1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018, 2019, 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains equations for modeling flow where density changes
significantly during the process - compressible flow. Also included are
equations for choked flow - the phenomenon where the velocity of a fluid
reaches its speed of sound.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Compression Processes
---------------------
.. autofunction:: isothermal_work_compression
.. autofunction:: isentropic_work_compression
.. autofunction:: isentropic_T_rise_compression
.. autofunction:: isentropic_efficiency
.. autofunction:: polytropic_exponent
Compressible Flow
-----------------
.. autofunction:: isothermal_gas
Empirical Compressible Flow
---------------------------
.. autofunction:: Panhandle_A
.. autofunction:: Panhandle_B
.. autofunction:: Weymouth
.. autofunction:: Spitzglass_high
.. autofunction:: Spitzglass_low
.. autofunction:: Oliphant
.. autofunction:: Fritzsche
.. autofunction:: Muller
.. autofunction:: IGT
Critical Flow
-------------
.. autofunction:: T_critical_flow
.. autofunction:: P_critical_flow
.. autofunction:: is_critical_flow
.. autofunction:: P_isothermal_critical_flow
.. autofunction:: P_upstream_isothermal_critical_flow
Stagnation Point
----------------
.. autofunction:: stagnation_energy
.. autofunction:: P_stagnation
.. autofunction:: T_stagnation
.. autofunction:: T_stagnation_ideal
"""
from math import exp, isinf, log, pi, sqrt
from fluids.constants import R
from fluids.numerics import brenth, lambertw, secant
__all__ = ['Panhandle_A', 'Panhandle_B', 'Weymouth', 'Spitzglass_high',
'Spitzglass_low', 'Oliphant', 'Fritzsche', 'Muller', 'IGT', 'isothermal_gas',
'isothermal_work_compression', 'polytropic_exponent',
'isentropic_work_compression', 'isentropic_efficiency',
'isentropic_T_rise_compression', 'T_critical_flow',
'P_critical_flow', 'P_isothermal_critical_flow',
'is_critical_flow', 'stagnation_energy', 'P_stagnation',
'T_stagnation', 'T_stagnation_ideal']
def isothermal_work_compression(P1, P2, T, Z=1.0):
r'''Calculates the work of compression or expansion of a gas going through
an isothermal process.
.. math::
W = zRT\ln\left(\frac{P_2}{P_1}\right)
Parameters
----------
P1 : float
Inlet pressure, [Pa]
P2 : float
Outlet pressure, [Pa]
T : float
Temperature of the gas going through an isothermal process, [K]
Z : float
Constant compressibility factor of the gas, [-]
Returns
-------
W : float
Work performed per mole of gas compressed/expanded [J/mol]
Notes
-----
The full derivation with all forms is as follows:
.. math::
W = \int_{P_1}^{P_2} V dP = zRT\int_{P_1}^{P_2} \frac{1}{P} dP
.. math::
W = zRT\ln\left(\frac{P_2}{P_1}\right) = P_1 V_1 \ln\left(\frac{P_2}
{P_1}\right) = P_2 V_2 \ln\left(\frac{P_2}{P_1}\right)
The substitutions are according to the ideal gas law with compressibility:
.. math:
PV = ZRT
The work of compression/expansion is the change in enthalpy of the gas.
Returns negative values for expansion and positive values for compression.
An average compressibility factor can be used where Z changes. For further
accuracy, this expression can be used repeatedly with small changes in
pressure and the work from each step summed.
This is the best possible case for compression; all actual compresssors
require more work to do the compression.
By making the compression take a large number of stages and cooling the gas
between stages, this can be approached reasonable closely. Integrally
geared compressors are often used for this purpose.
Examples
--------
>>> isothermal_work_compression(1E5, 1E6, 300)
5743.427304244769
References
----------
.. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process
Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf
Professional Publishing, 2009.
'''
return Z*R*T*log(P2/P1)
def isentropic_work_compression(T1, k, Z=1.0, P1=None, P2=None, W=None, eta=None):
r'''Calculation function for dealing with compressing or expanding a gas
going through an isentropic, adiabatic process assuming constant Cp and Cv.
The polytropic model is the same equation; just provide `n` instead of `k`
and use a polytropic efficiency for `eta` instead of a isentropic
efficiency. Can calculate any of the following, given all the other inputs:
* W, Work of compression
* P2, Pressure after compression
* P1, Pressure before compression
* eta, isentropic efficiency of compression
.. math::
W = \left(\frac{k}{k-1}\right)ZRT_1\left[\left(\frac{P_2}{P_1}
\right)^{(k-1)/k}-1\right]/\eta_{isentropic}
Parameters
----------
T1 : float
Initial temperature of the gas, [K]
k : float
Isentropic exponent of the gas (Cp/Cv) or polytropic exponent `n` to
use this as a polytropic model instead [-]
Z : float, optional
Constant compressibility factor of the gas, [-]
P1 : float, optional
Inlet pressure, [Pa]
P2 : float, optional
Outlet pressure, [Pa]
W : float, optional
Work performed per mole of gas compressed/expanded [J/mol]
eta : float, optional
Isentropic efficiency of the process or polytropic efficiency of the
process to use this as a polytropic model instead [-]
Returns
-------
W, P1, P2, or eta : float
The missing input which was solved for [base SI]
Notes
-----
For the same compression ratio, this is always of larger magnitude than the
isothermal case.
The full derivation is as follows:
For constant-heat capacity "isentropic" fluid,
.. math::
V = \frac{P_1^{1/k}V_1}{P^{1/k}}
.. math::
W = \int_{P_1}^{P_2} V dP = \int_{P_1}^{P_2}\frac{P_1^{1/k}V_1}
{P^{1/k}}dP
.. math::
W = \frac{P_1^{1/k} V_1}{1 - \frac{1}{k}}\left[P_2^{1-1/k} -
P_1^{1-1/k}\right]
After performing the integration and substantial mathematical manipulation
we can obtain:
.. math::
W = \left(\frac{k}{k-1}\right) P_1 V_1 \left[\left(\frac{P_2}{P_1}
\right)^{(k-1)/k}-1\right]
Using PV = ZRT:
.. math::
W = \left(\frac{k}{k-1}\right)ZRT_1\left[\left(\frac{P_2}{P_1}
\right)^{(k-1)/k}-1\right]
The work of compression/expansion is the change in enthalpy of the gas.
Returns negative values for expansion and positive values for compression.
An average compressibility factor should be used as Z changes. For further
accuracy, this expression can be used repeatedly with small changes in
pressure and new values of isentropic exponent, and the work from each step
summed.
For the polytropic case this is not necessary, as `eta` corrects for the
simplification.
Examples
--------
>>> isentropic_work_compression(P1=1E5, P2=1E6, T1=300, k=1.4, eta=0.78)
10416.876986384483
References
----------
.. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process
Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf
Professional Publishing, 2009.
'''
if W is None and eta is not None and P1 is not None and P2 is not None:
return k/(k - 1.0)*Z*R*T1*((P2/P1)**((k-1.)/k) - 1.0)/eta
elif P1 is None and eta is not None and W is not None and P2 is not None:
return P2*(1.0 + W*eta/(R*T1*Z) - W*eta/(R*T1*Z*k))**(-k/(k - 1.0))
elif P2 is None and eta is not None and W is not None and P1 is not None:
return P1*(1.0 + W*eta/(R*T1*Z) - W*eta/(R*T1*Z*k))**(k/(k - 1.0))
elif eta is None and P1 is not None and P2 is not None and W is not None:
return R*T1*Z*k*((P2/P1)**((k - 1.0)/k) - 1.0)/(W*(k - 1.0))
else:
raise ValueError('Three of W, P1, P2, and eta must be specified.')
def isentropic_T_rise_compression(T1, P1, P2, k, eta=1):
r'''Calculates the increase in temperature of a fluid which is compressed
or expanded under isentropic, adiabatic conditions assuming constant
Cp and Cv. The polytropic model is the same equation; just provide `n`
instead of `k` and use a polytropic efficienty for `eta` instead of a
isentropic efficiency.
.. math::
T_2 = T_1 + \frac{\Delta T_s}{\eta_s} = T_1 \left\{1 + \frac{1}
{\eta_s}\left[\left(\frac{P_2}{P_1}\right)^{(k-1)/k}-1\right]\right\}
Parameters
----------
T1 : float
Initial temperature of gas [K]
P1 : float
Initial pressure of gas [Pa]
P2 : float
Final pressure of gas [Pa]
k : float
Isentropic exponent of the gas (Cp/Cv) or polytropic exponent `n` to
use this as a polytropic model instead [-]
eta : float
Isentropic efficiency of the process or polytropic efficiency of the
process to use this as a polytropic model instead [-]
Returns
-------
T2 : float
Final temperature of gas [K]
Notes
-----
For the ideal case of `eta` = 1, the model simplifies to:
.. math::
\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{(k-1)/k}
Examples
--------
>>> isentropic_T_rise_compression(286.8, 54050, 432400, 1.4)
519.5230938217768
References
----------
.. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process
Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf
Professional Publishing, 2009.
.. [2] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors
Suppliers Association, Tulsa, OK, 2012.
'''
dT = T1*((P2/P1)**((k - 1.0)/k) - 1.0)/eta
return T1 + dT
def isentropic_efficiency(P1, P2, k, eta_s=None, eta_p=None):
r'''Calculates either isentropic or polytropic efficiency from the other
type of efficiency.
.. math::
\eta_s = \frac{(P_2/P_1)^{(k-1)/k}-1}
{(P_2/P_1)^{\frac{k-1}{k\eta_p}}-1}
.. math::
\eta_p = \frac{\left(k - 1\right) \ln{\left (\frac{P_{2}}{P_{1}}
\right )}}{k \ln{\left (\frac{1}{\eta_{s}} \left(\eta_{s}
+ \left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{k} \left(k - 1\right)}
- 1\right) \right )}}
Parameters
----------
P1 : float
Initial pressure of gas [Pa]
P2 : float
Final pressure of gas [Pa]
k : float
Isentropic exponent of the gas (Cp/Cv) [-]
eta_s : float, optional
Isentropic (adiabatic) efficiency of the process, [-]
eta_p : float, optional
Polytropic efficiency of the process, [-]
Returns
-------
eta_s or eta_p : float
Isentropic or polytropic efficiency, depending on input, [-]
Notes
-----
The form for obtained `eta_p` from `eta_s` was derived with SymPy.
Examples
--------
>>> isentropic_efficiency(1E5, 1E6, 1.4, eta_p=0.78)
0.7027614191263858
References
----------
.. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process
Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf
Professional Publishing, 2009.
'''
if eta_s is None and eta_p is not None:
return ((P2/P1)**((k-1.0)/k)-1.0)/((P2/P1)**((k-1.0)/(k*eta_p))-1.0)
elif eta_p is None and eta_s is not None:
return (k - 1.0)*log(P2/P1)/(k*log(
(eta_s + (P2/P1)**((k - 1.0)/k) - 1.0)/eta_s))
else:
raise ValueError('Either eta_s or eta_p is required')
def polytropic_exponent(k, n=None, eta_p=None):
r'''Calculates one of:
* Polytropic exponent from polytropic efficiency
* Polytropic efficiency from the polytropic exponent
.. math::
n = \frac{k\eta_p}{1 - k(1-\eta_p)}
.. math::
\eta_p = \frac{\left(\frac{n}{n-1}\right)}{\left(\frac{k}{k-1}
\right)} = \frac{n(k-1)}{k(n-1)}
Parameters
----------
k : float
Isentropic exponent of the gas (Cp/Cv) [-]
n : float, optional
Polytropic exponent of the process [-]
eta_p : float, optional
Polytropic efficiency of the process, [-]
Returns
-------
n or eta_p : float
Polytropic exponent or polytropic efficiency, depending on input, [-]
Notes
-----
Examples
--------
>>> polytropic_exponent(1.4, eta_p=0.78)
1.5780346820809246
References
----------
.. [1] Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process
Equipment: Selection and Design. 2nd ed. Amsterdam ; Boston: Gulf
Professional Publishing, 2009.
'''
if n is None and eta_p is not None:
return k*eta_p/(1.0 - k*(1.0 - eta_p))
elif eta_p is None and n is not None:
return n*(k - 1.0)/(k*(n - 1.0))
else:
raise ValueError('Either n or eta_p is required')
def T_critical_flow(T, k):
r'''Calculates critical flow temperature `Tcf` for a fluid with the
given isentropic coefficient. `Tcf` is in a flow (with Ma=1) whose
stagnation conditions are known. Normally used with converging/diverging
nozzles.
.. math::
\frac{T^*}{T_0} = \frac{2}{k+1}
Parameters
----------
T : float
Stagnation temperature of a fluid with Ma=1 [K]
k : float
Isentropic coefficient []
Returns
-------
Tcf : float
Critical flow temperature at Ma=1 [K]
Notes
-----
Assumes isentropic flow.
Examples
--------
Example 12.4 in [1]_:
>>> T_critical_flow(473, 1.289)
413.2809086937528
References
----------
.. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
Applications. Boston: McGraw Hill Higher Education, 2006.
'''
return T*2.0/(k + 1.0)
def P_critical_flow(P, k):
r'''Calculates critical flow pressure `Pcf` for a fluid with the
given isentropic coefficient. `Pcf` is in a flow (with Ma=1) whose
stagnation conditions are known. Normally used with converging/diverging
nozzles.
.. math::
\frac{P^*}{P_0} = \left(\frac{2}{k+1}\right)^{k/(k-1)}
Parameters
----------
P : float
Stagnation pressure of a fluid with Ma=1 [Pa]
k : float
Isentropic coefficient []
Returns
-------
Pcf : float
Critical flow pressure at Ma=1 [Pa]
Notes
-----
Assumes isentropic flow.
Examples
--------
Example 12.4 in [1]_:
>>> P_critical_flow(1400000, 1.289)
766812.9022792266
References
----------
.. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
Applications. Boston: McGraw Hill Higher Education, 2006.
'''
return P*(2.0/(k + 1.))**(k/(k - 1.0))
def P_isothermal_critical_flow(P, fd, D, L):
r'''Calculates critical flow pressure `Pcf` for a fluid flowing
isothermally and suffering pressure drop caused by a pipe's friction factor.
.. math::
P_2 = P_{1} e^{\frac{1}{2 D} \left(D \left(\operatorname{LambertW}
{\left (- e^{\frac{1}{D} \left(- D - L f_d\right)} \right )} + 1\right)
+ L f_d\right)}
Parameters
----------
P : float
Inlet pressure [Pa]
fd : float
Darcy friction factor for flow in pipe [-]
D : float
Diameter of pipe, [m]
L : float
Length of pipe, [m]
Returns
-------
Pcf : float
Critical flow pressure of a compressible gas flowing from `P1` to `Pcf`
in a tube of length L and friction factor `fd` [Pa]
Notes
-----
Assumes isothermal flow. Developed based on the `isothermal_gas` model,
using SymPy.
The isothermal gas model is solved for maximum mass flow rate; any pressure
drop under it is impossible due to the formation of a shock wave.
Examples
--------
>>> P_isothermal_critical_flow(P=1E6, fd=0.00185, L=1000., D=0.5)
389699.73176
References
----------
.. [1] Wilkes, James O. Fluid Mechanics for Chemical Engineers with
Microfluidics and CFD. 2 edition. Upper Saddle River, NJ: Prentice Hall,
2005.
'''
# Correct branch of lambertw found by trial and error
lambert_term = float((lambertw(-exp((-D - L*fd)/D), -1)).real)
return P*exp((D*(lambert_term + 1.0) + L*fd)/(2.0*D))
def P_upstream_isothermal_critical_flow(P, fd, D, L):
"""Not part of the public API. Reverses `P_isothermal_critical_flow`.
Examples
--------
>>> P_upstream_isothermal_critical_flow(P=389699.7317645518, fd=0.00185,
... L=1000., D=0.5)
1000000.00000
"""
lambertw_term = float(lambertw(-exp(-(fd*L+D)/D), -1).real)
return exp(-0.5*(D*lambertw_term+fd*L+D)/D)*P
def is_critical_flow(P1, P2, k):
r'''Determines if a flow of a fluid driven by pressure gradient
P1 - P2 is critical, for a fluid with the given isentropic coefficient.
This function calculates critical flow pressure, and checks if this is
larger than P2. If so, the flow is critical and choked.
Parameters
----------
P1 : float
Higher, source pressure [Pa]
P2 : float
Lower, downstream pressure [Pa]
k : float
Isentropic coefficient []
Returns
-------
flowtype : bool
True if the flow is choked; otherwise False
Notes
-----
Assumes isentropic flow. Uses P_critical_flow function.
Examples
--------
Examples 1-2 from API 520.
>>> is_critical_flow(670E3, 532E3, 1.11)
False
>>> is_critical_flow(670E3, 101E3, 1.11)
True
References
----------
.. [1] API. 2014. API 520 - Part 1 Sizing, Selection, and Installation of
Pressure-relieving Devices, Part I - Sizing and Selection, 9E.
'''
Pcf = P_critical_flow(P1, k)
return Pcf > P2
def stagnation_energy(V):
r'''Calculates the increase in enthalpy `dH` which is provided by a fluid's
velocity `V`.
.. math::
\Delta H = \frac{V^2}{2}
Parameters
----------
V : float
Velocity [m/s]
Returns
-------
dH : float
Incease in enthalpy [J/kg]
Notes
-----
The units work out. This term is pretty small, but not trivial.
Examples
--------
>>> stagnation_energy(125)
7812.5
References
----------
.. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
Applications. Boston: McGraw Hill Higher Education, 2006.
'''
return 0.5*V*V
def P_stagnation(P, T, Tst, k):
r'''Calculates stagnation flow pressure `Pst` for a fluid with the
given isentropic coefficient and specified stagnation temperature and
normal temperature. Normally used with converging/diverging nozzles.
.. math::
\frac{P_0}{P}=\left(\frac{T_0}{T}\right)^{\frac{k}{k-1}}
Parameters
----------
P : float
Normal pressure of a fluid [Pa]
T : float
Normal temperature of a fluid [K]
Tst : float
Stagnation temperature of a fluid moving at a certain velocity [K]
k : float
Isentropic coefficient []
Returns
-------
Pst : float
Stagnation pressure of a fluid moving at a certain velocity [Pa]
Notes
-----
Assumes isentropic flow.
Examples
--------
Example 12-1 in [1]_.
>>> P_stagnation(54050., 255.7, 286.8, 1.4)
80772.80495900588
References
----------
.. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
Applications. Boston: McGraw Hill Higher Education, 2006.
'''
return P*(Tst/T)**(k/(k - 1.0))
def T_stagnation(T, P, Pst, k):
r'''Calculates stagnation flow temperature `Tst` for a fluid with the
given isentropic coefficient and specified stagnation pressure and
normal pressure. Normally used with converging/diverging nozzles.
.. math::
T=T_0\left(\frac{P}{P_0}\right)^{\frac{k-1}{k}}
Parameters
----------
T : float
Normal temperature of a fluid [K]
P : float
Normal pressure of a fluid [Pa]
Pst : float
Stagnation pressure of a fluid moving at a certain velocity [Pa]
k : float
Isentropic coefficient []
Returns
-------
Tst : float
Stagnation temperature of a fluid moving at a certain velocity [K]
Notes
-----
Assumes isentropic flow.
Examples
--------
Example 12-1 in [1]_.
>>> T_stagnation(286.8, 54050, 54050*8, 1.4)
519.5230938217768
References
----------
.. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
Applications. Boston: McGraw Hill Higher Education, 2006.
'''
return T*(Pst/P)**((k - 1.0)/k)
def T_stagnation_ideal(T, V, Cp):
r'''Calculates the ideal stagnation temperature `Tst` calculated assuming
the fluid has a constant heat capacity `Cp` and with a specified
velocity `V` and temperature `T`.
.. math::
T^* = T + \frac{V^2}{2C_p}
Parameters
----------
T : float
Tempearture [K]
V : float
Velocity [m/s]
Cp : float
Ideal heat capacity [J/kg/K]
Returns
-------
Tst : float
Stagnation temperature [J/kg]
Examples
--------
Example 12-1 in [1]_.
>>> T_stagnation_ideal(255.7, 250, 1005.)
286.79452736318405
References
----------
.. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
Applications. Boston: McGraw Hill Higher Education, 2006.
'''
return T + 0.5*V*V/Cp
def isothermal_gas_err_P1(P1, fd, rho, P2, L, D, m):
return m - isothermal_gas(rho, fd, P1=P1, P2=P2, L=L, D=D)
def isothermal_gas_err_P2(P2, rho, fd, P1, L, D, m):
return m - isothermal_gas(rho, fd, P1=P1, P2=P2, L=L, D=D)
def isothermal_gas_err_P2_basis(P1, P2, rho, fd, m, L, D):
return abs(P2 - isothermal_gas(rho, fd, m=m, P1=P1, P2=None, L=L, D=D))
def isothermal_gas_err_D(D, m, rho, fd, P1, P2, L):
return m - isothermal_gas(rho, fd, P1=P1, P2=P2, L=L, D=D)
def isothermal_gas(rho, fd, P1=None, P2=None, L=None, D=None, m=None):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline for the complete isothermal flow equation. Can calculate any of
the following, given all other inputs:
* Mass flow rate
* Upstream pressure (numerical)
* Downstream pressure (analytical or numerical if an overflow occurs)
* Diameter of pipe (numerical)
* Length of pipe
A variety of forms of this equation have been presented, differing in their
use of the ideal gas law and choice of gas constant. The form here uses
density explicitly, allowing for non-ideal values to be used.
.. math::
\dot m^2 = \frac{\left(\frac{\pi D^2}{4}\right)^2 \rho_{avg}
\left(P_1^2-P_2^2\right)}{P_1\left(f_d\frac{L}{D} + 2\ln\frac{P_1}{P_2}
\right)}
Parameters
----------
rho : float
Average density of gas in pipe, [kg/m^3]
fd : float
Darcy friction factor for flow in pipe [-]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
m : float, optional
Mass flow rate of gas through pipe, [kg/s]
Returns
-------
m, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
The solution for P2 has the following closed form, derived using Maple:
.. math::
P_2={P_1 \left( {{ e}^{0.5\cdot{\frac {1}{{m}^{2}} \left( -C{m}^{2}
+\text{ lambertW} \left(-{\frac {BP_1}{{m}^{2}}{{ e}^{-{\frac {-C{m}^{
2}+BP_1}{{m}^{2}}}}}}\right){}{m}^{2}+BP_1 \right) }}} \right) ^{-1}}
.. math::
B = \frac{\pi^2 D^4}{4^2} \rho_{avg}
.. math::
C = f_d \frac{L}{D}
A wide range of conditions are impossible due to choked flow. See
`P_isothermal_critical_flow` for details. An exception is raised when
they occur.
The 2 multiplied by the logarithm is often shown as a power of the
pressure ratio; this is only the case when the pressure ratio is raised to
the power of 2 before its logarithm is taken.
A number of limitations exist for this model:
* Density dependence is that of an ideal gas.
* If calculating the pressure drop, the average gas density cannot
be known immediately; iteration must be used to correct this.
* The friction factor depends on both the gas density and velocity,
so it should be solved for iteratively as well. It changes throughout
the pipe as the gas expands and velocity increases.
* The model is not easily adapted to include elevation effects due to
the acceleration term included in it.
* As the gas expands, it will change temperature slightly, further
altering the density and friction factor.
There are many commercial packages which perform the actual direct
integration of the flow, such as OLGA Dynamic Multiphase Flow Simulator,
or ASPEN Hydraulics.
This expression has also been presented with the ideal gas assumption
directly incorporated into it [4]_ (note R is the specific gas constant, in
units of J/kg/K):
.. math::
\dot m^2 = \frac{\left(\frac{\pi D^2}{4}\right)^2
\left(P_1^2-P_2^2\right)}{RT\left(f_d\frac{L}{D} + 2\ln\frac{P_1}{P_2}
\right)}
Examples
--------
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, P2=9E5, L=1000, D=0.5)
145.4847572636031
References
----------
.. [1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane,
2009.
.. [2] Kim, J. and Singh, N. "A Novel Equation for Isothermal Pipe Flow.".
Chemical Engineering, June 2012, http://www.chemengonline.com/a-novel-equation-for-isothermal-pipe-flow/?printmode=1
.. [3] Wilkes, James O. Fluid Mechanics for Chemical Engineers with
Microfluidics and CFD. 2 edition. Upper Saddle River, NJ: Prentice Hall,
2005.
.. [4] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical
and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012.
'''
if m is None and P1 is not None and P2 is not None and L is not None and D is not None:
Pcf = P_isothermal_critical_flow(P=P1, fd=fd, D=D, L=L)
if P2 < Pcf:
raise ValueError('Given outlet pressure is not physically possible ' # numba: delete
f'due to the formation of choked flow at P2={Pcf:f}, specified outlet pressure was {P2:f}') # numba: delete
# raise ValueError("Not possible") # numba: uncomment
if P2 > P1:
raise ValueError('Specified outlet pressure is larger than the '
'inlet pressure; fluid will flow backwards.')
return sqrt(0.0625*pi*pi*D**4*rho/(P1*(fd*L/D + 2.0*log(P1/P2)))*(P1*P1 - P2*P2))
elif L is None and P1 is not None and P2 is not None and D is not None and m is not None:
return D*(pi*pi*D**4*rho*(P1*P1 - P2*P2) - 32.0*P1*m*m*log(P1/P2))/(16.0*P1*fd*m*m)
elif P1 is None and L is not None and P2 is not None and D is not None and m is not None:
Pcf = P_upstream_isothermal_critical_flow(P=P2, fd=fd, D=D, L=L)
try:
# Use the explicit solution for P2 with different P1 guesses;
# newton doesn't like solving for m.
P1 = secant(isothermal_gas_err_P2_basis, (P2+Pcf)/2., args=(P2, rho, fd, m, L, D))
if not (P2 <= P1):
raise ValueError("Failed")
return P1
except:
try:
return brenth(isothermal_gas_err_P1, P2, Pcf, args=(fd, rho, P2, L, D, m))
except:
m_max = isothermal_gas(rho, fd, P1=Pcf, P2=P2, L=L, D=D) # numba: delete
raise ValueError(f'The desired mass flow rate of {m:f} kg/s cannot ' # numba: delete
'be achieved with the specified downstream pressure; the maximum flowrate is ' # numba: delete
f'{m_max:f} kg/s at an upstream pressure of {Pcf:f} Pa') # numba: delete
# raise ValueError("Failed") # numba: uncomment
elif P2 is None and L is not None and P1 is not None and D is not None and m is not None:
try:
Pcf = P_isothermal_critical_flow(P=P1, fd=fd, D=D, L=L)
m_max = isothermal_gas(rho, fd, P1=P1, P2=Pcf, L=L, D=D)
if not (m <= m_max):
raise ValueError("Failed")
C = fd*L/D
B = (pi/4*D**2)**2*rho
arg = -B/m**2*P1*exp(-(-C*m**2+B*P1)/m**2)
# Consider the two real branches of the lambertw function.
# The k=-1 branch produces the higher P2 values; the k=0 branch is
# physically impossible.
lambert_ans = float(lambertw(arg, k=-1).real)
# Large overflow problem here; also divide by zero problems!
# Fail and try a numerical solution if it doesn't work.
if isinf(lambert_ans):
raise ValueError("Should not be infinity")
P2 = P1/exp((-C*m**2+lambert_ans*m**2+B*P1)/m**2/2.)
if not (P2 < P1):
raise ValueError("Should not be the case")
return P2
except:
Pcf = P_isothermal_critical_flow(P=P1, fd=fd, D=D, L=L)
try:
return brenth(isothermal_gas_err_P2, Pcf, P1, args=(rho, fd, P1, L, D, m))
except:
m_max = isothermal_gas(rho, fd, P1=P1, P2=Pcf, L=L, D=D)
raise ValueError('The desired mass flow rate cannot be achieved ' # numba: delete
f'with the specified upstream pressure of {P1:f} Pa; the maximum flowrate is {m_max:f} ' # numba: delete
f'kg/s at a downstream pressure of {Pcf:f}') # numba: delete
# raise ValueError("Failed") # numba: uncomment
# A solver which respects its boundaries is required here.
# brenth cuts the time down from 2 ms to 200 mircoseconds.
# Is is believed Pcf and P1 will always bracked the root, however
# leave the commented code for testing
elif D is None and P2 is not None and P1 is not None and L is not None and m is not None:
return secant(isothermal_gas_err_D, 0.1, args=(m, rho, fd, P1, P2, L))
else:
raise ValueError('This function solves for either mass flow, upstream \
pressure, downstream pressure, diameter, or length; all other inputs \
must be provided.')
def Panhandle_A(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=0.92):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Panhandle A formula. Can calculate any of the following,
given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe
* Length of pipe
A variety of different constants and expressions have been presented
for the Panhandle A equation. Here, a new form is developed with all units
in base SI, based on the work of [1]_.
.. math::
Q = 158.02053 E \left(\frac{T_s}{P_s}\right)^{1.0788}\left[\frac{P_1^2
-P_2^2}{L \cdot {SG}^{0.8539} T_{avg}Z_{avg}}\right]^{0.5394}D^{2.6182}
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
[1]_'s original constant was 4.5965E-3, and it has units of km (length),
kPa, mm (diameter), and flowrate in m^3/day.
The form in [2]_ has the same exponents as used here, units of mm
(diameter), kPa, km (length), and flow in m^3/hour; its leading constant is
1.9152E-4.
The GPSA [3]_ has a leading constant of 0.191, a bracketed power of 0.5392,
a specific gravity power of 0.853, and otherwise the same constants.
It is in units of mm (diameter) and kPa and m^3/day; length is stated to be
in km, but according to the errata is in m.
[4]_ has a leading constant of 1.198E7, a specific gravity of power of 0.8541,
and a power of diameter which is under the root of 4.854 and is otherwise
the same. It has units of kPa and m^3/day, but is otherwise in base SI
units.
[5]_ has a leading constant of 99.5211, but its reference correction has no
exponent; other exponents are the same as here. It is entirely in base SI
units.
[6]_ has pressures in psi, diameter in inches, length in miles, Q in
ft^3/day, T in degrees Rankine, and a constant of 435.87.
Its reference condition power is 1.07881, and it has a specific gravity
correction outside any other term with a power of 0.4604.
Examples
--------
>>> Panhandle_A(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
42.56082051195928
References
----------
.. [1] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
.. [2] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane,
2009.
.. [3] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors
Suppliers Association, Tulsa, OK, 2012.
.. [4] Campbell, John M. Gas Conditioning and Processing, Vol. 2: The
Equipment Modules. 7th edition. Campbell Petroleum Series, 1992.
.. [5] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
.. [6] Ikoku, Chi U. Natural Gas Production Engineering. Malabar, Fla:
Krieger Pub Co, 1991.
'''
c1 = 1.0788
c2 = 0.8539
c3 = 0.5394
c4 = 2.6182
c5 = 158.0205328706957220332831680508433862787 # 45965*10**(591/1250)/864
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c5*E*(Ts/Ps)**c1*((P1**2 - P2**2)/(L*SG**c2*Tavg*Zavg))**c3*D**c4
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return (Q*(Ts/Ps)**(-c1)*(SG**(-c2)*(P1**2 - P2**2)/(L*Tavg*Zavg))**(-c3)/(E*c5))**(1./c4)
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt(L*SG**c2*Tavg*Zavg*(D**(-c4)*Q*(Ts/Ps)**(-c1)/(E*c5))**(1./c3) + P2**2)
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt(-L*SG**c2*Tavg*Zavg*(D**(-c4)*Q*(Ts/Ps)**(-c1)/(E*c5))**(1./c3) + P1**2)
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return SG**(-c2)*(D**(-c4)*Q*(Ts/Ps)**(-c1)/(E*c5))**(-1./c3)*(P1**2 - P2**2)/(Tavg*Zavg)
else:
raise ValueError('This function solves for either flow, upstream \
pressure, downstream pressure, diameter, or length; all other inputs \
must be provided.')
def Panhandle_B(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=0.92):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Panhandle B formula. Can calculate any of the following,
given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe
* Length of pipe
A variety of different constants and expressions have been presented
for the Panhandle B equation. Here, a new form is developed with all units
in base SI, based on the work of [1]_.
.. math::
Q = 152.88116 E \left(\frac{T_s}{P_s}\right)^{1.02}\left[\frac{P_1^2
-P_2^2}{L \cdot {SG}^{0.961} T_{avg}Z_{avg}}\right]^{0.51}D^{2.53}
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
[1]_'s original constant was 1.002E-2, and it has units of km (length),
kPa, mm (diameter), and flowrate in m^3/day.
The form in [2]_ has the same exponents as used here, units of mm
(diameter), kPa, km (length), and flow in m^3/hour; its leading constant is
4.1749E-4.
The GPSA [3]_ has a leading constant of 0.339, and otherwise the same constants.
It is in units of mm (diameter) and kPa and m^3/day; length is stated to be
in km, but according to the errata is in m.
[4]_ has a leading constant of 1.264E7, a diameter power of 4.961 which is
also under the 0.51 power, and is otherwise the same. It has units of kPa
and m^3/day, but is otherwise in base SI units.
[5]_ has a leading constant of 135.8699, but its reference correction has
no exponent and its specific gravity has a power of 0.9608; the other
exponents are the same as here. It is entirely in base SI units.
[6]_ has pressures in psi, diameter in inches, length in miles, Q in
ft^3/day, T in degrees Rankine, and a constant of 737 with the exponents
the same as here.
Examples
--------
>>> Panhandle_B(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
42.35366178004172
References
----------
.. [1] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
.. [2] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane,
2009.
.. [3] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors
Suppliers Association, Tulsa, OK, 2012.
.. [4] Campbell, John M. Gas Conditioning and Processing, Vol. 2: The
Equipment Modules. 7th edition. Campbell Petroleum Series, 1992.
.. [5] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
.. [6] Ikoku, Chi U. Natural Gas Production Engineering. Malabar, Fla:
Krieger Pub Co, 1991.
'''
c1 = 1.02 # reference condition power
c2 = 0.961 # sg power
c3 = 0.51 # main power
c4 = 2.53 # diameter power
c5 = 152.8811634298055458624385985866624419060 # 4175*10**(3/25)/36
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c5*E*(Ts/Ps)**c1*((P1**2 - P2**2)/(L*SG**c2*Tavg*Zavg))**c3*D**c4
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return (Q*(Ts/Ps)**(-c1)*(SG**(-c2)*(P1**2 - P2**2)/(L*Tavg*Zavg))**(-c3)/(E*c5))**(1./c4)
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt(L*SG**c2*Tavg*Zavg*(D**(-c4)*Q*(Ts/Ps)**(-c1)/(E*c5))**(1./c3) + P2**2)
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt(-L*SG**c2*Tavg*Zavg*(D**(-c4)*Q*(Ts/Ps)**(-c1)/(E*c5))**(1./c3) + P1**2)
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return SG**(-c2)*(D**(-c4)*Q*(Ts/Ps)**(-c1)/(E*c5))**(-1./c3)*(P1**2 - P2**2)/(Tavg*Zavg)
else:
raise ValueError('This function solves for either flow, upstream \
pressure, downstream pressure, diameter, or length; all other inputs \
must be provided.')
def Weymouth(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=0.92):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Weymouth formula. Can calculate any of the following,
given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe
* Length of pipe
A variety of different constants and expressions have been presented
for the Weymouth equation. Here, a new form is developed with all units
in base SI, based on the work of [1]_.
.. math::
Q = 137.32958 E \frac{T_s}{P_s}\left[\frac{P_1^2
-P_2^2}{L \cdot {SG} \cdot T_{avg}Z_{avg}}\right]^{0.5}D^{2.667}
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
[1]_'s original constant was 3.7435E-3, and it has units of km (length),
kPa, mm (diameter), and flowrate in m^3/day.
The form in [2]_ has the same exponents as used here, units of mm
(diameter), kPa, km (length), and flow in m^3/hour; its leading constant is
1.5598E-4.
The GPSA [3]_ has a leading constant of 0.1182, and otherwise the same constants.
It is in units of mm (diameter) and kPa and m^3/day; length is stated to be
in km, but according to the errata is in m.
[4]_ has a leading constant of 1.162E7, a diameter power of 5.333 which is
also under the 0.50 power, and is otherwise the same. It has units of kPa
and m^3/day, but is otherwise in base SI units.
[5]_ has a leading constant of 137.2364; the other
exponents are the same as here. It is entirely in base SI units.
[6]_ has pressures in psi, diameter in inches, length in miles, Q in
ft^3/hour, T in degrees Rankine, and a constant of 18.062 with the
exponents the same as here.
Examples
--------
>>> Weymouth(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
32.07729055913029
References
----------
.. [1] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
.. [2] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe. Crane,
2009.
.. [3] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors
Suppliers Association, Tulsa, OK, 2012.
.. [4] Campbell, John M. Gas Conditioning and Processing, Vol. 2: The
Equipment Modules. 7th edition. Campbell Petroleum Series, 1992.
.. [5] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
.. [6] Ikoku, Chi U. Natural Gas Production Engineering. Malabar, Fla:
Krieger Pub Co, 1991.
'''
c3 = 0.5 # main power
c4 = 2.667 # diameter power
c5 = 137.3295809942512546732179684618143090992 # 37435*10**(501/1000)/864
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c5*E*(Ts/Ps)*((P1**2 - P2**2)/(L*SG*Tavg*Zavg))**c3*D**c4
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return (Ps*Q*((P1**2 - P2**2)/(L*SG*Tavg*Zavg))**(-c3)/(E*Ts*c5))**(1./c4)
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt(L*SG*Tavg*Zavg*(D**(-c4)*Ps*Q/(E*Ts*c5))**(1./c3) + P2**2)
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt(-L*SG*Tavg*Zavg*(D**(-c4)*Ps*Q/(E*Ts*c5))**(1./c3) + P1**2)
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return (D**(-c4)*Ps*Q/(E*Ts*c5))**(-1./c3)*(P1**2 - P2**2)/(SG*Tavg*Zavg)
else:
raise ValueError('This function solves for either flow, upstream \
pressure, downstream pressure, diameter, or length; all other inputs \
must be provided.')
def _to_solve_Spitzglass_high(D, Q, SG, Tavg, L, P1, P2, Ts, Ps, Zavg, E):
return Q - Spitzglass_high(SG=SG, Tavg=Tavg, L=L, D=D,
P1=P1, P2=P2, Ts=Ts, Ps=Ps,Zavg=Zavg, E=E)
def Spitzglass_high(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=1.):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Spitzglass (high pressure drop) formula. Can calculate
any of the following, given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe (numerical solution)
* Length of pipe
A variety of different constants and expressions have been presented
for the Spitzglass (high pressure drop) formula. Here, the form as in [1]_
is used but with a more precise metric conversion from inches to m.
.. math::
Q = 125.1060 E \left(\frac{T_s}{P_s}\right)\left[\frac{P_1^2
-P_2^2}{L \cdot {SG} T_{avg}Z_{avg} (1 + 0.09144/D + \frac{150}{127}D)}
\right]^{0.5}D^{2.5}
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
This equation is often presented without any correction for reference
conditions for specific gravity.
This model is also presented in [2]_ with a leading constant of 1.0815E-2,
the same exponents as used here, units of mm (diameter), kPa, km (length),
and flow in m^3/hour.
Examples
--------
>>> Spitzglass_high(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
29.42670246281681
References
----------
.. [1] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
.. [2] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
'''
c3 = 1.181102362204724409448818897637795275591 # 0.03/inch or 150/127
c4 = 0.09144
c5 = 125.1060
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return (c5*E*Ts/Ps*D**2.5*sqrt((P1**2-P2**2)
/(L*SG*Zavg*Tavg*(1 + c4/D + c3*D))))
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return secant(_to_solve_Spitzglass_high, 0.5, args=(Q, SG, Tavg, L, P1, P2, Ts, Ps, Zavg, E))
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt((D**6*E**2*P2**2*Ts**2*c5**2
+ D**2*L*Ps**2*Q**2*SG*Tavg*Zavg*c3
+ D*L*Ps**2*Q**2*SG*Tavg*Zavg
+ L*Ps**2*Q**2*SG*Tavg*Zavg*c4)/(D**6*E**2*Ts**2*c5**2))
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt((D**6*E**2*P1**2*Ts**2*c5**2
- D**2*L*Ps**2*Q**2*SG*Tavg*Zavg*c3
- D*L*Ps**2*Q**2*SG*Tavg*Zavg
- L*Ps**2*Q**2*SG*Tavg*Zavg*c4)/(D**6*E**2*Ts**2*c5**2))
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return (D**6*E**2*Ts**2*c5**2*(P1**2 - P2**2)
/(Ps**2*Q**2*SG*Tavg*Zavg*(D**2*c3 + D + c4)))
else:
raise ValueError('This function solves for either flow, upstream \
pressure, downstream pressure, diameter, or length; all other inputs \
must be provided.')
def _to_solve_Spitzglass_low(D, Q, SG, Tavg, L, P1, P2, Ts, Ps, Zavg, E):
return Q - Spitzglass_low(SG=SG, Tavg=Tavg, L=L, D=D, P1=P1, P2=P2, Ts=Ts, Ps=Ps, Zavg=Zavg, E=E)
def Spitzglass_low(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=1.):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Spitzglass (low pressure drop) formula. Can calculate
any of the following, given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe (numerical solution)
* Length of pipe
A variety of different constants and expressions have been presented
for the Spitzglass (low pressure drop) formula. Here, the form as in [1]_
is used but with a more precise metric conversion from inches to m.
.. math::
Q = 125.1060 E \left(\frac{T_s}{P_s}\right)\left[\frac{2(P_1
-P_2)(P_s+1210)}{L \cdot {SG} \cdot T_{avg}Z_{avg} (1 + 0.09144/D
+ \frac{150}{127}D)}\right]^{0.5}D^{2.5}
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
This equation is often presented without any correction for reference
conditions for specific gravity.
This model is also presented in [2]_ with a leading constant of 5.69E-2,
the same exponents as used here, units of mm (diameter), kPa, km (length),
and flow in m^3/hour. However, it is believed to contain a typo, and gives
results <1/3 of the correct values. It is also present in [2]_ in imperial
form; this is believed correct, but makes a slight assumption not done in
[1]_.
This model is present in [3]_ without reference corrections. The 1210
constant in [1]_ is an approximation necessary for the reference correction
to function without a square of the pressure difference. The GPSA version
is as follows, and matches this formulation very closely:
.. math::
Q = 0.821 \left[\frac{(P_1-P_2)D^5}{L \cdot {SG}
(1 + 91.44/D + 0.0018D)}\right]^{0.5}
The model is also shown in [4]_, with diameter in inches, length in feet,
flow in MMSCFD, pressure drop in inH2O, and a rounded leading constant of
0.09; this makes its predictions several percent higher than the model here.
Examples
--------
>>> Spitzglass_low(D=0.154051, P1=6720.3199, P2=0, L=54.864, SG=0.6, Tavg=288.7)
0.9488775242530617
References
----------
.. [1] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
.. [2] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
.. [3] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors
Suppliers Association, Tulsa, OK, 2012.
.. [4] PetroWiki. "Pressure Drop Evaluation along Pipelines" Accessed
September 11, 2016. http://petrowiki.org/Pressure_drop_evaluation_along_pipelines#Spitzglass_equation_2.
'''
c3 = 1.181102362204724409448818897637795275591 # 0.03/inch or 150/127
c4 = 0.09144
c5 = 125.1060
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c5*Ts/Ps*D**2.5*E*sqrt(((P1-P2)*2*(Ps+1210.))/(L*SG*Tavg*Zavg*(1 + c4/D + c3*D)))
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return secant(_to_solve_Spitzglass_low, 0.5, args=(Q, SG, Tavg, L, P1, P2, Ts, Ps, Zavg, E))
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return 0.5*(2.0*D**6*E**2*P2*Ts**2*c5**2*(Ps + 1210.0) + D**2*L*Ps**2*Q**2*SG*Tavg*Zavg*c3 + D*L*Ps**2*Q**2*SG*Tavg*Zavg + L*Ps**2*Q**2*SG*Tavg*Zavg*c4)/(D**6*E**2*Ts**2*c5**2*(Ps + 1210.0))
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return 0.5*(2.0*D**6*E**2*P1*Ts**2*c5**2*(Ps + 1210.0) - D**2*L*Ps**2*Q**2*SG*Tavg*Zavg*c3 - D*L*Ps**2*Q**2*SG*Tavg*Zavg - L*Ps**2*Q**2*SG*Tavg*Zavg*c4)/(D**6*E**2*Ts**2*c5**2*(Ps + 1210.0))
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return 2.0*D**6*E**2*Ts**2*c5**2*(P1*Ps + 1210.0*P1 - P2*Ps - 1210.0*P2)/(Ps**2*Q**2*SG*Tavg*Zavg*(D**2*c3 + D + c4))
else:
raise ValueError('This function solves for either flow, upstream \
pressure, downstream pressure, diameter, or length; all other inputs \
must be provided.')
def _to_solve_Oliphant(D, Q, SG, Tavg, L, P1, P2, Ts, Ps, Zavg, E):
return Q - Oliphant(SG=SG, Tavg=Tavg, L=L, D=D, P1=P1, P2=P2, Ts=Ts, Ps=Ps, Zavg=Zavg, E=E)
def Oliphant(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=0.92):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Oliphant formula. Can calculate any of the following,
given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe (numerical solution)
* Length of pipe
This model is a more complete conversion to metric of the Imperial version
presented in [1]_.
.. math::
Q = 84.5872\left(D^{2.5} + 0.20915D^3\right)\frac{T_s}{P_s}\left(\frac
{P_1^2 - P_2^2}{L\cdot {SG} \cdot T_{avg}}\right)^{0.5}
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
Recommended in [1]_ for use between vacuum and 100 psi.
The model is simplified by grouping constants here; however, it is presented
in the imperial unit set inches (diameter), miles (length), psi, Rankine,
and MMSCFD in [1]_:
.. math::
Q = 42(24)\left(D^{2.5} + \frac{D^3}{30}\right)\left(\frac{14.4}{P_s}
\right)\left(\frac{T_s}{520}\right)\left[\left(\frac{0.6}{SG}\right)
\left(\frac{520}{T_{avg}}\right)\left(\frac{P_1^2 - P_2^2}{L}\right)
\right]^{0.5}
Examples
--------
>>> Oliphant(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
28.851535408143057
References
----------
.. [1] GPSA. GPSA Engineering Data Book. 13th edition. Gas Processors
Suppliers Association, Tulsa, OK, 2012.
.. [2] F. N. Oliphant, "Production of Natural Gas," Report. USGS, 1902.
'''
# c1 = 42*24*Q*foot**3/day*(mile)**0.5*9/5.*(5/9.)**0.5*psi*(1/psi)*14.4/520.*0.6**0.5*520**0.5/inch**2.5
c1 = 84.587176139918568651410168968141078948974609375000
c2 = 0.2091519350460528670065940559652517549694 # 1/(30.*0.0254**0.5)
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c1*(D**2.5 + c2*D**3)*Ts/Ps*sqrt((P1**2-P2**2)/(L*SG*Tavg))
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return secant(_to_solve_Oliphant, 0.5, args=(Q, SG, Tavg, L, P1, P2, Ts, Ps, Zavg, E))
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt(L*Ps**2*Q**2*SG*Tavg/(Ts**2*c1**2*(D**3*c2 + D**2.5)**2) + P2**2)
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt(-L*Ps**2*Q**2*SG*Tavg/(Ts**2*c1**2*(D**3*c2 + D**2.5)**2) + P1**2)
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return Ts**2*c1**2*(P1**2 - P2**2)*(D**3*c2 + D**2.5)**2/(Ps**2*Q**2*SG*Tavg)
else:
raise ValueError('This function solves for either flow, upstream \
pressure, downstream pressure, diameter, or length; all other inputs \
must be provided.')
def Fritzsche(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=1.0):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Fritzsche formula. Can calculate any of the following,
given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe
* Length of pipe
A variety of different constants and expressions have been presented
for the Fritzsche formula. Here, the form as in [1]_
is used but with all inputs in base SI units.
.. math::
Q = 93.500 \frac{T_s}{P_s}\left(\frac{P_1^2 - P_2^2}
{L\cdot {SG}^{0.8587} \cdot T_{avg}}\right)^{0.538}D^{2.69}
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
This model is also presented in [1]_ with a leading constant of 2.827,
the same exponents as used here, units of mm (diameter), kPa, km (length),
and flow in m^3/hour.
This model is shown in base SI units in [2]_, and with a leading constant
of 94.2565, a diameter power of 2.6911, main group power of 0.5382
and a specific gravity power of 0.858. The difference is very small.
Examples
--------
>>> Fritzsche(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
39.421535157535565
References
----------
.. [1] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
.. [2] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
'''
# Rational('2.827E-3')/(3600*24)*(1000)**Rational('2.69')*(1000)**Rational('0.538')*1000/(1000**2)**Rational('0.538')
c5 = 93.50009798751128188757518688244137811221 # 14135*10**(57/125)/432
c2 = 0.8587
c3 = 0.538
c4 = 2.69
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c5*E*(Ts/Ps)*((P1**2 - P2**2)/(SG**c2*Tavg*L*Zavg))**c3*D**c4
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return (Ps*Q*(SG**(-c2)*(P1**2 - P2**2)/(L*Tavg*Zavg))**(-c3)/(E*Ts*c5))**(1./c4)
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt(L*SG**c2*Tavg*Zavg*(D**(-c4)*Ps*Q/(E*Ts*c5))**(1./c3) + P2**2)
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt(-L*SG**c2*Tavg*Zavg*(D**(-c4)*Ps*Q/(E*Ts*c5))**(1./c3) + P1**2)
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return SG**(-c2)*(D**(-c4)*Ps*Q/(E*Ts*c5))**(-1./c3)*(P1**2 - P2**2)/(Tavg*Zavg)
else:
raise ValueError('This function solves for either flow, upstream pressure, downstream pressure, diameter, or length; all other inputs must be provided.')
def Muller(SG, Tavg, mu, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=1.0):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the Muller formula. Can calculate any of the following,
given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe
* Length of pipe
A variety of different constants and expressions have been presented
for the Muller formula. Here, the form as in [1]_
is used but with all inputs in base SI units.
.. math::
Q = 15.7743\frac{T_s}{P_s}E\left(\frac{P_1^2 - P_2^2}{L \cdot Z_{avg}
\cdot T_{avg}}\right)^{0.575} \left(\frac{D^{2.725}}{\mu^{0.15}
SG^{0.425}}\right)
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
mu : float
Average viscosity of the fluid in the pipeline, [Pa*s]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
This model is presented in [1]_ with a leading constant of 0.4937, the same
exponents as used here, units of inches (diameter), psi, feet (length),
Rankine, pound/(foot*second) for viscosity, and 1000 ft^3/hour.
This model is also presented in [2]_ in both SI and imperial form. The
SI form was incorrectly converted and yields much higher flow rates. The
imperial version has a leading constant of 85.7368, the same powers as
used here except with rounded values of powers of viscosity (0.2609) and
specific gravity (0.7391) rearranged to be inside the bracketed group;
its units are inches (diameter), psi, miles (length),
Rankine, pound/(foot*second) for viscosity, and ft^3/day.
This model is shown in base SI units in [3]_, and with a leading constant
of 15.7650, a diameter power of 2.724, main group power of 0.5747,
a specific gravity power of 0.74, and a viscosity power of 0.1494.
Examples
--------
>>> Muller(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, mu=1E-5,
... Tavg=277.15)
60.45796698148659
References
----------
.. [1] Mohitpour, Mo, Golshan, and Allan Murray. Pipeline Design and
Construction: A Practical Approach. 3rd edition. New York: Amer Soc
Mechanical Engineers, 2006.
.. [2] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
.. [3] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
'''
# 1000*foot**3/hour*0.4937/inch**2.725*foot**0.575*(5/9.)**0.575*9/5.*(pound/foot)**0.15*psi*(1/psi**2)**0.575
c5 = 15.77439908642077352939746374951659525108 # 5642991*196133**(17/20)*2**(3/5)*3**(11/40)*5**(7/40)/30645781250
c2 = 0.575 # main power
c3 = 2.725 # D power
c4 = 0.425 # SG power
c1 = 0.15 # mu power
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c5*Ts/Ps*E*((P1**2-P2**2)/Tavg/L/Zavg)**c2*D**c3/SG**c4/mu**c1
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return (Ps*Q*SG**c4*mu**c1*((P1**2 - P2**2)/(L*Tavg*Zavg))**(-c2)/(E*Ts*c5))**(1./c3)
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt(L*Tavg*Zavg*(D**(-c3)*Ps*Q*SG**c4*mu**c1/(E*Ts*c5))**(1/c2) + P2**2)
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt(-L*Tavg*Zavg*(D**(-c3)*Ps*Q*SG**c4*mu**c1/(E*Ts*c5))**(1/c2) + P1**2)
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return (D**(-c3)*Ps*Q*SG**c4*mu**c1/(E*Ts*c5))**(-1/c2)*(P1**2 - P2**2)/(Tavg*Zavg)
else:
raise ValueError('This function solves for either flow, upstream pressure, downstream pressure, diameter, or length; all other inputs must be provided.')
def IGT(SG, Tavg, mu, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7,
Ps=101325., Zavg=1.0, E=1.0):
r'''Calculation function for dealing with flow of a compressible gas in a
pipeline with the IGT formula. Can calculate any of the following,
given all other inputs:
* Flow rate
* Upstream pressure
* Downstream pressure
* Diameter of pipe
* Length of pipe
A variety of different constants and expressions have been presented
for the IGT formula. Here, the form as in [1]_
is used but with all inputs in base SI units.
.. math::
Q = 24.6241\frac{T_s}{P_s}E\left(\frac{P_1^2 - P_2^2}{L \cdot Z_{avg}
\cdot T_{avg}}\right)^{5/9} \left(\frac{D^{8/3}}{\mu^{1/9}
SG^{4/9}}\right)
Parameters
----------
SG : float
Specific gravity of fluid with respect to air at the reference
temperature and pressure `Ts` and `Ps`, [-]
Tavg : float
Average temperature of the fluid in the pipeline, [K]
mu : float
Average viscosity of the fluid in the pipeline, [Pa*s]
L : float, optional
Length of pipe, [m]
D : float, optional
Diameter of pipe, [m]
P1 : float, optional
Inlet pressure to pipe, [Pa]
P2 : float, optional
Outlet pressure from pipe, [Pa]
Q : float, optional
Flow rate of gas through pipe at `Ts` and `Ps`, [m^3/s]
Ts : float, optional
Reference temperature for the specific gravity of the gas, [K]
Ps : float, optional
Reference pressure for the specific gravity of the gas, [Pa]
Zavg : float, optional
Average compressibility factor for gas, [-]
E : float, optional
Pipeline efficiency, a correction factor between 0 and 1
Returns
-------
Q, P1, P2, D, or L : float
The missing input which was solved for [base SI]
Notes
-----
This model is presented in [1]_ with a leading constant of 0.6643, the same
exponents as used here, units of inches (diameter), psi, feet (length),
Rankine, pound/(foot*second) for viscosity, and 1000 ft^3/hour.
This model is also presented in [2]_ in both SI and imperial form. Both
forms are correct. The imperial version has a leading constant of 136.9,
the same powers as used here except with rounded values of powers of
viscosity (0.2) and specific gravity (0.8) rearranged to be inside the
bracketed group; its units are inches (diameter), psi, miles (length),
Rankine, pound/(foot*second) for viscosity, and ft^3/day.
This model is shown in base SI units in [3]_, and with a leading constant
of 24.6145, and the same powers as used here.
Examples
--------
>>> IGT(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, mu=1E-5, Tavg=277.15)
48.92351786788815
References
----------
.. [1] Mohitpour, Mo, Golshan, and Allan Murray. Pipeline Design and
Construction: A Practical Approach. 3rd edition. New York: Amer Soc
Mechanical Engineers, 2006.
.. [2] Menon, E. Shashi. Gas Pipeline Hydraulics. 1st edition. Boca Raton,
FL: CRC Press, 2005.
.. [3] Coelho, Paulo M., and Carlos Pinho. "Considerations about Equations
for Steady State Flow in Natural Gas Pipelines." Journal of the
Brazilian Society of Mechanical Sciences and Engineering 29, no. 3
(September 2007): 262-73. doi:10.1590/S1678-58782007000300005.
'''
# 1000*foot**3/hour*0.6643/inch**(8/3.)*foot**(5/9.)*(5/9.)**(5/9.)*9/5.*(pound/foot)**(1/9.)*psi*(1/psi**2)**(5/9.)
c5 = 24.62412451461407054875301709443930350550 # 1084707*196133**(8/9)*2**(1/9)*6**(1/3)/4377968750
c2 = 5/9. # main power
c3 = 8/3. # D power
c4 = 4/9. # SG power
c1 = 1/9. # mu power
if Q is None and L is not None and D is not None and P1 is not None and P2 is not None:
return c5*Ts/Ps*E*((P1**2-P2**2)/Tavg/L/Zavg)**c2*D**c3/SG**c4/mu**c1
elif D is None and L is not None and Q is not None and P1 is not None and P2 is not None:
return (Ps*Q*SG**c4*mu**c1*((P1**2 - P2**2)/(L*Tavg*Zavg))**(-c2)/(E*Ts*c5))**(1./c3)
elif P1 is None and L is not None and Q is not None and D is not None and P2 is not None:
return sqrt(L*Tavg*Zavg*(D**(-c3)*Ps*Q*SG**c4*mu**c1/(E*Ts*c5))**(1/c2) + P2**2)
elif P2 is None and L is not None and Q is not None and D is not None and P1 is not None:
return sqrt(-L*Tavg*Zavg*(D**(-c3)*Ps*Q*SG**c4*mu**c1/(E*Ts*c5))**(1/c2) + P1**2)
elif L is None and P2 is not None and Q is not None and D is not None and P1 is not None:
return (D**(-c3)*Ps*Q*SG**c4*mu**c1/(E*Ts*c5))**(-1/c2)*(P1**2 - P2**2)/(Tavg*Zavg)
else:
raise ValueError('This function solves for either flow, upstream pressure, downstream pressure, diameter, or length; all other inputs must be provided.')
|