latitude=0, longitude=0, day=0, seconds=0, f107=150.,
f107_avg=150., geomagnetic_disturbance_index=4):
r'''Horizontal Wind Model 1993, for calculating wind velocity in the
atmosphere as a function of time of year, longitude and latitude, solar
activity and earth's geomagnetic disturbance.
The model is described across the publications [1]_, [2]_, and [3]_.
Parameters
----------
Z : float
Elevation, [m]
latitude : float, optional
Latitude, between -90 and 90 [degrees]
longitude : float, optional
Longitude, between -180 and 180 or 0 and 360, [degrees]
day : float, optional
Day of year, 0-366 [day]
seconds : float, optional
Seconds since start of day, in UT1 time; using UTC provides no loss in
accuracy [s]
f107 : float, optional
Daily average 10.7 cm solar flux measurement of the strength of solar
emissions on the 100 MHz band centered on 2800 MHz, averaged hourly; in
sfu units, which are multiples of 10^-22 W/m^2/Hz; use 150 as a default
[W/m^2/Hz]
f107_avg : float, optional
81-day sfu average; centered on specified day if possible, otherwise
use the previous days [W/m^2/Hz]
geomagnetic_disturbance_index : float, optional
Average daily `Ap` or also known as planetary magnetic index.
Returns
-------
v_north : float
Wind velocity, meridional (Northward) [m/s]
v_east : float
Wind velocity, zonal (Eastward) [m/s]
Examples
--------
>>> hwm93(5E5, 45, 50, 365) # doctest: +SKIP
(-73.00312042236328, 0.1485661268234253)
Notes
-----
No full description has been published of this model; it has been defined by
its implementation only. It was written in FORTRAN, and is accessible
at ftp://hanna.ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/hwm93/.
F2PY auto-compilation support is not yet currently supported.
To compile this file, run the following command in a shell after navigating
to $FLUIDSPATH/fluids/optional/. This should generate the file hwm93.so
in that directory.
.. code-block:: bash
f2py -c hwm93.pyf hwm93.for --f77flags="-std=legacy"
If the module is not compiled, an import error will be raised.
References
----------
.. [1] Hedin, A. E., N. W. Spencer, and T. L. Killeen. "Empirical Global
Model of Upper Thermosphere Winds Based on Atmosphere and Dynamics
Explorer Satellite Data." Journal of Geophysical Research: Space Physics
93, no. A9 (September 1, 1988): 9959-78. doi:10.1029/JA093iA09p09959.
.. [2] Hedin, A. E., M. A. Biondi, R. G. Burnside, G. Hernandez, R. M.
Johnson, T. L. Killeen, C. Mazaudier, et al. "Revised Global Model of
Thermosphere Winds Using Satellite and Ground-Based Observations."
Journal of Geophysical Research: Space Physics 96, no. A5 (May 1, 1991):
7657-88. doi:10.1029/91JA00251.
.. [3] Hedin, A. E., E. L. Fleming, A. H. Manson, F. J. Schmidlin, S. K.
Avery, R. R. Clark, S. J. Franke, et al. "Empirical Wind Model for the
Upper, Middle and Lower Atmosphere." Journal of Atmospheric and
Terrestrial Physics 58, no. 13 (September 1996): 1421-47.
doi:10.1016/0021-9169(95)00122-0.
'''
try:
from fluids.optional.hwm93 import gws5
except: # pragma: no cover
raise ImportError(no_gfortran_error)
slt_hour = seconds/3600. + longitude/15.
ans = gws5(day, seconds, Z/1000., latitude, longitude, slt_hour, f107,
f107_avg, geomagnetic_disturbance_index)
return tuple(ans.tolist())
def hwm14(Z, latitude=0, longitude=0, day=0, seconds=0,
geomagnetic_disturbance_index=4):
r'''Horizontal Wind Model 2014, for calculating wind velocity in the
atmosphere as a function of time of year, longitude and latitude, and
earth's geomagnetic disturbance. The model is described in [1]_.
The model no longer accounts for solar flux.
Parameters
----------
Z : float
Elevation, [m]
latitude : float, optional
Latitude, between -90 and 90 [degrees]
longitude : float, optional
Longitude, between -180 and 180 or 0 and 360, [degrees]
day : float, optional
Day of year, 0-366 [day]
seconds : float, optional
Seconds since start of day, in UT1 time; using UTC provides no loss in
accuracy [s]
geomagnetic_disturbance_index : float, optional
Average daily `Ap` or also known as planetary magnetic index.
Returns
-------
v_north : float
Wind velocity, meridional (Northward) [m/s]
v_east : float
Wind velocity, zonal (Eastward) [m/s]
Examples
--------
>>> hwm14(5E5, 45, 50, 365) # doctest: +SKIP
(-38.64341354370117, 12.871272087097168)
Notes
-----
No full description has been published of this model; it has been defined by
its implementation only. It was written in FORTRAN, and is accessible
at http://onlinelibrary.wiley.com/store/10.1002/2014EA000089/asset/supinfo/ess224-sup-0002-supinfo.tgz?v=1&s=2a957ba70b7cf9dd0612d9430076297c3634ea75.
F2PY auto-compilation support is not yet currently supported.
To compile this file, run the following commands in a shell after navigating
to $FLUIDSPATH/fluids/optional/. This should generate the file hwm14.so
in that directory.
Generate a .pyf signature file:
.. code-block:: bash
f2py -m hwm14 -h hwm14.pyf hwm14.f90
Compile the interface:
.. code-block:: bash
f2py -c hwm14.pyf hwm14.f90
If the module is not compiled, an import error will be raised.
No patches were necessary to either the generated pyf or hwm14.f90 file,
as the authors of [1]_ have made it F2PY compatible.
Developed using 73 million data points taken by 44 instruments over 60
years.
References
----------
.. [1] Drob, Douglas P., John T. Emmert, John W. Meriwether, Jonathan J.
Makela, Eelco Doornbos, Mark Conde, Gonzalo Hernandez, et al. "An Update
to the Horizontal Wind Model (HWM): The Quiet Time Thermosphere." Earth
and Space Science 2, no. 7 (July 1, 2015): 2014EA000089.
doi:10.1002/2014EA000089.
'''
# Needed by hwm14
os.environ["HWMPATH"] = os.path.join(os.path.dirname(__file__), 'optional')
try:
try:
from fluids.optional import hwm14
except:
from optional import hwm14
except: # pragma: no cover
raise ImportError(no_gfortran_error)
ans = hwm14.hwm14(day, seconds, Z*1e-3, latitude, longitude, 0, 0,
0, np.array([np.nan, geomagnetic_disturbance_index]))
return tuple(ans.tolist())
def to_int_airmass(Z, c1, c2, angle_term, R_planet_inv, func):
rho = func(Z)
t1 = c2 - rho*c1
x0 = angle_term/(1.0 + Z*R_planet_inv)
t2 = x0*x0
t3 = 1.0/sqrt(1.0 - t1*t2)
return rho*t3
def airmass(func, angle, H_max=86400.0, R_planet=6.371229E6, RI=1.000276):
r'''Calculates mass of air per square meter in the atmosphere using a
provided atmospheric model. The lowest air mass is calculated straight up;
as the angle is lowered to nearer and nearer the horizon, the air mass
increases, and can approach 40x or more the minimum airmass.
.. math::
m(\gamma) = \int_0^\infty \rho \left\{1 - \left[1 + 2(\text{RI}-1)
(1-\rho/\rho_0)\right]
\left[\frac{\cos \gamma}{(1+h/R)}\right]^2\right\}^{-1/2} dH
Parameters
----------
func : float
Function which returns the density of the atmosphere as a function of
elevation
angle : float
Degrees above the horizon (90 = straight up), [degrees]
H_max : float, optional
Maximum height to compute the integration up to before the contribution
of density becomes negligible, [m]
R_planet : float, optional
The radius of the planet for which the integration is being performed,
[m]
RI : float, optional
The refractive index of the atmosphere (air on earth at 0.7 um as
default) assumed a constant, [-]
Returns
-------
m : float
Mass of air per square meter in the atmosphere, [kg/m^2]
Notes
-----
Numerical integration via SciPy's `quad` is used to perform the
calculation.
Examples
--------
>>> airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 90)
10356.12
References
----------
.. [1] Kasten, Fritz, and Andrew T. Young. "Revised Optical Air Mass Tables
and Approximation Formula." Applied Optics 28, no. 22 (November 15,
1989): 4735-38. https://doi.org/10.1364/AO.28.004735.
'''
delta0 = RI - 1.0
rho0_inv = 1.0/func(0.0)
angle_term = cos(radians(angle))
R_planet_inv = 1.0/R_planet
c0 = delta0 + delta0
c1 = c0*rho0_inv
c2 = 1.0 + c0
return quad(to_int_airmass, 0.0, 86400.0, args=(c1, c2, angle_term, R_planet_inv, func))[0]
PVLIB_MISSING_MSG = 'The module pvlib is required for this function; install it first'
def earthsun_distance(moment):
r'''Calculates the distance between the earth and the sun as a function
of date and time. Uses the Reda and Andreas (2004) model described in [1]_,
originally incorporated into the excellent
`pvlib library <https://github.com/pvlib/pvlib-python>`_
Parameters
----------
moment : datetime
Time and date for the calculation, in UTC time (or GMT, which is
almost the same thing); OR a timezone-aware datetime instance
which will be internally converted to UTC, [-]
Returns
-------
distance : float
Distance between the center of the earth and the center of the sun,
[m]
Examples
--------
>>> from datetime import datetime, timedelta
>>> earthsun_distance(datetime(2003, 10, 17, 13, 30, 30))
149090925951.18338
The distance at perihelion, which occurs at 4:21 according to this
algorithm. The real value is 04:38 (January 2nd).
>>> earthsun_distance(datetime(2013, 1, 2, 4, 21, 50))
147098089490.67123
The distance at aphelion, which occurs at 14:44 according to this
algorithm. The real value is dead on - 14:44 (July 5).
>>> earthsun_distance(datetime(2013, 7, 5, 14, 44, 51, 0))
152097354414.36044
Using a timezone-aware date:
>>> import pytz
>>> earthsun_distance(pytz.timezone('America/Edmonton').localize(datetime(2020, 6, 6, 10, 0, 0, 0)))
151817805599.67142
This has a slightly different value than the value without a timezone;
almost 5000 km further away!
>>> earthsun_distance(datetime(2020, 6, 6, 10, 0, 0, 0))
151812898579.44104
Notes
-----
This function is quite accurate. The difference comes from the impact of
the moon.
Note this function is not continuous; the sun-earth distance is not
sufficiently accurately modeled for the change to be continuous throughout
each day.
References
----------
.. [1] Reda, Ibrahim, and Afshin Andreas. "Solar Position Algorithm for
Solar Radiation Applications." Solar Energy 76, no. 5 (January 1, 2004):
577-89. https://doi.org/10.1016/j.solener.2003.12.003.
'''
from fluids.optional import spa
delta_t = spa.calculate_deltat(moment.year, moment.month)
import calendar
unixtime = calendar.timegm(moment.utctimetuple())
# Convert datetime object to unixtime
return spa.earthsun_distance(unixtime, delta_t=delta_t)*au
def solar_position(moment, latitude, longitude, Z=0.0, T=298.15, P=101325.0,
atmos_refract=0.5667):
r'''Calculate the position of the sun in the sky. It is defined in terms of
two angles - the zenith and the azimith. The azimuth tells where a sundial
would see the sun as coming from; the zenith tells how high in the sky it
is. The solar elevation angle is returned for convenience; it is the
complimentary angle of the zenith.
The sun's refraction changes how high it appears as though the sun is;
so values are returned with an optional conversion to the apparent angle.
This impacts only the zenith/elevation.
Uses the Reda and Andreas (2004) model described in [1]_,
originally incorporated into the excellent
`pvlib library <https://github.com/pvlib/pvlib-python>`_
Parameters
----------
moment : datetime, optionally with pytz info
Time and date for the calculation, in UTC time OR in the time zone
of the latitude/longitude specified BUT WITH A TZINFO ATTACHED!
Please be careful with this argument, time zones are confusing. [-]
latitude : float
Latitude, between -90 and 90 [degrees]
longitude : float
Longitude, between -180 and 180, [degrees]
Z : float, optional
Elevation above sea level for the solar position calculation, [m]
T : float, optional
Temperature of atmosphere at ground level, [K]
P : float, optional
Pressure of atmosphere at ground level, [Pa]
atmos_refract : float, optional
Atmospheric refractivity, [degrees]
Returns
-------
apparent_zenith : float
Zenith of the sun as observed from the ground based after accounting
for atmospheric refraction, [degrees]
zenith : float
Actual zenith of the sun (ignores atmospheric refraction), [degrees]
apparent_altitude : float
Altitude of the sun as observed from the ground based after accounting
for atmospheric refraction, [degrees]
altitude : float
Actual altitude of the sun (ignores atmospheric refraction), [degrees]
azimuth : float
The azimuth of the sun, [degrees]
equation_of_time : float
Equation of time - the number of seconds to be added to the day's
mean solar time to obtain the apparent solar noon time, [seconds]
Examples
--------
>>> import pytz
>>> from datetime import datetime, timedelta
Perth, Australia - sunrise
>>> solar_position(pytz.timezone('Australia/Perth').localize(datetime(2020, 6, 6, 7, 10, 57)), -31.95265, 115.85742)
[90.89617025931, 90.89617025931, -0.896170259317, -0.896170259317, 63.6016017691, 79.0711232143]
Perth, Australia - Comparing against an online source
https://www.suncalc.org/#/-31.9526,115.8574,9/2020.06.06/14:30/1/0
>>> solar_position(pytz.timezone('Australia/Perth').localize(datetime(2020, 6, 6, 14, 30, 0)), -31.95265, 115.85742)
[63.4080568623, 63.4400018158, 26.59194313766, 26.55999818417, 325.121376246, 75.7467475485]
Perth, Australia - time input without timezone; must be converted by user to UTC!
>>> solar_position(datetime(2020, 6, 6, 14, 30, 0) - timedelta(hours=8), -31.95265, 115.85742)
[63.4080568623, 63.4400018158, 26.59194313766, 26.55999818417, 325.121376246, 75.7467475485]
Sunrise occurs when the zenith is 90 degrees (Calgary, AB):
>>> local_time = datetime(2018, 4, 15, 6, 43, 5)
>>> local_time = pytz.timezone('America/Edmonton').localize(local_time)
>>> solar_position(local_time, 51.0486, -114.07)[0]
90.0005468548
Sunset occurs when the zenith is 90 degrees (13.5 hours later in this case):
>>> solar_position(pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 20, 30, 28)), 51.0486, -114.07)
[89.999569566, 90.5410381216, 0.000430433876, -0.541038121618, 286.831378190, 6.63142952587]
Notes
-----
If you were standing at the same longitude of the sun such that it was no
further east or west than you were, the amount of angle it was south or
north of you is the *zenith*. If it were directly overhead it would be 0°;
a little north or south and it would be a little positive;
near sunset or sunrise, near 90°; and at night, between 90° and 180°.
The *solar altitude angle* is defined as 90° -`zenith`.
Note the *elevation* angle is just another name for the *altitude* angle.
The *azimuth* the angle in degrees that the sun is East of the North angle.
It is positive North eastwards 0° to 360°. Other conventions may be used.
Note that due to differences in atmospheric refractivity, estimation of
sunset and sunrise are accuract to no more than one minute. Refraction
conditions truly vary across the atmosphere; so characterizing it by an
average value is limiting as well.
References
----------
.. [1] Reda, Ibrahim, and Afshin Andreas. "Solar Position Algorithm for
Solar Radiation Applications." Solar Energy 76, no. 5 (January 1, 2004):
577-89. https://doi.org/10.1016/j.solener.2003.12.003.
.. [2] "Navigation - What Azimuth Description Systems Are in Use? -
Astronomy Stack Exchange."
https://astronomy.stackexchange.com/questions/237/what-azimuth-description-systems-are-in-use?rq=1.
'''
import calendar
from fluids.optional import spa
tt = moment.utctimetuple()
delta_t = spa.calculate_deltat(tt.tm_year, tt.tm_mon)
unixtime = calendar.timegm(tt)
# Input pressure in milibar; input temperature in deg C
# print(dict(unixtime=unixtime, lat=latitude, lon=longitude, elev=Z,
# pressure=P*1E-2, temp=T-273.15, delta_t=delta_t,
# atmos_refract=atmos_refract, sst=False))
result = spa.solar_position(unixtime, lat=latitude, lon=longitude, elev=Z,
pressure=P*1E-2, temp=T-273.15, delta_t=delta_t,
atmos_refract=atmos_refract, sst=False)
# confirmed equation of time https://www.minasi.com/figeot.asp
# Convert minutes to seconds; sometimes negative, sometimes positive
result[-1] = result[-1]*60.0
return result
def sunrise_sunset(moment, latitude, longitude):
r'''Calculates the times at which the sun is at sunset; sunrise; and
halfway between sunrise and sunset (transit).
Uses the Reda and Andreas (2004) model described in [1]_,
originally incorporated into the excellent
`pvlib library <https://github.com/pvlib/pvlib-python>`_
Parameters
----------
moment : datetime
Date for the calculation; needs to contain only the year, month, and
day; if it is timezone-aware, the return values will be localized to
this timezone [-]
latitude : float
Latitude, between -90 and 90 [degrees]
longitude : float
Longitude, between -180 and 180, [degrees]
Returns
-------
sunrise : datetime
The time at the specified day when the sun rises **IN UTC IF MOMENT
DOES NOT HAVE A TIMEZONE, OTHERWISE THE TIMEZONE GIVEN WITH IT**, [-]
sunset : datetime
The time at the specified day when the sun sets **IN UTC IF MOMENT
DOES NOT HAVE A TIMEZONE, OTHERWISE THE TIMEZONE GIVEN WITH IT**, [-]
transit : datetime
The time at the specified day when the sun is at solar noon - halfway
between sunrise and sunset **IN UTC IF MOMENT
DOES NOT HAVE A TIMEZONE, OTHERWISE THE TIMEZONE GIVEN WITH IT**, [-]
Examples
--------
>>> sunrise, sunset, transit = sunrise_sunset(datetime(2018, 4, 17),
... 51.0486, -114.07)
>>> sunrise
datetime.datetime(2018, 4, 17, 12, 36, 55, 782660)
>>> sunset
datetime.datetime(2018, 4, 18, 2, 34, 4, 249326)
>>> transit
datetime.datetime(2018, 4, 17, 19, 35, 46, 686265)
Example with time zone:
>>> import pytz
>>> sunrise_sunset(pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 17)), 51.0486, -114.07)
(datetime.datetime(2018, 4, 16, 6, 39, 1, 570479, tzinfo=<DstTzInfo 'America/Edmonton' MDT-1 day, 18:00:00 DST>), datetime.datetime(2018, 4, 16, 20, 32, 25, 778162, tzinfo=<DstTzInfo 'America/Edmonton' MDT-1 day, 18:00:00 DST>), datetime.datetime(2018, 4, 16, 13, 36, 0, 386341, tzinfo=<DstTzInfo 'America/Edmonton' MDT-1 day, 18:00:00 DST>))
Note that the year/month/day as input with a timezone, is converted to UTC
time as well.
Notes
-----
This functions takes on the order of 2 ms per calculation.
References
----------
.. [1] Reda, Ibrahim, and Afshin Andreas. "Solar Position Algorithm for
Solar Radiation Applications." Solar Energy 76, no. 5 (January 1, 2004):
577-89. https://doi.org/10.1016/j.solener.2003.12.003.
'''
import calendar
from fluids.optional import spa
if moment.utcoffset() is not None:
moment_utc = moment + moment.utcoffset()
else:
moment_utc = moment
delta_t = spa.calculate_deltat(moment_utc.year, moment_utc.month)
# Strip the part of the day
ymd_moment_utc = datetime(moment_utc.year, moment_utc.month, moment_utc.day)
unixtime = calendar.timegm(ymd_moment_utc.utctimetuple())
unixtime = unixtime - unixtime % (86400) # Remove the remainder of the value, rounding it to the day it is
transit, sunrise, sunset = spa.transit_sunrise_sunset(unixtime, lat=latitude, lon=longitude, delta_t=delta_t)
transit = datetime.utcfromtimestamp(transit)
sunrise = datetime.utcfromtimestamp(sunrise)
sunset = datetime.utcfromtimestamp(sunset)
if moment.tzinfo is not None:
sunrise = moment.tzinfo.fromutc(sunrise)
sunset = moment.tzinfo.fromutc(sunset)
transit = moment.tzinfo.fromutc(transit)
return sunrise, sunset, transit
apparent_zenith_airmass_models = {'simple', 'kasten1966', 'kastenyoung1989',
'gueymard1993', 'pickering2002'}
true_zenith_airmass_models = {'youngirvine1967', 'young1994'}
def _get_extra_radiation_shim(datetime_or_doy, solar_constant=1366.1,
method='spencer', epoch_year=2014, **kwargs):
if method == 'spencer':
if not isinstance(datetime_or_doy, (float, int)):
dayofyear = datetime_or_doy.timetuple().tm_yday
else:
dayofyear = datetime_or_doy
B = (2.*pi/365.)*(dayofyear - 1)
RoverR0sqrd = (1.00011 + 0.034221*cos(B) + 0.00128*sin(B) +
0.000719*cos(2.0*B) + 7.7e-05*sin(2.0*B))
Ea = solar_constant * RoverR0sqrd
return Ea
from pvlib.irradiance import get_extra_radiation
return get_extra_radiation(datetime_or_doy=datetime_or_doy,
solar_constant=solar_constant,
method=method,
epoch_year=epoch_year,
**kwargs)
def solar_irradiation(latitude, longitude, Z, moment, surface_tilt,
surface_azimuth, T=None, P=None, solar_constant=1366.1,
atmos_refract=0.5667, albedo=0.25, linke_turbidity=None,
extraradiation_method='spencer',
airmass_model='kastenyoung1989',
cache=None):
r'''Calculates the amount of solar radiation and radiation reflected back
the atmosphere which hits a surface at a specified tilt, and facing a
specified azimuth.
This functions is a wrapper for the incredibly
comprehensive `pvlib library <https://github.com/pvlib/pvlib-python>`_,
and requires it to be installed.
Parameters
----------
latitude : float
Latitude, between -90 and 90 [degrees]
longitude : float
Longitude, between -180 and 180, [degrees]
Z : float, optional
Elevation above sea level for the position, [m]
moment : datetime, optionally with pytz info
Time and date for the calculation, in UTC time OR in the time zone
of the latitude/longitude specified BUT WITH A TZINFO ATTACHED!
Please be careful with this argument, time zones are confusing. [-]
surface_tilt : float
The angle above the horizontal of the object being hit by radiation,
[degrees]
surface_azimuth : float
The angle the object is facing (positive, North eastwards 0° to 360°),
[degrees]
T : float, optional
Temperature of atmosphere at ground level, [K]
P : float, optional
Pressure of atmosphere at ground level, [Pa]
solar_constant : float, optional
The amount of solar radiation which reaches earth's disk (at a
standardized distance of 1 AU); this constant is independent of
activity or conditions on earth, but will vary throughout the sun's
lifetime and may increase or decrease slightly due to solar activity,
[W/m^2]
atmos_refract : float, optional
Atmospheric refractivity at sunrise/sunset (0.5667 deg is an often used
value; this varies substantially and has an impact of a few minutes on
when sunrise and sunset is), [degrees]
albedo : float, optional
The average amount of reflection of the terrain surrounding the object
at quite a distance; this impacts how much sunlight reflected off the
ground, gets reflected back off clouds, [-]
linke_turbidity : float, optional
The amount of pollution/water in the sky versus a perfect clear sky;
If not specified, this will be retrieved from a historical grid;
typical values are 3 for cloudy, and 7 for severe pollution around a
city, [-]
extraradiation_method : str, optional
The specified method to calculate the effect of earth's position on the
amount of radiation which reaches earth according to the methods
available in the `pvlib` library, [-]
airmass_model : str, optional
The specified method to calculate the amount of air the sunlight
needs to travel through to reach the earth according to the methods
available in the `pvlib` library, [-]
cache : dict, optional
Dictionary to to check for values to use to skip some calculations;
`apparent_zenith`, `zenith`, `azimuth` supported, [-]
Returns
-------
poa_global : float
The total irradiance in the plane of the surface, [W/m^2]
poa_direct : float
The total beam irradiance in the plane of the surface, [W/m^2]
poa_diffuse : float
The total diffuse irradiance in the plane of the surface, [W/m^2]
poa_sky_diffuse : float
The sky component of the diffuse irradiance, excluding the impact
from the ground, [W/m^2]
poa_ground_diffuse : float
The ground-sky diffuse irradiance component, [W/m^2]
Examples
--------
>>> import pytz
>>> solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07, linke_turbidity=3,
... moment=pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 13, 43, 5)), surface_tilt=41.0,
... surface_azimuth=180.0)
(1065.7621896280, 945.2656564506, 120.49653317744, 95.31535344213, 25.181179735317)
>>> cache = {'apparent_zenith': 41.099082295767545, 'zenith': 41.11285376417578, 'azimuth': 182.5631874250523}
>>> solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07,
... moment=pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 13, 43, 5)), surface_tilt=41.0,
... linke_turbidity=3, T=300, P=1E5,
... surface_azimuth=180.0, cache=cache)
(1042.567770367, 918.237754854, 124.3300155131, 99.622865737, 24.7071497753)
At night, there is no solar radiation and this function returns zeros:
>>> solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07, linke_turbidity=3,
... moment=pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 2, 43, 5)), surface_tilt=41.0,
... surface_azimuth=180.0)
(0.0, -0.0, 0.0, 0.0, 0.0)
Notes
-----
The retrieval of `linke_turbidity` requires the pytables library (and
Pandas); if it is not installed, specify a value of `linke_turbidity` to
avoid the dependency.
There is some redundancy of the calculated results, according to the
following relations. The total irradiance is normally that desired for
engineering calculations.
poa_diffuse = poa_ground_diffuse + poa_sky_diffuse
poa_global = poa_direct + poa_diffuse
For a surface such as a pipe or vessel, an approach would be to split it
into a number of rectangles and sum up the radiation absorbed by each.
This calculation is fairly slow.
References
----------
.. [1] Will Holmgren, Calama-Consulting, Tony Lorenzo, Uwe Krien, bmu,
DaCoEx, mayudong, et al. Pvlib/Pvlib-Python: 0.5.1. Zenodo, 2017.
https://doi.org/10.5281/zenodo.1016425.
'''
# Atmospheric refraction at sunrise/sunset (0.5667 deg is an often used value)
from fluids.optional.irradiance import get_absolute_airmass, get_relative_airmass, get_total_irradiance, ineichen
moment_timetuple = moment.timetuple()
moment_arg_dni = (moment_timetuple.tm_yday if
extraradiation_method == 'spencer' else moment)
dni_extra = _get_extra_radiation_shim(moment_arg_dni, solar_constant=solar_constant,
method=extraradiation_method,
epoch_year=moment.year)
if T is None or P is None:
atmosphere = ATMOSPHERE_NRLMSISE00(Z=Z, latitude=latitude,
longitude=longitude,
day=moment_timetuple.tm_yday)
if T is None:
T = atmosphere.T
if P is None:
P = atmosphere.P
if cache is not None and 'zenith' in cache:
zenith = cache['zenith']
apparent_zenith = cache['apparent_zenith']
azimuth = cache['azimuth']
else:
apparent_zenith, zenith, _, _, azimuth, _ = solar_position(moment=moment,
latitude=latitude,
longitude=longitude,
Z=Z, T=T, P=P,
atmos_refract=atmos_refract)
if linke_turbidity is None:
try:
import pvlib # noqa: F401
except:
raise ImportError(PVLIB_MISSING_MSG)
import pandas as pd
from pvlib.clearsky import lookup_linke_turbidity
linke_turbidity = float(lookup_linke_turbidity(
pd.DatetimeIndex([moment]), latitude, longitude).values)
if airmass_model in apparent_zenith_airmass_models:
used_zenith = apparent_zenith
elif airmass_model in true_zenith_airmass_models:
used_zenith = zenith
else:
raise ValueError('Unrecognized airmass model')
relative_airmass = get_relative_airmass(used_zenith, model=airmass_model)
airmass_absolute = get_absolute_airmass(relative_airmass, pressure=P)
ans = ineichen(apparent_zenith=apparent_zenith,
airmass_absolute=airmass_absolute,
linke_turbidity=linke_turbidity,
altitude=Z, dni_extra=solar_constant, perez_enhancement=True)
ghi = ans['ghi']
dni = ans['dni']
dhi = ans['dhi']
# from pvlib.irradiance import get_total_irradiance
ans = get_total_irradiance(surface_tilt=surface_tilt,
surface_azimuth=surface_azimuth,
solar_zenith=apparent_zenith, solar_azimuth=azimuth,
dni=dni, ghi=ghi, dhi=dhi, dni_extra=dni_extra,
airmass=airmass_absolute, albedo=albedo)
poa_global = float(ans['poa_global'])
poa_direct = float(ans['poa_direct'])
poa_diffuse = float(ans['poa_diffuse'])
poa_sky_diffuse = float(ans['poa_sky_diffuse'])
poa_ground_diffuse = float(ans['poa_ground_diffuse'])
return (poa_global, poa_direct, poa_diffuse, poa_sky_diffuse,
poa_ground_diffuse)
|