1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018, 2019, 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains equations for modeling control valves subject to gas or
liquid flow.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Sizing Functions
----------------
.. autofunction:: size_control_valve_l
.. autofunction:: size_control_valve_g
Intermediary Sizing Calculations
--------------------------------
.. autofunction:: FF_critical_pressure_ratio_l
.. autofunction:: is_choked_turbulent_l
.. autofunction:: is_choked_turbulent_g
.. autofunction:: Reynolds_valve
.. autofunction:: Reynolds_factor
.. autofunction:: loss_coefficient_piping
.. autofunction:: control_valve_choke_P_l
.. autofunction:: control_valve_choke_P_g
.. autofunction:: convert_flow_coefficient
.. autofunction:: cavitation_index
Representative Control Valve Curves
-----------------------------------
.. autofunction:: Cv_char_linear
.. autofunction:: Cv_char_quick_opening
.. autofunction:: Cv_char_equal_percentage
Noise Generated by Control Valves
---------------------------------
.. autofunction:: control_valve_noise_l_2015
.. autofunction:: control_valve_noise_g_2011
"""
from math import exp, log, log10, pi, sqrt
from fluids.constants import R, gallon, ln_10, ln_10_inv, minute, psi
from fluids.fittings import Cv_to_Kv, Kv_to_Cv
from fluids.numerics import implementation_optimize_tck, interp, splev
__all__ = ['size_control_valve_l', 'size_control_valve_g', 'cavitation_index',
'FF_critical_pressure_ratio_l', 'is_choked_turbulent_l',
'is_choked_turbulent_g', 'Reynolds_valve',
'loss_coefficient_piping', 'Reynolds_factor',
'Cv_char_quick_opening', 'Cv_char_linear',
'Cv_char_equal_percentage',
'convert_flow_coefficient', 'control_valve_choke_P_l',
'control_valve_choke_P_g', 'control_valve_noise_l_2015',
'control_valve_noise_g_2011']
N1 = 0.1 # m^3/hr, kPa
N2 = 1.6E-3 # mm
N4 = 7.07E-2 # m^3/hr, m^2/s
N5 = 1.8E-3 # mm
N6 = 3.16 # kg/hr, kPa, kg/m^3
N7 = 4.82 # m^3/hr kPa K
N8 = 1.10 # kPa kg/hr K
#N9 = 2.60E1 # m^3/hr kPa K at 15 deg C
N9 = 2.46E1 # m^3/hr kPa K at 0 deg C
N18 = 8.65E-1 # mm
N19 = 2.5 # mm
#N22 = 1.84E1 # m^3/hr kPa K at 15 deg C
N27 = 7.75E-1 # kg/hr kPa K at 0 deg C
N32 = 1.4E2 # mm
rho0 = 999.10329075702327 # Water at 288.15 K
def cavitation_index(P1, P2, Psat):
r'''Calculates the cavitation index of a valve with upstream and downstream
absolute pressures `P1` and `P2` for a fluid with a vapor pressure `Psat`.
.. math::
\sigma = \frac{P_1 - P_{sat}}{P_1 - P_2}
Parameters
----------
P1 : float
Absolute pressure upstream of the valve [Pa]
P2 : float
Absolute pressure downstream of the valve [Pa]
Psat : float
Saturation pressure of the liquid at inlet temperature [Pa]
Returns
-------
sigma : float
Cavitation index of the valve [-]
Notes
-----
Larger values are safer. Models for adjusting cavitation indexes provided
by the manufacturer to the user's conditions are available, making use
of scaling the pressure differences and size differences.
Values can be calculated for incipient cavitation, constant cavitation,
maximum vibration cavitation, incipient damage, and choking cavitation.
Has also been defined as:
.. math::
\sigma = \frac{P_2 - P_{sat}}{P_1 - P_2}
Another definition and notation series is:
.. math::
K = xF = \frac{1}{\sigma} = \frac{P_1 - P_2}{P_1 - P_{sat}}
Examples
--------
>>> cavitation_index(1E6, 8E5, 2E5)
4.0
References
----------
.. [1] ISA. "RP75.23 Considerations for Evaluating Control Valve
Cavitation." 1995.
'''
return (P1 - Psat)/(P1 - P2)
def FF_critical_pressure_ratio_l(Psat, Pc):
r'''Calculates FF, the liquid critical pressure ratio factor,
for use in IEC 60534 liquid valve sizing calculations.
.. math::
F_F = 0.96 - 0.28\sqrt{\frac{P_{sat}}{P_c}}
Parameters
----------
Psat : float
Saturation pressure of the liquid at inlet temperature [Pa]
Pc : float
Critical pressure of the liquid [Pa]
Returns
-------
FF : float
Liquid critical pressure ratio factor [-]
Examples
--------
From [1]_, matching example.
>>> FF_critical_pressure_ratio_l(70100.0, 22120000.0)
0.9442375225233299
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
return 0.96 - 0.28*sqrt(Psat/Pc)
def control_valve_choke_P_l(Psat, Pc, FL, P1=None, P2=None, disp=True):
r'''Calculates either the upstream or downstream pressure at which choked
flow though a liquid control valve occurs, given either a set upstream or
downstream pressure. Implements an analytical solution of
the needed equations from the full function
:py:func:`~.size_control_valve_l`. For some pressures, no choked flow
is possible; for choked flow to occur the direction if flow must be
reversed. If `disp` is True, an exception will be raised for these
conditions.
.. math::
P_1 = \frac{F_{F} F_{L}^{2} P_{sat} - P_{2}}{F_{L}^{2} - 1}
.. math::
P_2 = F_{F} F_{L}^{2} P_{sat} - F_{L}^{2} P_{1} + P_{1}
Parameters
----------
Psat : float
Saturation pressure of the liquid at inlet temperature [Pa]
Pc : float
Critical pressure of the liquid [Pa]
FL : float, optional
Liquid pressure recovery factor of a control valve without attached
fittings [-]
P1 : float, optional
Absolute pressure upstream of the valve [Pa]
P2 : float, optional
Absolute pressure downstream of the valve [Pa]
disp : bool, optional
Whether or not to raise an exception on flow reversal, [-]
Returns
-------
P_choke : float
Pressure at which a choke occurs in the liquid valve [Pa]
Notes
-----
Extremely cheap to compute.
Examples
--------
>>> control_valve_choke_P_l(69682.89291024722, 22048320.0, 0.6, 680000.0)
458887.5306077305
>>> control_valve_choke_P_l(69682.89291024722, 22048320.0, 0.6, P2=458887.5306077305)
680000.0
'''
FF = 0.96 - 0.28*sqrt(Psat/Pc) #FF_critical_pressure_ratio_l(Psat=Psat, Pc=Pc)
Pmin_absolute = FF*Psat
if P2 is None:
ans = P2 = FF*FL*FL*Psat - FL*FL*P1 + P1
elif P1 is None:
ans = P1 = (FF*FL*FL*Psat - P2)/(FL*FL - 1.0)
else:
raise ValueError('Either P1 or P2 needs to be specified')
if P2 > P1 and disp:
raise ValueError('Specified P1 is too low for choking to occur '
'at any downstream pressure; minimum '
'upstream pressure for choking to be possible '
f'is {Pmin_absolute:g} Pa.')
return ans
def control_valve_choke_P_g(xT, gamma, P1=None, P2=None):
r'''Calculates either the upstream or downstream pressure at which choked
flow though a gas control valve occurs, given either a set upstream or
downstream pressure. Implements an analytical solution of
the needed equations from the full function
:py:func:`~.size_control_valve_g`. A singularity arises as `xT` goes to 1
and `gamma` goes to 1.4.
.. math::
P_1 = - \frac{7 P_{2}}{5 \gamma x_T - 7}
.. math::
P_2 = \frac{P_{1}}{7} \left(- 5 \gamma x_T + 7\right)
Parameters
----------
xT : float, optional
Pressure difference ratio factor of a valve without fittings at choked
flow [-]
gamma : float
Specific heat capacity ratio [-]
P1 : float, optional
Absolute pressure upstream of the valve [Pa]
P2 : float, optional
Absolute pressure downstream of the valve [Pa]
Returns
-------
P_choke : float
Pressure at which a choke occurs in the gas valve [Pa]
Notes
-----
Extremely cheap to compute.
Examples
--------
>>> control_valve_choke_P_g(1.0, 1.3, 1E5)
7142.857142857143
>>> control_valve_choke_P_g(1.0, 1.3, P2=7142.857142857143)
100000.0
'''
if P2 is None:
ans = P2 = P1*(-5.0*gamma*xT + 7.0)/7.0
elif P1 is None:
ans = P1 = -7.0*P2/(5.0*gamma*xT - 7.0)
else:
raise ValueError('Either P1 or P2 needs to be specified')
return ans
def is_choked_turbulent_l(dP, P1, Psat, FF, FL=None, FLP=None, FP=None):
r'''Calculates if a liquid flow in IEC 60534 calculations is critical or
not, for use in IEC 60534 liquid valve sizing calculations.
Either FL may be provided or FLP and FP, depending on the calculation
process.
.. math::
\Delta P > F_L^2(P_1 - F_F P_{sat})
.. math::
\Delta P >= \left(\frac{F_{LP}}{F_P}\right)^2(P_1 - F_F P_{sat})
Parameters
----------
dP : float
Differential pressure across the valve, with reducer/expanders [Pa]
P1 : float
Pressure of the fluid before the valve and reducers/expanders [Pa]
Psat : float
Saturation pressure of the fluid at inlet temperature [Pa]
FF : float
Liquid critical pressure ratio factor [-]
FL : float, optional
Liquid pressure recovery factor of a control valve without attached fittings [-]
FLP : float, optional
Combined liquid pressure recovery factor with piping geometry factor,
for a control valve with attached fittings [-]
FP : float, optional
Piping geometry factor [-]
Returns
-------
choked : bool
Whether or not the flow is choked [-]
Examples
--------
>>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.9)
False
>>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.6)
True
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
if FLP and FP:
return dP >= FLP*FLP/(FP*FP)*(P1-FF*Psat)
elif FL:
return dP >= FL*FL*(P1-FF*Psat)
else:
raise ValueError('Either (FLP and FP) or FL is needed')
def is_choked_turbulent_g(x, Fgamma, xT=None, xTP=None):
r'''Calculates if a gas flow in IEC 60534 calculations is critical or
not, for use in IEC 60534 gas valve sizing calculations.
Either xT or xTP must be provided, depending on the calculation process.
.. math::
x \ge F_\gamma x_T
.. math::
x \ge F_\gamma x_{TP}
Parameters
----------
x : float
Differential pressure over inlet pressure, [-]
Fgamma : float
Specific heat ratio factor [-]
xT : float, optional
Pressure difference ratio factor of a valve without fittings at choked
flow [-]
xTP : float
Pressure difference ratio factor of a valve with fittings at choked
flow [-]
Returns
-------
choked : bool
Whether or not the flow is choked [-]
Examples
--------
Example 3, compressible flow, non-choked with attached fittings:
>>> is_choked_turbulent_g(0.544, 0.929, 0.6)
False
>>> is_choked_turbulent_g(0.544, 0.929, xTP=0.625)
False
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
if xT:
return x >= Fgamma*xT
elif xTP:
return x >= Fgamma*xTP
else:
raise ValueError('Either xT or xTP is needed')
def Reynolds_valve(nu, Q, D1, FL, Fd, C):
r'''Calculates Reynolds number of a control valve for a liquid or gas
flowing through it at a specified Q, for a specified D1, FL, Fd, C, and
with kinematic viscosity `nu` according to IEC 60534 calculations.
.. math::
Re_v = \frac{N_4 F_d Q}{\nu \sqrt{C F_L}}\left(\frac{F_L^2 C^2}
{N_2D^4} +1\right)^{1/4}
Parameters
----------
nu : float
Kinematic viscosity, [m^2/s]
Q : float
Volumetric flow rate of the fluid [m^3/s]
D1 : float
Diameter of the pipe before the valve [m]
FL : float, optional
Liquid pressure recovery factor of a control valve without attached
fittings []
Fd : float
Valve style modifier [-]
C : float
Metric Kv valve flow coefficient (flow rate of water at a pressure drop
of 1 bar) [m^3/hr]
Returns
-------
Rev : float
Valve reynolds number [-]
Examples
--------
>>> Reynolds_valve(3.26e-07, 360, 150.0, 0.9, 0.46, 165)
2966984.7525455453
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
return N4*Fd*Q/nu*1.0/sqrt(C*FL)*sqrt(sqrt(FL*FL*C*C/N2*D1**-4.0 + 1.0))
def loss_coefficient_piping(d, D1=None, D2=None):
r'''Calculates the sum of loss coefficients from possible
inlet/outlet reducers/expanders around a control valve according to
IEC 60534 calculations.
.. math::
\Sigma \xi = \xi_1 + \xi_2 + \xi_{B1} - \xi_{B2}
.. math::
\xi_1 = 0.5\left[1 -\left(\frac{d}{D_1}\right)^2\right]^2
.. math::
\xi_2 = 1.0\left[1 -\left(\frac{d}{D_2}\right)^2\right]^2
.. math::
\xi_{B1} = 1 - \left(\frac{d}{D_1}\right)^4
.. math::
\xi_{B2} = 1 - \left(\frac{d}{D_2}\right)^4
Parameters
----------
d : float
Diameter of the valve [m]
D1 : float
Diameter of the pipe before the valve [m]
D2 : float
Diameter of the pipe after the valve [m]
Returns
-------
loss : float
Sum of the four loss coefficients [-]
Examples
--------
In example 3, non-choked compressible flow with fittings:
>>> loss_coefficient_piping(0.05, 0.08, 0.1)
0.6580810546875
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
loss = 0.
if D1:
dr = d/D1
dr2 = dr*dr
loss += 1. - dr2*dr2 # Inlet flow energy
loss += 0.5*(1. - dr2)*(1.0 - dr2) # Inlet reducer
if D2:
dr = d/D2
dr2 = dr*dr
loss += 1.0*(1. - dr2)*(1.0 - dr2) # Outlet reducer (expander)
loss -= 1. - dr2*dr2 # Outlet flow energy
return loss
def Reynolds_factor(FL, C, d, Rev, full_trim=True):
r'''Calculates the Reynolds number factor `FR` for a valve with a Reynolds
number `Rev`, diameter `d`, flow coefficient `C`, liquid pressure recovery
factor `FL`, and with either full or reduced trim, all according to
IEC 60534 calculations.
If full trim:
.. math::
F_{R,1a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_1^{0.25}}\right)\log_{10}
\left(\frac{Re_v}{10000}\right)
.. math::
F_{R,2} = \min(\frac{0.026}{F_L}\sqrt{n_1 Re_v},\; 1)
.. math::
n_1 = \frac{N_2}{\left(\frac{C}{d^2}\right)^2}
.. math::
F_R = F_{R,2} \text{ if Rev < 10 else } \min(F_{R,1a}, F_{R,2})
Otherwise :
.. math::
F_{R,3a} = 1 + \left(\frac{0.33F_L^{0.5}}{n_2^{0.25}}\right)\log_{10}
\left(\frac{Re_v}{10000}\right)
.. math::
F_{R,4} = \frac{0.026}{F_L}\sqrt{n_2 Re_v}
.. math::
n_2 = 1 + N_{32}\left(\frac{C}{d}\right)^{2/3}
.. math::
F_R = F_{R,4} \text{ if Rev < 10 else } \min(F_{R,3a}, F_{R,4})
Parameters
----------
FL : float
Liquid pressure recovery factor of a control valve without attached
fittings []
C : float
Metric Kv valve flow coefficient (flow rate of water at a pressure drop
of 1 bar) [m^3/hr]
d : float
Diameter of the valve [m]
Rev : float
Valve reynolds number [-]
full_trim : bool
Whether or not the valve has full trim
Returns
-------
FR : float
Reynolds number factor for laminar or transitional flow []
Examples
--------
In Example 4, compressible flow with small flow trim sized for gas flow
(Cv in the problem was converted to Kv here to make FR match with N32, N2):
>>> Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=False)
0.7148753122302025
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
if full_trim:
n1 = N2/(min(C/(d*d), 0.04))**2 # C/d**2 must not exceed 0.04
FR_1a = 1.0 + (0.33*sqrt(FL))/sqrt(sqrt(n1))*log10(Rev/10000.)
FR_2 = 0.026/FL*sqrt(n1*Rev)
if Rev < 10.0:
FR = FR_2
else:
FR = min(FR_2, FR_1a)
else:
n2 = 1 + N32*(C/d**2)**(2/3.)
FR_3a = 1 + (0.33*sqrt(FL))/sqrt(sqrt(n2))*log10(Rev/10000.)
FR_4 = min(0.026/FL*sqrt(n2*Rev), 1)
if Rev < 10:
FR = FR_4
else:
FR = min(FR_3a, FR_4)
return FR
def size_control_valve_l(rho, Psat, Pc, mu, P1, P2, Q, D1=None, D2=None,
d=None, FL=0.9, Fd=1, allow_choked=True,
allow_laminar=True, full_output=False):
r'''Calculates flow coefficient of a control valve passing a liquid
according to IEC 60534. Uses a large number of inputs in SI units. Note the
return value is not standard SI. All parameters are required.
This sizing model does not officially apply to liquid mixtures, slurries,
non-Newtonian fluids, or liquid-solid conveyance systems. For details
of the calculations, consult [1]_.
Parameters
----------
rho : float
Density of the liquid at the inlet [kg/m^3]
Psat : float
Saturation pressure of the fluid at inlet temperature [Pa]
Pc : float
Critical pressure of the fluid [Pa]
mu : float
Viscosity of the fluid [Pa*s]
P1 : float
Inlet pressure of the fluid before valves and reducers [Pa]
P2 : float
Outlet pressure of the fluid after valves and reducers [Pa]
Q : float
Volumetric flow rate of the fluid [m^3/s]
D1 : float, optional
Diameter of the pipe before the valve [m]
D2 : float, optional
Diameter of the pipe after the valve [m]
d : float, optional
Diameter of the valve [m]
FL : float, optional
Liquid pressure recovery factor of a control valve without attached
fittings (normally 0.8-0.9 at full open and decreasing as opened
further to below 0.5; use default very cautiously!) []
Fd : float, optional
Valve style modifier (0.1 to 1; varies tremendously depending on the
type of valve and position; do not use the default at all!) []
allow_choked : bool, optional
Overrides the automatic transition into the choked regime if this is
False and returns as if choked flow does not exist
allow_laminar : bool, optional
Overrides the automatic transition into the laminar regime if this is
False and returns as if laminar flow does not exist
full_output : bool, optional
If True, returns intermediate calculation values as
well as Kv in the form of a dictionary containing 'Kv', 'Rev', 'choked',
'FL', 'FLP', 'FR', 'FP', and 'laminar'. Some may be None if they are
not used in the calculation.
Returns
-------
Kv : float
Metric Kv valve flow coefficient (flow rate of water at a pressure drop
of 1 bar) [m^3/hr]
Notes
-----
It is possible to use this model without any diameters specified; in that
case, turbulent flow is assumed. Choked flow can still be modeled. This is
not recommended. All three diameters need to be None for this to work.
`FL` and `Fd` are not used by the models when the diameters are not
specified.
Examples
--------
From [1]_, matching example 1 for a globe, parabolic plug,
flow-to-open valve.
>>> size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4,
... P1=680E3, P2=220E3, Q=0.1, D1=0.15, D2=0.15, d=0.15,
... FL=0.9, Fd=0.46)
164.9954763704956
From [1]_, matching example 2 for a ball, segmented ball,
flow-to-open valve.
>>> size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4,
... P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.1, d=0.1,
... FL=0.6, Fd=0.98)
238.05817216710483
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
if full_output:
ans = {'FLP': None, 'FP': None, 'FR': None}
# Pa to kPa, according to constants in standard
P1, P2, Psat, Pc = P1/1000., P2/1000., Psat/1000., Pc/1000.
Q = Q*3600. # m^3/s to m^3/hr, according to constants in standard
nu = mu/rho # kinematic viscosity used in standard
MAX_C_POSSIBLE = 1E40 # Quit iterations if C reaches this high
dP = P1 - P2
FF = FF_critical_pressure_ratio_l(Psat=Psat, Pc=Pc)
choked = is_choked_turbulent_l(dP=dP, P1=P1, Psat=Psat, FF=FF, FL=FL)
if choked and allow_choked:
# Choked flow, equation 3
C = Q/N1/FL*sqrt(rho/rho0/(P1 - FF*Psat))
else:
# non-choked flow, eq 1
C = Q/N1*sqrt(rho/rho0/dP)
if D1 is None and D2 is None and d is None:
# Assume turbulent if no diameters are provided, no other calculations
Rev = 1e5
else:
# m to mm, according to constants in standard
D1, D2, d = D1*1000., D2*1000., d*1000.
Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=C)
# normal calculation path
if (Rev > 10000 or not allow_laminar) and (D1 != d or D2 != d):
# liquid, using Fp and FLP
FP = 1.0
Ci = C
MAX_ITER = 20
def iterate_piping_turbulent_l(Ci, iterations):
loss = loss_coefficient_piping(d, D1, D2)
FP = 1.0/sqrt(1 + loss/N2*(Ci/d**2)**2)
if d > D1:
loss_upstream = 0.0
else:
loss_upstream = loss_coefficient_piping(d, D1)
FLP = FL*1.0/sqrt(1 + FL**2/N2*loss_upstream*(Ci/d**2)**2)
choked = is_choked_turbulent_l(dP, P1, Psat, FF, FLP=FLP, FP=FP)
if choked:
# Choked flow with piping, equation 4
C = Q/N1/FLP*sqrt(rho/rho0/(P1-FF*Psat))
else:
# Non-Choked flow with piping, equation 5
C = Q/N1/FP*sqrt(rho/rho0/dP)
if Ci/C < 0.99 and iterations < MAX_ITER and Ci < MAX_C_POSSIBLE:
C = iterate_piping_turbulent_l(C, iterations+1)
if MAX_ITER == iterations or Ci >= MAX_C_POSSIBLE:
ans['warning'] = 'Not converged in inner loop'
if full_output:
ans['FLP'] = FLP
ans['FP'] = FP
return C
C = iterate_piping_turbulent_l(Ci, 0)
elif Rev <= 10000 and allow_laminar:
# Laminar
def iterate_piping_laminar_l(C):
Ci = 1.3*C
Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=Ci)
if Ci/d**2 > 0.016*N18:
FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=False)
else:
FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=True)
if C/FR >= Ci:
Ci = iterate_piping_laminar_l(Ci) # pragma: no cover
if full_output:
ans['Rev'] = Rev
ans['FR'] = FR
return Ci
C = iterate_piping_laminar_l(C)
if full_output:
ans['FF'] = FF
ans['choked'] = choked
ans['Kv'] = C
ans['laminar'] = Rev <= 10000
# For the laminar case this is already set and needs to not be overwritten
if 'Rev' not in ans:
ans['Rev'] = Rev
return ans
else:
# return C, choked, laminar, FF, FR, Rev, FP, FLP, warning
return C
def size_control_valve_g(T, MW, mu, gamma, Z, P1, P2, Q, D1=None, D2=None,
d=None, FL=0.9, Fd=1, xT=0.7, allow_choked=True,
allow_laminar=True, full_output=False):
r'''Calculates flow coefficient of a control valve passing a gas
according to IEC 60534. Uses a large number of inputs in SI units. Note the
return value is not standard SI. All parameters are required. For details
of the calculations, consult [1]_. Note the inlet gas flow conditions.
Parameters
----------
T : float
Temperature of the gas at the inlet [K]
MW : float
Molecular weight of the gas [g/mol]
mu : float
Viscosity of the fluid at inlet conditions [Pa*s]
gamma : float
Specific heat capacity ratio [-]
Z : float
Compressibility factor at inlet conditions, [-]
P1 : float
Inlet pressure of the gas before valves and reducers [Pa]
P2 : float
Outlet pressure of the gas after valves and reducers [Pa]
Q : float
Volumetric flow rate of the gas at *273.15 K* and 1 atm specifically
[m^3/s]
D1 : float, optional
Diameter of the pipe before the valve [m]
D2 : float, optional
Diameter of the pipe after the valve [m]
d : float, optional
Diameter of the valve [m]
FL : float, optional
Liquid pressure recovery factor of a control valve without attached
fittings (normally 0.8-0.9 at full open and decreasing as opened
further to below 0.5; use default very cautiously!) []
Fd : float, optional
Valve style modifier (0.1 to 1; varies tremendously depending on the
type of valve and position; do not use the default at all!) []
xT : float, optional
Pressure difference ratio factor of a valve without fittings at choked
flow (increasing to 0.9 or higher as the valve is closed further and
decreasing to 0.1 or lower as the valve is opened further; use default
very cautiously!) [-]
allow_choked : bool, optional
Overrides the automatic transition into the choked regime if this is
False and returns as if choked flow does not exist
allow_laminar : bool, optional
Overrides the automatic transition into the laminar regime if this is
False and returns as if laminar flow does not exist
full_output : bool, optional
If True, returns intermediate calculation values as
well as Kv in the form of a dictionary containing 'Kv', 'Rev', 'choked',
'Y', 'FR', 'FP', 'xTP', and 'laminar'. Some may be None if they are
not used in the calculation.
Returns
-------
Kv : float
Metric Kv valve flow coefficient (flow rate of water at a pressure drop
of 1 bar) [m^3/hr]
Notes
-----
It is possible to use this model without any diameters specified; in that
case, turbulent flow is assumed. Choked flow can still be modeled. This is
not recommended. All three diameters need to be None for this to work.
`FL` and `Fd` are not used by the models when the diameters are not
specified, but `xT` definitely is used by the model.
When this model does not converge, the result is normally because of the
specified delta P being less than that caused by the piping diameter
changes.
Examples
--------
From [1]_, matching example 3 for non-choked gas flow with attached
fittings and a rotary, eccentric plug, flow-to-open control valve:
>>> size_control_valve_g(T=433., MW=44.01, mu=1.4665E-4, gamma=1.30,
... Z=0.988, P1=680E3, P2=310E3, Q=38/36., D1=0.08, D2=0.1, d=0.05,
... FL=0.85, Fd=0.42, xT=0.60)
72.5866454539105
From [1]_, roughly matching example 4 for a small flow trim sized tapered
needle plug valve. Difference is 3% and explained by the difference in
algorithms used.
>>> size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0,
... P1=2.8E5, P2=1.3E5, Q=0.46/3600., D1=0.015, D2=0.015, d=0.015, FL=0.98,
... Fd=0.07, xT=0.8)
0.016498765335995726
References
----------
.. [1] IEC 60534-2-1 / ISA-75.01.01-2007
'''
MAX_C_POSSIBLE = 1E40 # Quit iterations if C reaches this high
# Pa to kPa, according to constants in standard
P1, P2 = P1*1e-3, P2*1e-3
Q = Q*3600. # m^3/s to m^3/hr, according to constants in standard
# Convert dynamic viscosity to kinematic viscosity
Vm = Z*R*T/(P1*1000)
rho = MW*1e-3/Vm
nu = mu/rho # kinematic viscosity used in standard
dP = P1 - P2
Fgamma = gamma/1.40
x = dP/P1
Y = max(1 - x/(3*Fgamma*xT), 2/3.)
choked = is_choked_turbulent_g(x, Fgamma, xT)
if choked and allow_choked:
# Choked, and flow coefficient from eq 14a
C = Q/(N9*P1*Y)*sqrt(MW*T*Z/xT/Fgamma)
else:
# Non-choked, and flow coefficient from eq 8a
C = Q/(N9*P1*Y)*sqrt(MW*T*Z/x)
if full_output: # numba: delete
ans = {'FP': None, 'xTP': None, 'FR': None, 'choked': choked, 'Y': Y} # numba: delete
if D1 is None and D2 is None and d is None:
# Assume turbulent if no diameters are provided, no other calculations
Rev = 1e5
if full_output: # numba: delete
ans['Rev'] = None # numba: delete
else:
# m to mm, according to constants in standard
D1, D2, d = D1*1000., D2*1000., d*1000. # Convert diameters to mm which is used in the standard
Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=C)
if full_output: # numba: delete
ans['Rev'] = Rev # numba: delete
if (Rev > 10000 or not allow_laminar) and (D1 != d or D2 != d):
# gas, using xTP and FLP
FP = 1.
MAX_ITER = 20
def iterate_piping_coef_g(Ci, iterations):
loss = loss_coefficient_piping(d, D1, D2)
FP = 1.0/sqrt(1. + loss/N2*(Ci/d**2)**2)
loss_upstream = loss_coefficient_piping(d, D1)
xTP = xT/FP**2/(1 + xT*loss_upstream/N5*(Ci/d**2)**2)
choked = is_choked_turbulent_g(x, Fgamma, xTP=xTP)
if choked:
# Choked flow with piping, equation 17a
C = Q/(N9*FP*P1*Y)*sqrt(MW*T*Z/xTP/Fgamma)
else:
# Non-choked flow with piping, equation 11a
C = Q/(N9*FP*P1*Y)*sqrt(MW*T*Z/x)
if Ci/C < 0.99 and iterations < MAX_ITER and Ci < MAX_C_POSSIBLE:
C = iterate_piping_coef_g(C, iterations+1)
if full_output: # numba: delete
ans['xTP'] = xTP # numba: delete
ans['FP'] = FP # numba: delete
ans['choked'] = choked # numba: delete
if MAX_ITER == iterations or Ci >= MAX_C_POSSIBLE: # numba: delete
ans['warning'] = 'Not converged in inner loop' # numba: delete
return C
# def err_piping_coeff(Ci):
# loss = loss_coefficient_piping(d, D1, D2)
# FP = (1. + loss/N2*(Ci/d**2)**2)**-0.5
# loss_upstream = loss_coefficient_piping(d, D1)
# xTP = xT/FP**2/(1 + xT*loss_upstream/N5*(Ci/d**2)**2)
# choked = is_choked_turbulent_g(x, Fgamma, xTP=xTP)
# if choked:
# # Choked flow with piping, equation 17a
# C = Q/(N9*FP*P1*Y)*(MW*T*Z/xTP/Fgamma)**0.5
# else:
# # Non-choked flow with piping, equation 11a
# C = Q/(N9*FP*P1*Y)*(MW*T*Z/x)**0.5
# return C - Ci
# import matplotlib.pyplot as plt
# from fluids.numerics import linspace
# Cs = linspace(C/50, C*50, 5000)
# errs = [err_piping_coeff(C_test) for C_test in Cs]
# plt.plot(Cs, errs)
# plt.show()
C = iterate_piping_coef_g(C, 0)
elif Rev <= 10000 and allow_laminar:
# Laminar;
def iterate_piping_laminar_g(C):
Ci = 1.3*C
Rev = Reynolds_valve(nu=nu, Q=Q, D1=D1, FL=FL, Fd=Fd, C=Ci)
if Ci/d**2 > 0.016*N18:
FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=False)
else:
FR = Reynolds_factor(FL=FL, C=Ci, d=d, Rev=Rev, full_trim=True)
if C/FR >= Ci:
Ci = iterate_piping_laminar_g(Ci)
if full_output: # numba: delete
ans['FR'] = FR # numba: delete
ans['Rev'] = Rev # numba: delete
return Ci
C = iterate_piping_laminar_g(C)
if full_output: # numba: delete
ans['Kv'] = C # numba: delete
ans['laminar'] = Rev <= 10000 # numba: delete
ans['choked'] = choked # numba: delete
return ans # numba: delete
return C
# Valve data from Emerson Valve Handbook 5E
# Quick opening valve data, spline fit, and interpolating function
opening_quick = [0.0, 0.0136, 0.02184, 0.03256, 0.04575, 0.06221, 0.07459, 0.0878, 0.10757, 0.12654, 0.14301, 0.16032,
0.18009, 0.18999, 0.20233, 0.23105, 0.25483, 0.28925, 0.32365, 0.36541, 0.42188, 0.46608, 0.53319, 0.61501,
0.7034, 0.78033, 0.84415, 0.91944, 1.000]
frac_CV_quick = [0.0, 0.04984, 0.07582, 0.12044, 0.16614, 0.21707, 0.26998, 0.32808, 0.39353, 0.46516, 0.52125, 0.58356,
0.64798, 0.68845, 0.72277, 0.76565, 0.79399, 0.82459, 0.84589, 0.86732, 0.88078, 0.89399, 0.90867, 0.92053,
0.93973, 0.95872, 0.96817, 0.98611, 1.0]
opening_quick_tck = implementation_optimize_tck([[0.0, 0.0, 0.0, 0.0, 0.02184, 0.03256, 0.04575, 0.06221, 0.07459,
0.0878, 0.10757, 0.12654, 0.14301, 0.16032, 0.18009, 0.18999, 0.20233, 0.23105, 0.25483, 0.28925,
0.32365, 0.36541, 0.42188, 0.46608, 0.53319, 0.61501, 0.7034, 0.78033, 0.84415, 1.0, 1.0, 1.0, 1.0],
[-3.2479258181113327e-19, 0.037650956835178835, 0.054616164261637117, 0.12657862552611354,
0.17115105822542115, 0.2075233903194021, 0.27084055195333684, 0.34208963001568016, 0.38730839943796663,
0.4656002247400036, 0.5196995880922897, 0.5907033063634928, 0.6304293931726886, 0.6953064258075168,
0.7382935002453699, 0.7631579537132379, 0.7997961180795559, 0.8262370617883222, 0.8471954722933543,
0.873096858463145, 0.8776128736976467, 0.897647305294458, 0.9105672165523071, 0.9192771703370824,
0.9377349743236904, 0.9603716623033031, 0.9688863605959851, 0.9980062718267431, 1.0, 0.0, 0.0, 0.0, 0.0],
3])
Cv_char_quick_opening = lambda opening: float(splev(opening, opening_quick_tck))
opening_linear = [0., 1.0]
frac_CV_linear = [0, 1]
Cv_char_linear = lambda opening: interp(opening, opening_linear, frac_CV_linear)
# Equal opening valve data, spline fit, and interpolating function
opening_equal = [0.0, 0.05523, 0.09287, 0.15341, 0.18942, 0.22379, 0.25816, 0.29582, 0.33348, 0.34985, 0.3826, 0.45794,
0.49235, 0.51365, 0.54479, 0.57594, 0.60218, 0.62843, 0.77628, 0.796, 0.83298, 0.86995, 0.90936, 0.95368, 1.00]
frac_CV_equal = [0.0, 0.00845, 0.01339, 0.01877, 0.02579, 0.0349, 0.04189, 0.05528, 0.07079, 0.07533, 0.09074, 0.13444,
0.15833, 0.17353, 0.20159, 0.23388, 0.26819, 0.30461, 0.60113, 0.64588, 0.72583, 0.80788, 0.87519, 0.94999, 1.]
opening_equal_tck = implementation_optimize_tck([[0.0, 0.0, 0.0, 0.0, 0.09287, 0.15341, 0.18942, 0.22379, 0.25816,
0.29582, 0.33348, 0.34985, 0.3826, 0.45794, 0.49235, 0.51365, 0.54479, 0.57594, 0.60218, 0.62843,
0.77628, 0.796, 0.83298, 0.86995, 0.90936, 1.0, 1.0, 1.0, 1.0],
[1.3522591106779132e-19, 0.004087873896711868, 0.014374150571122216, 0.016455484312674015, 0.024946845435605228,
0.03592972456181881, 0.040710119644626126, 0.054518468768197687, 0.06976905178508139,
0.07587146190282387, 0.0985485829020452, 0.1238160142641967, 0.15558350087382017, 0.17487348629353283,
0.20157507610951217, 0.22995771158118564, 0.2683886931491415, 0.3574766835730407, 0.5027678906008036,
0.659729970241158, 0.7233389559355903, 0.8155475382785987, 0.8983628328699896, 0.9871204658597236, 1.0,
0.0, 0.0, 0.0, 0.0],
3])
Cv_char_equal_percentage = lambda opening: float(splev(opening, opening_equal_tck))
def convert_flow_coefficient(flow_coefficient, old_scale, new_scale):
"""Convert from one flow coefficient scale to another; supports the `Kv`
`Cv`, and `Av` scales.
Other scales are `Qn` and `Cg`, but clear definitions have yet to be
found.
Parameters
----------
flow_coefficient : float
Value of the flow coefficient to be converted, expressed in the
original scale.
old_scale : str
String specifying the original scale; one of 'Av', 'Cv', or 'Kv', [-]
new_scale : str
String specifying the new scale; one of 'Av', 'Cv', or 'Kv', [-]
Returns
-------
converted_flow_coefficient : float
Flow coefficient converted to the specified scale.
Notes
-----
`Qn` is a scale based on a flow of air in units of L/minute as air travels
through a valve and loses one bar of pressure (initially 7 bar absolute,
to 6 bar absolute). No consistent conversion factors have been found and
those from theory do not match what have been found. Some uses of `Qn` use
its flow rate as in normal (STP reference conditions) flow rate of air;
others use something like the 7 bar absolute condition.
Examples
--------
>>> convert_flow_coefficient(10, 'Kv', 'Av')
0.0002776532068951358
"""
# Convert from `old_scale` to Kv
if old_scale == 'Cv':
Kv = Cv_to_Kv(flow_coefficient)
elif old_scale == 'Kv':
Kv = flow_coefficient
elif old_scale == 'Av':
Cv = flow_coefficient/(sqrt(rho0/psi)*gallon/minute)
Kv = Cv_to_Kv(Cv)
else:
raise NotImplementedError("Supported scales are 'Cv', 'Kv', and 'Av'")
if new_scale == 'Cv':
ans = Kv_to_Cv(Kv)
elif new_scale == 'Kv':
ans = Kv
elif new_scale == 'Av':
Cv = Kv_to_Cv(Kv)
ans = Cv*(sqrt(rho0/psi)*gallon/minute)
else:
raise NotImplementedError("Supported scales are 'Cv', 'Kv', and 'Av'")
return ans
# Third octave center frequency fi Hz
fis_l_2015 = [12.5, 16.0, 20.0, 25.0, 31.5, 40.0, 50.0, 63.0, 80.0, 100.0, 125.0,
160.0, 200.0, 250.0, 315.0, 400.0, 500.0, 630.0, 800.0, 1000.0,
1250.0, 1600.0, 2000.0, 2500.0, 3150.0, 4000.0, 5000.0, 6300.0,
8000.0, 10000.0, 12500.0, 16000.0, 20000.0]
#fis_l_2015_inv = [1.0/fi for fi in fis_l_2015]
#fis_l_2015_1_5 = [fi**1.5 for fi in fis_l_2015]
#fis_l_2015_n1_5 = [fi**-1.5 for fi in fis_l_2015]
fis_l_2015_inv = [0.08, 0.0625, 0.049999999999999996, 0.04000000000000001, 0.031746031746031744, 0.025, 0.02, 0.01587301587301587, 0.012499999999999999, 0.010000000000000002, 0.008, 0.00625, 0.005, 0.003999999999999999, 0.003174603174603174, 0.0025000000000000005, 0.002, 0.0015873015873015873, 0.00125, 0.0009999999999999998, 0.0008, 0.0006250000000000001, 0.0005, 0.0004, 0.0003174603174603174, 0.00024999999999999995, 0.0002, 0.00015873015873015873, 0.000125, 0.0001, 8e-05, 6.249999999999999e-05, 5e-05]
fis_l_2015_1_5 = [44.19417382415922, 64.0, 89.44271909999159, 125.0, 176.79331152506873, 252.98221281347034, 353.5533905932738, 500.04699779120756, 715.5417527999327, 1000.0, 1397.5424859373686, 2023.8577025077627, 2828.42712474619, 3952.847075210474, 5590.695395029137, 8000.0, 11180.339887498949, 15812.874501494027, 22627.41699796952, 31622.776601683792, 44194.17382415922, 64000.0, 89442.71909999159, 125000.0, 176793.3115250687, 252982.21281347034, 353553.39059327374, 500046.9977912076, 715541.7527999327, 1000000.0, 1397542.4859373686, 2023857.7025077627, 2828427.12474619]
fis_l_2015_n1_5 = [0.02262741699796952, 0.015625, 0.011180339887498947, 0.008000000000000002, 0.00565632258015713, 0.003952847075210475, 0.00282842712474619, 0.001999812026503847, 0.0013975424859373684, 0.0010000000000000002, 0.0007155417527999327, 0.0004941058844013093, 0.00035355339059327376, 0.0002529822128134703, 0.00017886862533936855, 0.00012500000000000003, 8.944271909999159e-05, 6.323960895949173e-05, 4.419417382415922e-05, 3.162277660168379e-05, 2.2627416997969522e-05, 1.5625000000000004e-05, 1.1180339887498949e-05, 8.000000000000001e-06, 5.6563225801571285e-06, 3.9528470752104736e-06, 2.8284271247461903e-06, 1.9998120265038475e-06, 1.3975424859373686e-06, 1.0000000000000002e-06, 7.155417527999328e-07, 4.941058844013092e-07, 3.535533905932738e-07]
fis_l_2015_3 = [1953.125, 4096.0, 8000.0, 15625.0, 31255.875, 64000.0, 125000.0, 250047.0, 512000.0, 1000000.0, 1953125.0, 4096000.0, 8000000.0, 15625000.0, 31255875.0, 64000000.0, 125000000.0, 250047000.0, 512000000.0, 1000000000.0, 1953125000.0, 4096000000.0, 8000000000.0, 15625000000.0, 31255875000.0, 64000000000.0, 125000000000.0, 250047000000.0, 512000000000.0, 1000000000000.0, 1953125000000.0, 4096000000000.0, 8000000000000.0]
fis_l_2015_17 = [73.2397784872531, 111.43047210190387, 162.83621261476173, 237.95674233948478, 352.4746934040807, 529.0564156396547, 773.1237367774792, 1145.1936574895758, 1718.9093656438004, 2511.88643150958, 3670.6841971500585, 5584.753005453414, 8161.143093473476, 11926.088141608398, 17665.581651081215, 26515.632138719888, 38747.97468870842, 57395.64411646984, 86149.54298230256, 125892.54117941669, 183970.00582889825, 279900.6909294791, 409026.07302542904, 597720.3123687729, 885376.3998122095, 1328929.6319483411, 1941999.0242893337, 2876596.4096988947, 4317705.1125554005, 6309573.44480193, 9220341.829177868, 14028265.297730776, 20499864.602104142]
#fis_l_2015_inv, fis_l_2015_1_5, fis_l_2015_17, fis_l_2015_n1_5, fis_l_2015_3 = [], [], [], [], []
#for fi in fis_l_2015:
# fi_rt_inv = 1.0/sqrt(fi)
# fis_l_2015_inv.append(fi_rt_inv*fi_rt_inv)
# fis_l_2015_1_5.append(fi*fi*fi_rt_inv)
# fis_l_2015_n1_5.append(fi_rt_inv*fi_rt_inv*fi_rt_inv)
# fis_l_2015_3.append(fi*fi*fi)
# fis_l_2015_17.append(fi**1.7)
fis_length = 33
# dLa(fi), dB
A_weights_l_2015 = [-63.4, -56.7, -50.5, -44.7, -39.4, -34.6, -30.2, -26.2,
-22.5, -19.1, -16.1, -13.4, -10.9, -8.6, -6.6, -4.8, -3.2,
-1.9, -0.8, 0.0, 0.6, 1.0, 1.2, 1.3, 1.2, 1.0, 0.5, -0.1, -1.1,
-2.5, -4.3, -6.6, -9.3]
def control_valve_noise_l_2015(m, P1, P2, Psat, rho, c, Kv, d, Di, FL, Fd,
t_pipe, rho_pipe=7800.0, c_pipe=5000.0,
rho_air=1.2, c_air=343.0, xFz=None, An=-4.6):
r'''Calculates the sound made by a liquid flowing through a control valve
according to the standard IEC 60534-8-4 (2015) [1]_.
Parameters
----------
m : float
Mass flow rate of liquid through the control valve, [kg/s]
P1 : float
Inlet pressure of the fluid before valves and reducers [Pa]
P2 : float
Outlet pressure of the fluid after valves and reducers [Pa]
Psat : float
Saturation pressure of the fluid at inlet temperature [Pa]
rho : float
Density of the liquid at the inlet [kg/m^3]
c : float
Speed of sound of the liquid at the inlet conditions [m/s]
Kv : float
Metric Kv valve flow coefficient (flow rate of water at a pressure drop
of 1 bar) [m^3/hr]
d : float
Diameter of the valve [m]
Di : float
Internal diameter of the pipe before and after the valve [m]
FL : float, optional
Liquid pressure recovery factor of a control valve without attached
fittings (normally 0.8-0.9 at full open and decreasing as opened
further to below 0.5) [-]
Fd : float, optional
Valve style modifier [-]
t_pipe : float
Wall thickness of the pipe after the valve, [m]
rho_pipe : float, optional
Density of the pipe wall material at flowing conditions, [kg/m^3]
c_pipe : float, optional
Speed of sound of the pipe wall material at flowing conditions, [m/s]
rho_air : float, optional
Density of the air surrounding the valve and pipe wall, [kg/m^3]
c_air : float, optional
Speed of sound of the air surrounding the valve and pipe wall, [m/s]
xFz : float, optional
If specified, this value `xFz` is used instead of estimated; the
calculation is sensitive to this value, [-]
An : float, optional
Valve correction factor for acoustic efficiency
Returns
-------
LpAe1m : float
A weighted sound pressure level 1 m from the pipe wall, 1 m distance
dowstream of the valve (at reference sound pressure level 2E-5), [dB]
Notes
-----
For formulas see [1]_. This takes on the order of 100 us to compute.
This model can also tell if noise is being produced in a valve just due to
turbulent flow, or cavitation. For values of `An`, see [1]_; it is
normally -4.6 for global valves, -4.3 for butterfly valves, and -4.0 for
expanders.
This model was checked against three examples in [1]_; they match to all
given decimals.
A formula is given in [1]_ for multihole trim valves to estimate `xFz`
as well; this is not implemented here and `xFz` must be calculated by the
user separately. The formula is
.. math::
x_{Fz} = \left(4.5 + 1650\frac{N_0d_H^2}{F_L}\right)^{-1/2}
Where `N0` is the number of open channels and `dH` is the multihole trim
hole diameter.
Examples
--------
>>> control_valve_noise_l_2015(m=40, P1=1E6, P2=6.5E5, Psat=2.32E3,
... rho=997, c=1400, Kv=77.848, d=0.1, Di=0.1071, FL=0.92, Fd=0.42,
... t_pipe=0.0036, rho_pipe=7800.0, c_pipe=5000.0,rho_air=1.293,
... c_air=343.0, An=-4.6)
81.58200097996
References
----------
.. [1] IEC 60534-8-4 : Industrial-Process Control Valves - Part 8-4: Noise
Considerations - Prediction of Noise Generated by Hydrodynamic Flow.
(2015)
'''
# Convert Kv to Cv as C
N34 = 1.17 # for Cv - conversion constant but not to many decimals
N14 = 0.0046
C = Kv_to_Cv(Kv)
xF = (P1-P2)/(P1-Psat)
dPc = min(P1-P2, FL*FL*(P1 - Psat))
if xFz is None:
xFz = 0.9*1.0/sqrt(1.0 + 3.0*Fd*sqrt(C/(N34*FL)))
xFzp1 = xFz*sqrt(sqrt(sqrt(6E5/P1)))
Dj = N14*Fd*sqrt(C*FL)
Uvc = sqrt(2.0*dPc/rho)/FL
Wm = 0.5*m*Uvc*Uvc*FL*FL
cavitating = xF > xFzp1
eta_turb = 10.0**An*Uvc/c
x0 = xF - xFzp1
x1 = xF/xFzp1
x2 = x1*x1
x1 = x2*x2*x1
if cavitating:
eta_cav = 0.32*eta_turb*sqrt((P1 - P2)/(dPc*xFzp1))*exp(5.0*xFzp1)*sqrt((1.0
- xFzp1)/(1.0 - xF))*(x1)*x0*sqrt(x0)
Wa = (eta_turb+eta_cav)*Wm
else:
Wa = eta_turb*Wm
Lpi = 10.0*log10(3.2E9*Wa*rho*c/(Di*Di))
Stp = 0.036*FL*FL*C*Fd**0.75/(N34*xFzp1*sqrt(xFzp1)*d*d)*(1.0/(P1 - Psat))**0.57
f_p_turb = Stp*Uvc/Dj
if cavitating:
x3 = ((1.0 - xF)/(1.0 - xFzp1))
x4 = xFzp1/xF
f_p_cav = 6.0*f_p_turb*x3*x3*x4*x4*sqrt(x4)
f_p_cav_inv = 1.0/f_p_cav
f_p_cav_inv_1_5 = f_p_cav_inv*sqrt(f_p_cav_inv)
f_p_cav_inv_1_5_1_4 = 0.25*f_p_cav_inv_1_5
f_p_cav_1_5 = 1.0/f_p_cav_inv_1_5
eta_denom = 1.0/(eta_turb + eta_cav)
t1 = eta_turb*eta_denom
t2 = eta_cav*eta_denom
fr = c_pipe/(pi*Di)
fr_inv = 1.0/fr
TL_fr = -10.0 - 10.0*log10(c_pipe*rho_pipe*t_pipe/(c_air*rho_air*Di))
t3 = - 10.0*log10((Di + 2.0*t_pipe + 2.0)/(Di + 2.0*t_pipe))
# F_cavs = []
# F_turbs = []
# LPis = []
# TL_fis = []
# L_pe1m_fis = []
LpAe1m_sum = 0.0
f_p_turb_inv = 1.0/f_p_turb
f_p_turb_inv3 = f_p_turb_inv*f_p_turb_inv*f_p_turb_inv
fr_inv_1_5 = fr_inv*sqrt(fr_inv)
a_factor = ln_10_inv
for i in range(fis_length):
# for fi, fi_inv, fi_1_5, fi_1_5_inv, A in zip(fis_l_2015, fis_l_2015_inv, fis_l_2015_1_5, fis_l_2015_n1_5, A_weights_l_2015):
# fi_inv = 1.0/fi
# fi_turb_ratio = fis_l_2015[i]*f_p_turb_inv
# fi_turb_ratio = fi*f_p_turb_inv
F_turb = -.8 - log(0.25*f_p_turb_inv3*fis_l_2015_3[i]
+ fis_l_2015_inv[i]*f_p_turb)*a_factor
# F_turbs.append(F_turb)
if cavitating:
# fi_cav_ratio = fi_1_5*f_p_cav_inv_1_5# (fi*f_p_cav_inv)**1.5
# F_cav = -.9 - log10(f_p_cav_inv_1_5_1_4*fis_l_2015_1_5[i] + fis_l_2015_n1_5[i]*f_p_cav_1_5) # 1.0/fi_cav_ratio, fi_1_5_inv*f_p_cav_1_5
F_cav_fact = 0.12589254117941673/(f_p_cav_inv_1_5_1_4*fis_l_2015_1_5[i] + fis_l_2015_n1_5[i]*f_p_cav_1_5)
# 0.1258925411794167310 = 10**(-0.9)
# 4.3429448190325175*log(x) -> 10*log10(x)
LPif = (Lpi + 4.3429448190325175*log(t1*exp(ln_10*F_turb) + t2*F_cav_fact))
# Should be able to save 1 power in the above function somehow, combine the tow terms in exponent
else:
LPif = Lpi + F_turb*10.0
# LPis.append(LPif)
# -8.685889638065035 = -20*log10(x)
TL_fi = TL_fr - 8.685889638065035*log(fr*fis_l_2015_inv[i] + fis_l_2015_1_5[i]*fr_inv_1_5) # (fi*fr_inv)**1.5
# TL_fis.append(TL_fi)
L_pe1m_fi = LPif + TL_fi + t3
# L_pe1m_fis.append(L_pe1m_fi)
LpAe1m_sum += exp(0.23025850929940458*(L_pe1m_fi + A_weights_l_2015[i]))
LpAe1m = 4.3429448190325175*log(LpAe1m_sum)
return LpAe1m
def control_valve_noise_g_2011(m, P1, P2, T1, rho, gamma, MW, Kv,
d, Di, t_pipe, Fd, FL, FLP=None, FP=None,
rho_pipe=7800.0, c_pipe=5000.0,
P_air=101325.0, rho_air=1.2, c_air=343.0,
An=-3.8, Stp=0.2, T2=None, beta=0.93):
r'''Calculates the sound made by a gas flowing through a control valve
according to the standard IEC 60534-8-3 (2011) [1]_.
Parameters
----------
m : float
Mass flow rate of gas through the control valve, [kg/s]
P1 : float
Inlet pressure of the gas before valves and reducers [Pa]
P2 : float
Outlet pressure of the gas after valves and reducers [Pa]
T1 : float
Inlet gas temperature, [K]
rho : float
Density of the gas at the inlet [kg/m^3]
gamma : float
Specific heat capacity ratio [-]
MW : float
Molecular weight of the gas [g/mol]
Kv : float
Metric Kv valve flow coefficient (flow rate of water at a pressure drop
of 1 bar) [m^3/hr]
d : float
Diameter of the valve [m]
Di : float
Internal diameter of the pipe before and after the valve [m]
t_pipe : float
Wall thickness of the pipe after the valve, [m]
Fd : float
Valve style modifier (0.1 to 1; varies tremendously depending on the
type of valve and position; do not use the default at all!) [-]
FL : float
Liquid pressure recovery factor of a control valve without attached
fittings (normally 0.8-0.9 at full open and decreasing as opened
further to below 0.5; use default very cautiously!) [-]
FLP : float, optional
Combined liquid pressure recovery factor with piping geometry factor,
for a control valve with attached fittings [-]
FP : float, optional
Piping geometry factor [-]
rho_pipe : float, optional
Density of the pipe wall material at flowing conditions, [kg/m^3]
c_pipe : float, optional
Speed of sound of the pipe wall material at flowing conditions, [m/s]
P_air : float, optional
Pressure of the air surrounding the valve and pipe wall, [Pa]
rho_air : float, optional
Density of the air surrounding the valve and pipe wall, [kg/m^3]
c_air : float, optional
Speed of sound of the air surrounding the valve and pipe wall, [m/s]
An : float, optional
Valve correction factor for acoustic efficiency, [-]
Stp : float, optional
Strouhal number at the peak `fp`; between 0.1 and 0.3 typically, [-]
T2 : float, optional
Outlet gas temperature; assumed `T1` if not provided (a PH flash
should be used to obtain this if possible), [K]
beta : float, optional
Valve outlet / expander inlet contraction coefficient, [-]
Returns
-------
LpAe1m : float
A-weighted sound pressure level 1 m from the pipe wall, 1 m distance
dowstream of the valve (at reference sound pressure level 2E-5), [dB]
Notes
-----
For formulas see [1]_. This takes on the order of 100 us to compute.
For values of `An`, see [1]_.
This model was checked against six examples in [1]_; they match to all
given decimals.
Several additional formulas are given for multihole trim valves,
control valves with two or more fixed area stages, and multipath,
multistage trim valves.
Examples
--------
>>> control_valve_noise_g_2011(m=2.22, P1=1E6, P2=7.2E5, T1=450, rho=5.3,
... gamma=1.22, MW=19.8, Kv=77.85, d=0.1, Di=0.2031, FL=None, FLP=0.792,
... FP=0.98, Fd=0.296, t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,
... rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
91.67702674629604
References
----------
.. [1] IEC 60534-8-3 : Industrial-Process Control Valves - Part 8-3: Noise
Considerations - Control Valve Aerodynamic Noise Prediction Method."
'''
k = gamma # alias
C = Kv_to_Cv(Kv)
N14 = 4.6E-3
N16 = 4.89E4
fs = 1.0 # structural loss factor reference frequency, Hz
P_air_std = 101325.0
if T2 is None:
T2 = T1
x = (P1 - P2)/P1
# FLP/FP when fittings attached
FL_term = FLP/FP if FP is not None else FL
P_vc = P1*(1.0 - x/FL_term**2)
x_vcc = 1.0 - (2.0/(k + 1.0))**(k/(k - 1.0)) # mostly matches
xc = FL_term**2*x_vcc
alpha = (1.0 - x_vcc)/(1.0 - xc)
xB = 1.0 - 1.0/alpha*(1.0/k)**(k/(k - 1.0))
xCE = 1.0 - 1.0/(22.0*alpha)
# Regime determination check - should be ordered or won't work
# assert xc < x_vcc
# assert x_vcc < xB
# assert xB < xCE
if x <= xc:
regime = 1
elif xc < x <= x_vcc:
regime = 2
elif x_vcc < x <= xB:
regime = 3
elif xB < x <= xCE:
regime = 4
else:
regime = 5
# print('regime', regime)
Dj = N14*Fd*sqrt(C*(FL_term))
Mj5 = sqrt(2.0/(k - 1.0)*( 22.0**((k-1.0)/k) - 1.0 ))
if regime == 1:
Mvc = sqrt((2.0/(k-1.0)) *((1.0 - x/FL_term**2)**((1.0 - k)/k) - 1.0)) # Not match
elif regime in (2, 3, 4):
Mj = sqrt((2.0/(k-1.0))*((1.0/(alpha*(1.0-x)))**((k - 1.0)/k) - 1.0)) # Not match
Mj = min(Mj, Mj5)
# elif regime == 5:
# pass
if regime == 1:
Tvc = T1*(1.0 - x/(FL_term)**2)**((k - 1.0)/k)
cvc = sqrt(k*P1/rho*(1 - x/(FL_term)**2)**((k-1.0)/k))
Wm = 0.5*m*(Mvc*cvc)**2
else:
Tvcc = 2.0*T1/(k + 1.0)
cvcc = sqrt(2.0*k*P1/(k+1.0)/rho)
Wm = 0.5*m*cvcc*cvcc
# print('Wm', Wm)
if regime == 1:
fp = Stp*Mvc*cvc/Dj
elif regime in (2, 3):
fp = Stp*Mj*cvcc/Dj
elif regime == 4:
fp = 1.4*Stp*cvcc/Dj/sqrt(Mj*Mj - 1.0)
elif regime == 5:
fp = 1.4*Stp*cvcc/Dj/sqrt(Mj5*Mj5 - 1.0)
fp_inv = 1.0/fp
# print('fp', fp)
if regime == 1:
eta = 10.0**An*FL_term**2*(Mvc)**3
elif regime == 2:
eta = 10.0**An*x/x_vcc*Mj**(6.6*FL_term*FL_term)
elif regime == 3:
eta = 10.0**An*Mj**(6.6*FL_term*FL_term)
elif regime == 4:
eta = 0.5*10.0**An*Mj*Mj*(sqrt(2.0))**(6.6*FL_term*FL_term)
elif regime == 5:
eta = 0.5*10.0**An*Mj5*Mj5*(sqrt(2.0))**(6.6*FL_term*FL_term)
# print('eta', eta)
Wa = eta*Wm
rho2 = rho*(P2/P1)
# Speed of sound
c2 = sqrt(k*R*T2/(MW/1000.))
Mo = 4.0*m/(pi*d*d*rho2*c2)
M2 = 4.0*m/(pi*Di*Di*rho2*c2)
# print('M2', M2)
Lg = 16.0*log10(1.0/(1.0 - min(M2, 0.3))) # dB
if M2 > 0.3:
Up = 4.0*m/(pi*rho2*Di*Di)
UR = Up*Di*Di/(beta*d*d)
WmR = 0.5*m*UR*UR*( (1.0 - d*d/(Di*Di))**2 + 0.2)
fpR = Stp*UR/d
MR = UR/c2
# Value listed in appendix here is wrong, "based on another
# earlier standard. Calculation thereon is wrong". Assumed
# correct, matches spreadsheet to three decimals.
eta_R = 10**An*MR**3
WaR = eta_R*WmR
L_piR = 10.0*log10((3.2E9)*WaR*rho2*c2/(Di*Di)) + Lg
# print('Up', Up)
# print('UR', UR)
# print('WmR', WmR)
# print('fpR', fpR)
# print('MR', MR)
# print('eta_R', eta_R, eta_R/8.8E-4)
# print('WaR', WaR)
# print('L_piR', L_piR)
L_pi = 10.0*log10((3.2E9)*Wa*rho2*c2/(Di*Di)) + Lg
# print('L_pi', L_pi)
fr = c_pipe/(pi*Di)
fo = 0.25*fr*(c2/c_air)
fg = sqrt(3)*c_air**2/(pi*t_pipe*c_pipe)
if d > 0.15:
dTL = 0.0
elif 0.05 <= d <= 0.15:
dTL = -16660.0*d**3 + 6370.0*d**2 - 813.0*d + 35.8
else:
dTL = 9.0
# print(dTL, 'dTL')
P_air_ratio = P_air/P_air_std
LpAe1m_sum = 0.0
# LPis = []
# LPIRs = []
# L_pe1m_fis = []
for fi, A_weight in zip(fis_l_2015, A_weights_l_2015):
# This gets adjusted when Ma > 0.3
fi_turb_ratio = fi*fp_inv
t1 = 1.0 + (0.5*fi_turb_ratio)**2.5
t2 = 1.0 + (0.5/fi_turb_ratio)**1.7
# Formula forgot to use log10, but log10 is needed for the numbers
Lpif = L_pi - 8.0 - 10.0*log10(t1*t2)
# print(Lpif, 'Lpif')
# LPis.append(Lpif)
if M2 > 0.3:
fiR_turb_ratio = fi/fpR
t1 = 1.0 + (0.5*fiR_turb_ratio)**2.5
t2 = 1.0 + (0.5/fiR_turb_ratio)**1.7
# Again, log10 is missing
LpiRf = L_piR - 8.0 - 10.0*log10(t1*t2)
# LPIRs.append(LpiRf)
LpiSf = 10.0*log10( 10**(0.1*Lpif) + 10.0**(0.1*LpiRf) )
if fi < fo:
Gx = (fo/fr)**(2.0/3.0)*(fi/fo)**4.0
if fo < fg:
Gy = (fo/fg)
else:
Gy = 1.0
else:
if fi < fr:
Gx = sqrt(fi/fr)
else:
Gx = 1.0
if fi < fg:
Gy = fi/fg
else:
Gy = 1.0
eta_s = sqrt(0.01/fi)
# print('eta_s', eta_s)
# up to eta_s is good
den = (rho2*c2 + 2.0*pi*t_pipe*fi*rho_pipe*eta_s)/(415.0*Gy) + 1.0
TL_fi = 10.0*log10(8.25E-7*(c2/(t_pipe*fi))**2*Gx/den*P_air_ratio) - dTL
# Formula forgot to use log10, but log10 is needed for the numbers
if M2 > 0.3:
term = LpiSf
else:
term = Lpif
L_pe1m_fi = term + TL_fi - 10.0*log10((Di + 2.0*t_pipe + 2.0)/(Di + 2.0*t_pipe))
# L_pe1m_fis.append(L_pe1m_fi)
# print(L_pe1m_fi)
LpAe1m_sum += 10.0**(0.1*(L_pe1m_fi + A_weight))
LpAe1m = 10.0*log10(LpAe1m_sum)
return LpAe1m
|