File: core.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (3043 lines) | stat: -rw-r--r-- 78,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018, 2019, 2020 Caleb Bell
<Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

This module contains basic fluid mechanics and engineering calculations which
have been found useful by the author. The main functionality is calculating
dimensionless numbers, interconverting different forms of loss coefficients,
and converting temperature units.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.

.. contents:: :local:

Dimensionless Numbers
---------------------
.. autofunction:: Archimedes
.. autofunction:: Bejan_L
.. autofunction:: Bejan_p
.. autofunction:: Biot
.. autofunction:: Boiling
.. autofunction:: Bond
.. autofunction:: Capillary
.. autofunction:: Cavitation
.. autofunction:: Confinement
.. autofunction:: Dean
.. autofunction:: Drag
.. autofunction:: Eckert
.. autofunction:: Euler
.. autofunction:: Fourier_heat
.. autofunction:: Fourier_mass
.. autofunction:: Froude
.. autofunction:: Froude_densimetric
.. autofunction:: Graetz_heat
.. autofunction:: Grashof
.. autofunction:: Hagen
.. autofunction:: Jakob
.. autofunction:: Knudsen
.. autofunction:: Lewis
.. autofunction:: Mach
.. autofunction:: Morton
.. autofunction:: Nusselt
.. autofunction:: Ohnesorge
.. autofunction:: Peclet_heat
.. autofunction:: Peclet_mass
.. autofunction:: Power_number
.. autofunction:: Prandtl
.. autofunction:: Rayleigh
.. autofunction:: relative_roughness
.. autofunction:: Reynolds
.. autofunction:: Schmidt
.. autofunction:: Sherwood
.. autofunction:: Stanton
.. autofunction:: Stokes_number
.. autofunction:: Strouhal
.. autofunction:: Suratman
.. autofunction:: Weber

Loss Coefficient Converters
---------------------------
.. autofunction:: K_from_f
.. autofunction:: K_from_L_equiv
.. autofunction:: L_equiv_from_K
.. autofunction:: L_from_K
.. autofunction:: dP_from_K
.. autofunction:: head_from_K
.. autofunction:: head_from_P
.. autofunction:: f_from_K
.. autofunction:: P_from_head

Temperature Conversions
-----------------------
These functions used to be part of SciPy, but were removed in favor
of a slower function `convert_temperature` which removes code duplication but
doesn't have the same convenience or easy to remember signature.

.. autofunction:: C2K
.. autofunction:: K2C
.. autofunction:: F2C
.. autofunction:: C2F
.. autofunction:: F2K
.. autofunction:: K2F
.. autofunction:: C2R
.. autofunction:: K2R
.. autofunction:: F2R
.. autofunction:: R2C
.. autofunction:: R2K
.. autofunction:: R2F

Miscellaneous Functions
-----------------------
.. autofunction:: thermal_diffusivity
.. autofunction:: c_ideal_gas
.. autofunction:: nu_mu_converter
.. autofunction:: gravity

"""
import sys
from math import pi, sin, sqrt

from fluids.constants import R, g

"""
Additional copyright:
The functions C2K, K2C, F2C, C2F, F2K, K2F, C2R, K2R, F2R, R2C, R2K, R2F
were deprecated from scipy but are still wanted by fluids
Taken from scipy/constants/constants.py as in commit
https://github.com/scipy/scipy/commit/4b7d325cd50e8828b06d628e69426a18283dc5b5
Also from https://github.com/scipy/scipy/pull/5292
by Gillu13  (Gilles Aouizerate)
They are copyright individual contributors to SciPy, under the BSD 3-Clause
The license of scipy is as follows:

    Copyright (c) 2001-2002 Enthought, Inc.  2003-2019, SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following
   disclaimer in the documentation and/or other materials provided
   with the distribution.

3. Neither the name of the copyright holder nor the names of its
   contributors may be used to endorse or promote products derived
   from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""


__all__ = ['Reynolds', 'Prandtl', 'Grashof', 'Nusselt', 'Sherwood', 'Rayleigh',
'Schmidt', 'Peclet_heat', 'Peclet_mass', 'Fourier_heat', 'Fourier_mass',
'Graetz_heat', 'Lewis', 'Weber', 'Mach', 'Knudsen', 'Bond', 'Dean', 'Morton',
'Froude', 'Froude_densimetric', 'Strouhal', 'Biot', 'Stanton', 'Euler', 'Cavitation', 'Eckert',
'Jakob', 'Power_number', 'Stokes_number', 'Drag', 'Capillary', 'Bejan_L', 'Bejan_p', 'Boiling',
'Confinement', 'Archimedes', 'Ohnesorge', 'Suratman', 'Hagen', 'thermal_diffusivity', 'c_ideal_gas',
'relative_roughness', 'nu_mu_converter', 'gravity',
'K_from_f', 'K_from_L_equiv', 'L_equiv_from_K', 'L_from_K', 'dP_from_K',
'head_from_K', 'head_from_P', 'f_from_K',
'P_from_head', 'Eotvos',
'C2K', 'K2C', 'F2C', 'C2F', 'F2K', 'K2F', 'C2R', 'K2R', 'F2R', 'R2C', 'R2K', 'R2F',
'PY3',
]

version_components = sys.version.split('.')
PY_MAJOR, PY_MINOR = int(version_components[0]), int(version_components[1])
PY3 = PY_MAJOR >= 3


### Not quite dimensionless groups
def thermal_diffusivity(k, rho, Cp):
    r'''Calculates thermal diffusivity or `alpha` for a fluid with the given
    parameters.

    .. math::
        \alpha = \frac{k}{\rho Cp}

    Parameters
    ----------
    k : float
        Thermal conductivity, [W/m/K]
    rho : float
        Density, [kg/m^3]
    Cp : float
        Heat capacity, [J/kg/K]

    Returns
    -------
    alpha : float
        Thermal diffusivity, [m^2/s]

    Notes
    -----

    Examples
    --------
    >>> thermal_diffusivity(k=0.02, rho=1., Cp=1000.)
    2e-05

    References
    ----------
    .. [1] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.:
       Van Nostrand Reinhold Co., 1984.
    '''
    return k/(rho*Cp)


### Ideal gas fluid properties


def c_ideal_gas(T, k, MW):
    r'''Calculates speed of sound `c` in an ideal gas at temperature T.

    .. math::
        c = \sqrt{kR_{specific}T}

    Parameters
    ----------
    T : float
        Temperature of fluid, [K]
    k : float
        Isentropic exponent of fluid, [-]
    MW : float
        Molecular weight of fluid, [g/mol]

    Returns
    -------
    c : float
        Speed of sound in fluid, [m/s]

    Notes
    -----
    Used in compressible flow calculations.
    Note that the gas constant used is the specific gas constant:

    .. math::
        R_{specific} = R\frac{1000}{MW}

    Examples
    --------
    >>> c_ideal_gas(T=303, k=1.4, MW=28.96)
    348.9820953185441

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    Rspecific = R*1000./MW
    return sqrt(k*Rspecific*T)


### Dimensionless groups with documentation

def Reynolds(V, D, rho=None, mu=None, nu=None):
    r'''Calculates Reynolds number or `Re` for a fluid with the given
    properties for the specified velocity and diameter.

    .. math::
        Re = \frac{D \cdot V}{\nu} = \frac{\rho V D}{\mu}

    Inputs either of any of the following sets:

    * V, D, density `rho` and dynamic viscosity `mu`
    * V, D, and kinematic viscosity `nu`

    Parameters
    ----------
    V : float
        Velocity [m/s]
    D : float
        Diameter [m]
    rho : float, optional
        Density, [kg/m^3]
    mu : float, optional
        Dynamic viscosity, [Pa*s]
    nu : float, optional
        Kinematic viscosity, [m^2/s]

    Returns
    -------
    Re : float
        Reynolds number []

    Notes
    -----
    .. math::
        Re = \frac{\text{Momentum}}{\text{Viscosity}}

    An error is raised if none of the required input sets are provided.

    Examples
    --------
    >>> Reynolds(2.5, 0.25, 1.1613, 1.9E-5)
    38200.65789473684
    >>> Reynolds(2.5, 0.25, nu=1.636e-05)
    38202.93398533008

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    if rho is not None and mu is not None:
        nu = mu/rho
    elif nu is None:
        raise ValueError('Either density and viscosity, or dynamic viscosity, \
        is needed')
    return V*D/nu


def Peclet_heat(V, L, rho=None, Cp=None, k=None, alpha=None):
    r'''Calculates heat transfer Peclet number or `Pe` for a specified velocity
    `V`, characteristic length `L`, and specified properties for the given
    fluid.

    .. math::
        Pe = \frac{VL\rho C_p}{k} = \frac{LV}{\alpha}

    Inputs either of any of the following sets:

    * V, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k`
    * V, L, and thermal diffusivity `alpha`

    Parameters
    ----------
    V : float
        Velocity [m/s]
    L : float
        Characteristic length [m]
    rho : float, optional
        Density, [kg/m^3]
    Cp : float, optional
        Heat capacity, [J/kg/K]
    k : float, optional
        Thermal conductivity, [W/m/K]
    alpha : float, optional
        Thermal diffusivity, [m^2/s]

    Returns
    -------
    Pe : float
        Peclet number (heat) []

    Notes
    -----
    .. math::
        Pe = \frac{\text{Bulk heat transfer}}{\text{Conduction heat transfer}}

    An error is raised if none of the required input sets are provided.

    Examples
    --------
    >>> Peclet_heat(1.5, 2, 1000., 4000., 0.6)
    20000000.0
    >>> Peclet_heat(1.5, 2, alpha=1E-7)
    30000000.0

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    if rho is not None and Cp is not None and k is not None:
        alpha =  k/(rho*Cp)
    elif alpha is None:
        raise ValueError('Either heat capacity and thermal conductivity and\
        density, or thermal diffusivity is needed')
    return V*L/alpha


def Peclet_mass(V, L, D):
    r'''Calculates mass transfer Peclet number or `Pe` for a specified velocity
    `V`, characteristic length `L`, and diffusion coefficient `D`.

    .. math::
        Pe = \frac{L V}{D}

    Parameters
    ----------
    V : float
        Velocity [m/s]
    L : float
        Characteristic length [m]
    D : float
        Diffusivity of a species, [m^2/s]

    Returns
    -------
    Pe : float
        Peclet number (mass) []

    Notes
    -----
    .. math::
        Pe = \frac{\text{Advective transport rate}}{\text{Diffusive transport rate}}

    Examples
    --------
    >>> Peclet_mass(1.5, 2, 1E-9)
    3000000000.0

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    '''
    return V*L/D


def Fourier_heat(t, L, rho=None, Cp=None, k=None, alpha=None):
    r'''Calculates heat transfer Fourier number or `Fo` for a specified time
    `t`, characteristic length `L`, and specified properties for the given
    fluid.

    .. math::
        Fo = \frac{k t}{C_p \rho L^2} = \frac{\alpha t}{L^2}

    Inputs either of any of the following sets:

    * t, L, density `rho`, heat capacity `Cp`, and thermal conductivity `k`
    * t, L, and thermal diffusivity `alpha`

    Parameters
    ----------
    t : float
        time [s]
    L : float
        Characteristic length [m]
    rho : float, optional
        Density, [kg/m^3]
    Cp : float, optional
        Heat capacity, [J/kg/K]
    k : float, optional
        Thermal conductivity, [W/m/K]
    alpha : float, optional
        Thermal diffusivity, [m^2/s]

    Returns
    -------
    Fo : float
        Fourier number (heat) []

    Notes
    -----
    .. math::
        Fo = \frac{\text{Heat conduction rate}}
        {\text{Rate of thermal energy storage in a solid}}

    An error is raised if none of the required input sets are provided.

    Examples
    --------
    >>> Fourier_heat(t=1.5, L=2, rho=1000., Cp=4000., k=0.6)
    5.625e-08
    >>> Fourier_heat(1.5, 2, alpha=1E-7)
    3.75e-08

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    if rho is not None and Cp is not None and k is not None:
        alpha =  k/(rho*Cp)
    elif alpha is None:
        raise ValueError('Either heat capacity and thermal conductivity and \
density, or thermal diffusivity is needed')
    return t*alpha/(L*L)


def Fourier_mass(t, L, D):
    r'''Calculates mass transfer Fourier number or `Fo` for a specified time
    `t`, characteristic length `L`, and diffusion coefficient `D`.

    .. math::
        Fo = \frac{D t}{L^2}

    Parameters
    ----------
    t : float
        time [s]
    L : float
        Characteristic length [m]
    D : float
        Diffusivity of a species, [m^2/s]

    Returns
    -------
    Fo : float
        Fourier number (mass) []

    Notes
    -----
    .. math::
        Fo = \frac{\text{Diffusive transport rate}}{\text{Storage rate}}

    Examples
    --------
    >>> Fourier_mass(t=1.5, L=2, D=1E-9)
    3.7500000000000005e-10

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    '''
    return t*D/(L*L)


def Graetz_heat(V, D, x, rho=None, Cp=None, k=None, alpha=None):
    r'''Calculates Graetz number or `Gz` for a specified velocity
    `V`, diameter `D`, axial distance `x`, and specified properties for the
    given fluid.

    .. math::
        Gz = \frac{VD^2\cdot C_p \rho}{x\cdot k} = \frac{VD^2}{x \alpha}

    Inputs either of any of the following sets:

    * V, D, x, density `rho`, heat capacity `Cp`, and thermal conductivity `k`
    * V, D, x, and thermal diffusivity `alpha`

    Parameters
    ----------
    V : float
        Velocity, [m/s]
    D : float
        Diameter [m]
    x : float
        Axial distance [m]
    rho : float, optional
        Density, [kg/m^3]
    Cp : float, optional
        Heat capacity, [J/kg/K]
    k : float, optional
        Thermal conductivity, [W/m/K]
    alpha : float, optional
        Thermal diffusivity, [m^2/s]

    Returns
    -------
    Gz : float
        Graetz number []

    Notes
    -----
    .. math::
        Gz = \frac{\text{Time for radial heat diffusion in a fluid by conduction}}
        {\text{Time taken by fluid to reach distance x}}

    .. math::
        Gz = \frac{D}{x}RePr

    An error is raised if none of the required input sets are provided.

    Examples
    --------
    >>> Graetz_heat(1.5, 0.25, 5, 800., 2200., 0.6)
    55000.0
    >>> Graetz_heat(1.5, 0.25, 5, alpha=1E-7)
    187500.0

    References
    ----------
    .. [1] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and
       David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ:
       Wiley, 2011.
    '''
    if rho is not None and Cp is not None and k is not None:
        alpha = k/(rho*Cp)
    elif alpha is None:
        raise ValueError('Either heat capacity and thermal conductivity and\
        density, or thermal diffusivity is needed')
    return V*D*D/(x*alpha)


def Schmidt(D, mu=None, nu=None, rho=None):
    r'''Calculates Schmidt number or `Sc` for a fluid with the given
    parameters.

    .. math::
        Sc = \frac{\mu}{D\rho} = \frac{\nu}{D}

    Inputs can be any of the following sets:

    * Diffusivity, dynamic viscosity, and density
    * Diffusivity and kinematic viscosity

    Parameters
    ----------
    D : float
        Diffusivity of a species, [m^2/s]
    mu : float, optional
        Dynamic viscosity, [Pa*s]
    nu : float, optional
        Kinematic viscosity, [m^2/s]
    rho : float, optional
        Density, [kg/m^3]

    Returns
    -------
    Sc : float
        Schmidt number []

    Notes
    -----
    .. math::
        Sc =\frac{\text{kinematic viscosity}}{\text{molecular diffusivity}}
        = \frac{\text{viscous diffusivity}}{\text{species diffusivity}}

    An error is raised if none of the required input sets are provided.

    Examples
    --------
    >>> Schmidt(D=2E-6, mu=4.61E-6, rho=800)
    0.00288125
    >>> Schmidt(D=1E-9, nu=6E-7)
    599.9999999999999

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    if rho is not None and mu is not None:
        return mu/(rho*D)
    elif nu is not None:
        return nu/D
    else:
        raise ValueError('Insufficient information provided for Schmidt number calculation')


def Lewis(D=None, alpha=None, Cp=None, k=None, rho=None):
    r'''Calculates Lewis number or `Le` for a fluid with the given parameters.

    .. math::
        Le = \frac{k}{\rho C_p D} = \frac{\alpha}{D}

    Inputs can be either of the following sets:

    * Diffusivity and Thermal diffusivity
    * Diffusivity, heat capacity, thermal conductivity, and density

    Parameters
    ----------
    D : float
        Diffusivity of a species, [m^2/s]
    alpha : float, optional
        Thermal diffusivity, [m^2/s]
    Cp : float, optional
        Heat capacity, [J/kg/K]
    k : float, optional
        Thermal conductivity, [W/m/K]
    rho : float, optional
        Density, [kg/m^3]

    Returns
    -------
    Le : float
        Lewis number []

    Notes
    -----
    .. math::
        Le=\frac{\text{Thermal diffusivity}}{\text{Mass diffusivity}} =
        \frac{Sc}{Pr}

    An error is raised if none of the required input sets are provided.

    Examples
    --------
    >>> Lewis(D=22.6E-6, alpha=19.1E-6)
    0.8451327433628318
    >>> Lewis(D=22.6E-6, rho=800., k=.2, Cp=2200)
    0.00502815768302494

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
       Berlin; New York:: Springer, 2010.
    '''
    if k is not None and Cp is not None and rho is not None:
        alpha = k/(rho*Cp)
    elif alpha is None:
        raise ValueError('Insufficient information provided for Le calculation')
    return alpha/D


def Weber(V, L, rho, sigma):
    r'''Calculates Weber number, `We`, for a fluid with the given density,
    surface tension, velocity, and geometric parameter (usually diameter
    of bubble).

    .. math::
        We = \frac{V^2 L\rho}{\sigma}

    Parameters
    ----------
    V : float
        Velocity of fluid, [m/s]
    L : float
        Characteristic length, typically bubble diameter [m]
    rho : float
        Density of fluid, [kg/m^3]
    sigma : float
        Surface tension, [N/m]

    Returns
    -------
    We : float
        Weber number []

    Notes
    -----
    Used in bubble calculations.

    .. math::
        We = \frac{\text{inertial force}}{\text{surface tension force}}

    Examples
    --------
    >>> Weber(V=0.18, L=0.001, rho=900., sigma=0.01)
    2.916

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
       Berlin; New York:: Springer, 2010.
    '''
    return V*V*L*rho/sigma


def Mach(V, c):
    r'''Calculates Mach number or `Ma` for a fluid of velocity `V` with speed
    of sound `c`.

    .. math::
        Ma = \frac{V}{c}

    Parameters
    ----------
    V : float
        Velocity of fluid, [m/s]
    c : float
        Speed of sound in fluid, [m/s]

    Returns
    -------
    Ma : float
        Mach number []

    Notes
    -----
    Used in compressible flow calculations.

    .. math::
        Ma = \frac{\text{fluid velocity}}{\text{sonic velocity}}

    Examples
    --------
    >>> Mach(33., 330)
    0.1

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return V/c


def Confinement(D, rhol, rhog, sigma, g=g):
    r'''Calculates Confinement number or `Co` for a fluid in a channel of
    diameter `D` with liquid and gas densities `rhol` and `rhog` and surface
    tension `sigma`, under the influence of gravitational force `g`.

    .. math::
        \text{Co}=\frac{\left[\frac{\sigma}{g(\rho_l-\rho_g)}\right]^{0.5}}{D}

    Parameters
    ----------
    D : float
        Diameter of channel, [m]
    rhol : float
        Density of liquid phase, [kg/m^3]
    rhog : float
        Density of gas phase, [kg/m^3]
    sigma : float
        Surface tension between liquid-gas phase, [N/m]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    Co : float
        Confinement number [-]

    Notes
    -----
    Used in two-phase pressure drop and heat transfer correlations. First used
    in [1]_ according to [3]_.

    .. math::
        \text{Co} = \frac{\frac{\text{surface tension force}}
        {\text{buoyancy force}}}{\text{Channel area}}

    Examples
    --------
    >>> Confinement(0.001, 1077, 76.5, 4.27E-3)
    0.6596978265315191

    References
    ----------
    .. [1] Cornwell, Keith, and Peter A. Kew. "Boiling in Small Parallel
       Channels." In Energy Efficiency in Process Technology, edited by Dr P.
       A. Pilavachi, 624-638. Springer Netherlands, 1993.
       doi:10.1007/978-94-011-1454-7_56.
    .. [2] Kandlikar, Satish G. Heat Transfer and Fluid Flow in Minichannels
       and Microchannels. Elsevier, 2006.
    .. [3] Tran, T. N, M. -C Chyu, M. W Wambsganss, and D. M France. Two-Phase
       Pressure Drop of Refrigerants during Flow Boiling in Small Channels: An
       Experimental Investigation and Correlation Development." International
       Journal of Multiphase Flow 26, no. 11 (November 1, 2000): 1739-54.
       doi:10.1016/S0301-9322(99)00119-6.
    '''
    return sqrt(sigma/(g*(rhol-rhog)))/D


def Morton(rhol, rhog, mul, sigma, g=g):
    r'''Calculates Morton number or `Mo` for a liquid and vapor with the
    specified properties, under the influence of gravitational force `g`.

    .. math::
        Mo = \frac{g \mu_l^4(\rho_l - \rho_g)}{\rho_l^2 \sigma^3}

    Parameters
    ----------
    rhol : float
        Density of liquid phase, [kg/m^3]
    rhog : float
        Density of gas phase, [kg/m^3]
    mul : float
        Viscosity of liquid phase, [Pa*s]
    sigma : float
        Surface tension between liquid-gas phase, [N/m]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    Mo : float
        Morton number, [-]

    Notes
    -----
    Used in modeling bubbles in liquid.

    Examples
    --------
    >>> Morton(1077.0, 76.5, 4.27E-3, 0.023)
    2.311183104430743e-07

    References
    ----------
    .. [1] Kunes, Josef. Dimensionless Physical Quantities in Science and
       Engineering. Elsevier, 2012.
    .. [2] Yan, Xiaokang, Kaixin Zheng, Yan Jia, Zhenyong Miao, Lijun Wang,
       Yijun Cao, and Jiongtian Liu. “Drag Coefficient Prediction of a Single
       Bubble Rising in Liquids.” Industrial & Engineering Chemistry Research,
       April 2, 2018. https://doi.org/10.1021/acs.iecr.7b04743.
    '''
    mul2 = mul*mul
    return g*mul2*mul2*(rhol - rhog)/(rhol*rhol*sigma*sigma*sigma)


def Knudsen(path, L):
    r'''Calculates Knudsen number or `Kn` for a fluid with mean free path
    `path` and for a characteristic length `L`.

    .. math::
        Kn = \frac{\lambda}{L}

    Parameters
    ----------
    path : float
        Mean free path between molecular collisions, [m]
    L : float
        Characteristic length, [m]

    Returns
    -------
    Kn : float
        Knudsen number []

    Notes
    -----
    Used in mass transfer calculations.

    .. math::
        Kn = \frac{\text{Mean free path length}}{\text{Characteristic length}}

    Examples
    --------
    >>> Knudsen(1e-10, .001)
    1e-07

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return path/L


def Prandtl(Cp=None, k=None, mu=None, nu=None, rho=None, alpha=None):
    r'''Calculates Prandtl number or `Pr` for a fluid with the given
    parameters.

    .. math::
        Pr = \frac{C_p \mu}{k} = \frac{\nu}{\alpha} = \frac{C_p \rho \nu}{k}

    Inputs can be any of the following sets:

    * Heat capacity, dynamic viscosity, and thermal conductivity
    * Thermal diffusivity and kinematic viscosity
    * Heat capacity, kinematic viscosity, thermal conductivity, and density

    Parameters
    ----------
    Cp : float
        Heat capacity, [J/kg/K]
    k : float
        Thermal conductivity, [W/m/K]
    mu : float, optional
        Dynamic viscosity, [Pa*s]
    nu : float, optional
        Kinematic viscosity, [m^2/s]
    rho : float
        Density, [kg/m^3]
    alpha : float
        Thermal diffusivity, [m^2/s]

    Returns
    -------
    Pr : float
        Prandtl number []

    Notes
    -----
    .. math::
        Pr=\frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}}

    An error is raised if none of the required input sets are provided.

    Examples
    --------
    >>> Prandtl(Cp=1637., k=0.010, mu=4.61E-6)
    0.754657
    >>> Prandtl(Cp=1637., k=0.010, nu=6.4E-7, rho=7.1)
    0.7438528
    >>> Prandtl(nu=6.3E-7, alpha=9E-7)
    0.7000000000000001

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
       Berlin; New York:: Springer, 2010.
    '''
    if k is not None and Cp is not None and mu is not None:
        return Cp*mu/k
    elif nu is not None and rho is not None and Cp is not None and k is not None:
        return nu*rho*Cp/k
    elif nu is not None and alpha is not None:
        return nu/alpha
    else:
        raise ValueError('Insufficient information provided for Pr calculation')


def Grashof(L, beta, T1, T2=0, rho=None, mu=None, nu=None, g=g):
    r'''Calculates Grashof number or `Gr` for a fluid with the given
    properties, temperature difference, and characteristic length.

    .. math::
        Gr = \frac{g\beta (T_s-T_\infty)L^3}{\nu^2}
        = \frac{g\beta (T_s-T_\infty)L^3\rho^2}{\mu^2}

    Inputs either of any of the following sets:

    * L, beta, T1 and T2, and density `rho` and kinematic viscosity `mu`
    * L, beta, T1 and T2, and dynamic viscosity `nu`

    Parameters
    ----------
    L : float
        Characteristic length [m]
    beta : float
        Volumetric thermal expansion coefficient [1/K]
    T1 : float
        Temperature 1, usually a film temperature [K]
    T2 : float, optional
        Temperature 2, usually a bulk temperature (or 0 if only a difference
        is provided to the function) [K]
    rho : float, optional
        Density, [kg/m^3]
    mu : float, optional
        Dynamic viscosity, [Pa*s]
    nu : float, optional
        Kinematic viscosity, [m^2/s]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    Gr : float
        Grashof number []

    Notes
    -----
    .. math::
        Gr = \frac{\text{Buoyancy forces}}{\text{Viscous forces}}

    An error is raised if none of the required input sets are provided.
    Used in free convection problems only.

    Examples
    --------
    Example 4 of [1]_, p. 1-21 (matches):

    >>> Grashof(L=0.9144, beta=0.000933, T1=178.2, rho=1.1613, mu=1.9E-5)
    4656936556.178915
    >>> Grashof(L=0.9144, beta=0.000933, T1=378.2, T2=200, nu=1.636e-05)
    4657491516.530312

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    if rho is not None and mu is not None:
        nu = mu/rho
    elif nu is None:
        raise ValueError('Either density and viscosity, or dynamic viscosity, \
        is needed')
    return g*beta*abs(T2-T1)*L*L*L/(nu*nu)


def Bond(rhol, rhog, sigma, L):
    r'''Calculates Bond number, `Bo` also known as Eotvos number,
    for a fluid with the given liquid and gas densities, surface tension,
    and geometric parameter (usually length).

    .. math::
        Bo = \frac{g(\rho_l-\rho_g)L^2}{\sigma}

    Parameters
    ----------
    rhol : float
        Density of liquid, [kg/m^3]
    rhog : float
        Density of gas, [kg/m^3]
    sigma : float
        Surface tension, [N/m]
    L : float
        Characteristic length, [m]

    Returns
    -------
    Bo : float
        Bond number []

    Examples
    --------
    >>> Bond(1000., 1.2, .0589, 2)
    665187.2339558573

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    '''
    return (g*(rhol-rhog)*L*L/sigma)

Eotvos = Bond


def Rayleigh(Pr, Gr):
    r'''Calculates Rayleigh number or `Ra` using Prandtl number `Pr` and
    Grashof number `Gr` for a fluid with the given
    properties, temperature difference, and characteristic length used
    to calculate `Gr` and `Pr`.

    .. math::
        Ra = PrGr

    Parameters
    ----------
    Pr : float
        Prandtl number []
    Gr : float
        Grashof number []

    Returns
    -------
    Ra : float
        Rayleigh number []

    Notes
    -----
    Used in free convection problems only.

    Examples
    --------
    >>> Rayleigh(1.2, 4.6E9)
    5520000000.0

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return Pr*Gr


def Froude(V, L, g=g, squared=False):
    r'''Calculates Froude number `Fr` for velocity `V` and geometric length
    `L`. If desired, gravity can be specified as well. Normally the function
    returns the result of the equation below; Froude number is also often
    said to be defined as the square of the equation below.

    .. math::
        Fr = \frac{V}{\sqrt{gL}}

    Parameters
    ----------
    V : float
        Velocity of the particle or fluid, [m/s]
    L : float
        Characteristic length, no typical definition [m]
    g : float, optional
        Acceleration due to gravity, [m/s^2]
    squared : bool, optional
        Whether to return the squared form of Froude number

    Returns
    -------
    Fr : float
        Froude number, [-]

    Notes
    -----
    Many alternate definitions including density ratios have been used.

    .. math::
        Fr = \frac{\text{Inertial Force}}{\text{Gravity Force}}

    Examples
    --------
    >>> Froude(1.83, L=2., g=1.63)
    1.0135432593877318
    >>> Froude(1.83, L=2., squared=True)
    0.17074638128208924

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    Fr = V/sqrt(L*g)
    if squared:
        Fr *= Fr
    return Fr


def Froude_densimetric(V, L, rho1, rho2, heavy=True, g=g):
    r'''Calculates the densimetric Froude number :math:`Fr_{den}` for velocity
    `V` geometric length `L`, heavier fluid density `rho1`, and lighter fluid
    density `rho2`. If desired, gravity can be specified as well. Depending on
    the application, this dimensionless number may be defined with the heavy
    phase or the light phase density in the numerator of the square root.
    For some applications, both need to be calculated. The default is to
    calculate with the heavy liquid ensity on top; set `heavy` to False
    to reverse this.

    .. math::
        Fr = \frac{V}{\sqrt{gL}} \sqrt{\frac{\rho_\text{(1 or 2)}}
        {\rho_1 - \rho_2}}

    Parameters
    ----------
    V : float
        Velocity of the specified phase, [m/s]
    L : float
        Characteristic length, no typical definition [m]
    rho1 : float
        Density of the heavier phase, [kg/m^3]
    rho2 : float
        Density of the lighter phase, [kg/m^3]
    heavy : bool, optional
        Whether or not the density used in the numerator is the heavy phase or
        the light phase, [-]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    Fr_den : float
        Densimetric Froude number, [-]

    Notes
    -----
    Many alternate definitions including density ratios have been used.

    .. math::
        Fr = \frac{\text{Inertial Force}}{\text{Gravity Force}}

    Where the gravity force is reduced by the relative densities of one fluid
    in another.

    Note that an Exception will be raised if rho1 > rho2, as the square root
    becomes negative.

    Examples
    --------
    >>> Froude_densimetric(1.83, L=2., rho1=800, rho2=1.2, g=9.81)
    0.4134543386272418
    >>> Froude_densimetric(1.83, L=2., rho1=800, rho2=1.2, g=9.81, heavy=False)
    0.016013017679205096

    References
    ----------
    .. [1] Hall, A, G Stobie, and R Steven. "Further Evaluation of the
       Performance of Horizontally Installed Orifice Plate and Cone
       Differential Pressure Meters with Wet Gas Flows." In International
       SouthEast Asia Hydrocarbon Flow Measurement Workshop, KualaLumpur,
       Malaysia, 2008.
    '''
    if heavy:
        rho3 = rho1
    else:
        rho3 = rho2
    return V/(sqrt(g*L))*sqrt(rho3/(rho1 - rho2))


def Strouhal(f, L, V):
    r'''Calculates Strouhal number `St` for a characteristic frequency `f`,
    characteristic length `L`, and velocity `V`.

    .. math::
        St = \frac{fL}{V}

    Parameters
    ----------
    f : float
        Characteristic frequency, usually that of vortex shedding, [Hz]
    L : float
        Characteristic length, [m]
    V : float
        Velocity of the fluid, [m/s]

    Returns
    -------
    St : float
        Strouhal number, [-]

    Notes
    -----
    Sometimes abbreviated to S or Sr.

    .. math::
        St = \frac{\text{Characteristic flow time}}
        {\text{Period of oscillation}}

    Examples
    --------
    >>> Strouhal(8, 2., 4.)
    4.0

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return f*L/V


def Nusselt(h, L, k):
    r'''Calculates Nusselt number `Nu` for a heat transfer coefficient `h`,
    characteristic length `L`, and thermal conductivity `k`.

    .. math::
        Nu = \frac{hL}{k}

    Parameters
    ----------
    h : float
        Heat transfer coefficient, [W/m^2/K]
    L : float
        Characteristic length, no typical definition [m]
    k : float
        Thermal conductivity of fluid [W/m/K]

    Returns
    -------
    Nu : float
        Nusselt number, [-]

    Notes
    -----
    Do not confuse k, the thermal conductivity of the fluid, with that
    of within a solid object associated with!

    .. math::
        Nu = \frac{\text{Convective heat transfer}}
        {\text{Conductive heat transfer}}

    Examples
    --------
    >>> Nusselt(1000., 1.2, 300.)
    4.0
    >>> Nusselt(10000., .01, 4000.)
    0.025

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and
       David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ:
       Wiley, 2011.
    '''
    return h*L/k


def Sherwood(K, L, D):
    r'''Calculates Sherwood number `Sh` for a mass transfer coefficient `K`,
    characteristic length `L`, and diffusivity `D`.

    .. math::
        Sh = \frac{KL}{D}

    Parameters
    ----------
    K : float
        Mass transfer coefficient, [m/s]
    L : float
        Characteristic length, no typical definition [m]
    D : float
        Diffusivity of a species [m/s^2]

    Returns
    -------
    Sh : float
        Sherwood number, [-]

    Notes
    -----
    .. math::
        Sh = \frac{\text{Mass transfer by convection}}
        {\text{Mass transfer by diffusion}} = \frac{K}{D/L}

    Examples
    --------
    >>> Sherwood(1000., 1.2, 300.)
    4.0

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    '''
    return K*L/D


def Biot(h, L, k):
    r'''Calculates Biot number `Br` for heat transfer coefficient `h`,
    geometric length `L`, and thermal conductivity `k`.

    .. math::
        Bi=\frac{hL}{k}

    Parameters
    ----------
    h : float
        Heat transfer coefficient, [W/m^2/K]
    L : float
        Characteristic length, no typical definition [m]
    k : float
        Thermal conductivity, within the object [W/m/K]

    Returns
    -------
    Bi : float
        Biot number, [-]

    Notes
    -----
    Do not confuse k, the thermal conductivity within the object, with that
    of the medium h is calculated with!

    .. math::
        Bi = \frac{\text{Surface thermal resistance}}
        {\text{Internal thermal resistance}}

    Examples
    --------
    >>> Biot(1000., 1.2, 300.)
    4.0
    >>> Biot(10000., .01, 4000.)
    0.025

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return h*L/k


def Stanton(h, V, rho, Cp):
    r'''Calculates Stanton number or `St` for a specified heat transfer
    coefficient `h`, velocity `V`, density `rho`, and heat capacity `Cp` [1]_
    [2]_.

    .. math::
        St = \frac{h}{V\rho Cp}

    Parameters
    ----------
    h : float
        Heat transfer coefficient, [W/m^2/K]
    V : float
        Velocity, [m/s]
    rho : float
        Density, [kg/m^3]
    Cp : float
        Heat capacity, [J/kg/K]

    Returns
    -------
    St : float
        Stanton number []

    Notes
    -----
    .. math::
        St = \frac{\text{Heat transfer coefficient}}{\text{Thermal capacity}}

    Examples
    --------
    >>> Stanton(5000, 5, 800, 2000.)
    0.000625

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and
       David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ:
       Wiley, 2011.
    '''
    return h/(V*rho*Cp)


def Euler(dP, rho, V):
    r'''Calculates Euler number or `Eu` for a fluid of velocity `V` and
    density `rho` experiencing a pressure drop `dP`.

    .. math::
        Eu = \frac{\Delta P}{\rho V^2}

    Parameters
    ----------
    dP : float
        Pressure drop experience by the fluid, [Pa]
    rho : float
        Density of the fluid, [kg/m^3]
    V : float
        Velocity of fluid, [m/s]

    Returns
    -------
    Eu : float
        Euler number []

    Notes
    -----
    Used in pressure drop calculations.
    Rarely, this number is divided by two.
    Named after Leonhard Euler applied calculus to fluid dynamics.

    .. math::
        Eu = \frac{\text{Pressure drop}}{2\cdot \text{velocity head}}

    Examples
    --------
    >>> Euler(1E5, 1000., 4)
    6.25

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return dP/(rho*V*V)


def Cavitation(P, Psat, rho, V):
    r'''Calculates Cavitation number or `Ca` for a fluid of velocity `V` with
    a pressure `P`, vapor pressure `Psat`, and density `rho`.

    .. math::
        Ca = \sigma_c = \sigma = \frac{P-P_{sat}}{\frac{1}{2}\rho V^2}

    Parameters
    ----------
    P : float
        Internal pressure of the fluid, [Pa]
    Psat : float
        Vapor pressure of the fluid, [Pa]
    rho : float
        Density of the fluid, [kg/m^3]
    V : float
        Velocity of fluid, [m/s]

    Returns
    -------
    Ca : float
        Cavitation number []

    Notes
    -----
    Used in determining if a flow through a restriction will cavitate.
    Sometimes, the multiplication by 2 will be omitted;

    .. math::
        Ca = \frac{\text{Pressure - Vapor pressure}}
        {\text{Inertial pressure}}

    Examples
    --------
    >>> Cavitation(2E5, 1E4, 1000, 10)
    3.8

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return (P-Psat)/(0.5*rho*V*V)


def Eckert(V, Cp, dT):
    r'''Calculates Eckert number or `Ec` for a fluid of velocity `V` with
    a heat capacity `Cp`, between two temperature given as `dT`.

    .. math::
        Ec = \frac{V^2}{C_p \Delta T}

    Parameters
    ----------
    V : float
        Velocity of fluid, [m/s]
    Cp : float
        Heat capacity of the fluid, [J/kg/K]
    dT : float
        Temperature difference, [K]

    Returns
    -------
    Ec : float
        Eckert number []

    Notes
    -----
    Used in certain heat transfer calculations. Fairly rare.

    .. math::
        Ec = \frac{\text{Kinetic energy} }{ \text{Enthalpy difference}}

    Examples
    --------
    >>> Eckert(10, 2000., 25.)
    0.002

    References
    ----------
    .. [1] Goldstein, Richard J. ECKERT NUMBER. Thermopedia. Hemisphere, 2011.
       10.1615/AtoZ.e.eckert_number
    '''
    return V*V/(Cp*dT)


def Jakob(Cp, Hvap, Te):
    r'''Calculates Jakob number or `Ja` for a boiling fluid with sensible heat
    capacity `Cp`, enthalpy of vaporization `Hvap`, and boiling at `Te` degrees
    above its saturation boiling point.

    .. math::
        Ja = \frac{C_{P}\Delta T_e}{\Delta H_{vap}}

    Parameters
    ----------
    Cp : float
        Heat capacity of the fluid, [J/kg/K]
    Hvap : float
        Enthalpy of vaporization of the fluid at its saturation temperature [J/kg]
    Te : float
        Temperature difference above the fluid's saturation boiling temperature, [K]

    Returns
    -------
    Ja : float
        Jakob number []

    Notes
    -----
    Used in boiling heat transfer analysis. Fairly rare.

    .. math::
        Ja = \frac{\Delta \text{Sensible heat}}{\Delta \text{Latent heat}}

    Examples
    --------
    >>> Jakob(4000., 2E6, 10.)
    0.02

    References
    ----------
    .. [1] Bergman, Theodore L., Adrienne S. Lavine, Frank P. Incropera, and
       David P. DeWitt. Introduction to Heat Transfer. 6E. Hoboken, NJ:
       Wiley, 2011.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return Cp*Te/Hvap


def Power_number(P, L, N, rho):
    r'''Calculates power number, `Po`, for an agitator applying a specified
    power `P` with a characteristic length `L`, rotational speed `N`, to
    a fluid with a specified density `rho`.

    .. math::
        Po = \frac{P}{\rho N^3 D^5}

    Parameters
    ----------
    P : float
        Power applied, [W]
    L : float
        Characteristic length, typically agitator diameter [m]
    N : float
        Speed [revolutions/second]
    rho : float
        Density of fluid, [kg/m^3]

    Returns
    -------
    Po : float
        Power number []

    Notes
    -----
    Used in mixing calculations.

    .. math::
        Po = \frac{\text{Power}}{\text{Rotational inertia}}

    Examples
    --------
    >>> Power_number(P=180, L=0.01, N=2.5, rho=800.)
    144000000.0

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return P/(rho*N*N*N*L**5)


def Drag(F, A, V, rho):
    r'''Calculates drag coefficient `Cd` for a given drag force `F`,
    projected area `A`, characteristic velocity `V`, and density `rho`.

    .. math::
        C_D = \frac{F_d}{A\cdot\frac{1}{2}\rho V^2}

    Parameters
    ----------
    F : float
        Drag force, [N]
    A : float
        Projected area, [m^2]
    V : float
        Characteristic velocity, [m/s]
    rho : float
        Density, [kg/m^3]

    Returns
    -------
    Cd : float
        Drag coefficient, [-]

    Notes
    -----
    Used in flow around objects, or objects flowing within a fluid.

    .. math::
        C_D = \frac{\text{Drag forces}}{\text{Projected area}\cdot
        \text{Velocity head}}

    Examples
    --------
    >>> Drag(1000, 0.0001, 5, 2000)
    400.0

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return F/(0.5*A*rho*V*V)


def Stokes_number(V, Dp, D, rhop, mu):
    r'''Calculates Stokes Number for a given characteristic velocity `V`,
    particle diameter `Dp`, characteristic diameter `D`, particle density
    `rhop`, and fluid viscosity `mu`.

    .. math::
        \text{Stk} = \frac{\rho_p V D_p^2}{18\mu_f D}

    Parameters
    ----------
    V : float
        Characteristic velocity (often superficial), [m/s]
    Dp : float
        Particle diameter, [m]
    D : float
        Characteristic diameter (ex demister wire diameter or cyclone
        diameter), [m]
    rhop : float
        Particle density, [kg/m^3]
    mu : float
        Fluid viscosity, [Pa*s]

    Returns
    -------
    Stk : float
        Stokes numer, [-]

    Notes
    -----
    Used in droplet impaction or collection studies.

    Examples
    --------
    >>> Stokes_number(V=0.9, Dp=1E-5, D=1E-3, rhop=1000, mu=1E-5)
    0.5

    References
    ----------
    .. [1] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013.
    .. [2] Al-Dughaither, Abdullah S., Ahmed A. Ibrahim, and Waheed A.
       Al-Masry. "Investigating Droplet Separation Efficiency in Wire-Mesh Mist
       Eliminators in Bubble Column." Journal of Saudi Chemical Society 14, no.
       4 (October 1, 2010): 331-39. https://doi.org/10.1016/j.jscs.2010.04.001.
    '''
    return rhop*V*(Dp*Dp)/(18.0*mu*D)


def Capillary(V, mu, sigma):
    r'''Calculates Capillary number `Ca` for a characteristic velocity `V`,
    viscosity `mu`, and surface tension `sigma`.

    .. math::
        Ca = \frac{V \mu}{\sigma}

    Parameters
    ----------
    V : float
        Characteristic velocity, [m/s]
    mu : float
        Dynamic viscosity, [Pa*s]
    sigma : float
        Surface tension, [N/m]

    Returns
    -------
    Ca : float
        Capillary number, [-]

    Notes
    -----
    Used in porous media calculations and film flow calculations.
    Surface tension may gas-liquid, or liquid-liquid.

    .. math::
        Ca = \frac{\text{Viscous forces}}
        {\text{Surface forces}}

    Examples
    --------
    >>> Capillary(1.2, 0.01, .1)
    0.12

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Kundu, Pijush K., Ira M. Cohen, and David R. Dowling. Fluid
       Mechanics. Academic Press, 2012.
    '''
    return V*mu/sigma


def Archimedes(L, rhof, rhop, mu, g=g):
    r'''Calculates Archimedes number, `Ar`, for a fluid and particle with the
    given densities, characteristic length, viscosity, and gravity
    (usually diameter of particle).

    .. math::
        Ar = \frac{L^3 \rho_f(\rho_p-\rho_f)g}{\mu^2}

    Parameters
    ----------
    L : float
        Characteristic length, typically particle diameter [m]
    rhof : float
        Density of fluid, [kg/m^3]
    rhop : float
        Density of particle, [kg/m^3]
    mu : float
        Viscosity of fluid, [N/m]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    Ar : float
        Archimedes number []

    Notes
    -----
    Used in fluid-particle interaction calculations.

    .. math::
        Ar = \frac{\text{Gravitational force}}{\text{Viscous force}}

    Examples
    --------
    >>> Archimedes(0.002, 2., 3000, 1E-3)
    470.4053872

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return L*L*L*rhof*(rhop-rhof)*g/(mu*mu)


def Ohnesorge(L, rho, mu, sigma):
    r'''Calculates Ohnesorge number, `Oh`, for a fluid with the given
    characteristic length, density, viscosity, and surface tension.

    .. math::
         \text{Oh} = \frac{\mu}{\sqrt{\rho \sigma L }}

    Parameters
    ----------
    L : float
        Characteristic length [m]
    rho : float
        Density of fluid, [kg/m^3]
    mu : float
        Viscosity of fluid, [Pa*s]
    sigma : float
        Surface tension, [N/m]

    Returns
    -------
    Oh : float
        Ohnesorge number []

    Notes
    -----
    Often used in spray calculations. Sometimes given the symbol Z.

    .. math::
        Oh = \frac{\sqrt{\text{We}}}{\text{Re}}= \frac{\text{viscous forces}}
        {\sqrt{\text{Inertia}\cdot\text{Surface tension}} }

    Examples
    --------
    >>> Ohnesorge(1E-4, 1000., 1E-3, 1E-1)
    0.01

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    '''
    return mu/sqrt(L*rho*sigma)


def Suratman(L, rho, mu, sigma):
    r'''Calculates Suratman number, `Su`, for a fluid with the given
    characteristic length, density, viscosity, and surface tension.

    .. math::
        \text{Su} = \frac{\rho\sigma L}{\mu^2}

    Parameters
    ----------
    L : float
        Characteristic length [m]
    rho : float
        Density of fluid, [kg/m^3]
    mu : float
        Viscosity of fluid, [Pa*s]
    sigma : float
        Surface tension, [N/m]

    Returns
    -------
    Su : float
        Suratman number []

    Notes
    -----
    Also known as Laplace number. Used in two-phase flow, especially the
    bubbly-slug regime. No confusion regarding the definition of this group
    has been observed.

    .. math::
        \text{Su} = \frac{\text{Re}^2}{\text{We}} =\frac{\text{Inertia}\cdot
        \text{Surface tension} }{\text{(viscous forces)}^2}

    The oldest reference to this group found by the author is in 1963, from
    [2]_.

    Examples
    --------
    >>> Suratman(1E-4, 1000., 1E-3, 1E-1)
    10000.0

    References
    ----------
    .. [1] Sen, Nilava. "Suratman Number in Bubble-to-Slug Flow Pattern
       Transition under Microgravity." Acta Astronautica 65, no. 3-4 (August
       2009): 423-28. doi:10.1016/j.actaastro.2009.02.013.
    .. [2] Catchpole, John P., and George. Fulford. "DIMENSIONLESS GROUPS."
       Industrial & Engineering Chemistry 58, no. 3 (March 1, 1966): 46-60.
       doi:10.1021/ie50675a012.
    '''
    return rho*sigma*L/(mu*mu)


def Hagen(Re, fd):
    r'''Calculates Hagen number, `Hg`, for a fluid with the given
    Reynolds number and friction factor.

    .. math::
        \text{Hg} = \frac{f_d}{2} Re^2 = \frac{1}{\rho}
        \frac{\Delta P}{\Delta z} \frac{D^3}{\nu^2}
        = \frac{\rho\Delta P D^3}{\mu^2 \Delta z}

    Parameters
    ----------
    Re : float
        Reynolds number [-]
    fd : float, optional
        Darcy friction factor, [-]

    Returns
    -------
    Hg : float
        Hagen number, [-]

    Notes
    -----
    Introduced in [1]_; further use of it is mostly of the correlations
    introduced in [1]_.

    Notable for use use in correlations, because it does not have any
    dependence on velocity.

    This expression is useful when designing backwards with a pressure drop
    spec already known.

    Examples
    --------
    Example from [3]_:

    >>> Hagen(Re=2610, fd=1.935235)
    6591507.17175

    References
    ----------
    .. [1] Martin, Holger. "The Generalized Lévêque Equation and Its Practical
       Use for the Prediction of Heat and Mass Transfer Rates from Pressure
       Drop." Chemical Engineering Science, Jean-Claude Charpentier
       Festschrift Issue, 57, no. 16 (August 1, 2002): 3217-23.
       https://doi.org/10.1016/S0009-2509(02)00194-X.
    .. [2] Shah, Ramesh K., and Dusan P. Sekulic. Fundamentals of Heat
       Exchanger Design. 1st edition. Hoboken, NJ: Wiley, 2002.
    .. [3] Gesellschaft, V. D. I., ed. VDI Heat Atlas. 2nd edition.
       Berlin; New York:: Springer, 2010.
    '''
    return 0.5*fd*Re*Re


def Bejan_L(dP, L, mu, alpha):
    r'''Calculates Bejan number of a length or `Be_L` for a fluid with the
    given parameters flowing over a characteristic length `L` and experiencing
    a pressure drop `dP`.

    .. math::
        Be_L = \frac{\Delta P L^2}{\mu \alpha}

    Parameters
    ----------
    dP : float
        Pressure drop, [Pa]
    L : float
        Characteristic length, [m]
    mu : float, optional
        Dynamic viscosity, [Pa*s]
    alpha : float
        Thermal diffusivity, [m^2/s]

    Returns
    -------
    Be_L : float
        Bejan number with respect to length []

    Notes
    -----
    Termed a dimensionless number by someone in 1988.

    Examples
    --------
    >>> Bejan_L(1E4, 1, 1E-3, 1E-6)
    10000000000000.0

    References
    ----------
    .. [1] Awad, M. M. "The Science and the History of the Two Bejan Numbers."
       International Journal of Heat and Mass Transfer 94 (March 2016): 101-3.
       doi:10.1016/j.ijheatmasstransfer.2015.11.073.
    .. [2] Bejan, Adrian. Convection Heat Transfer. 4E. Hoboken, New Jersey:
       Wiley, 2013.
    '''
    return dP*L*L/(alpha*mu)


def Bejan_p(dP, K, mu, alpha):
    r'''Calculates Bejan number of a permeability or `Be_p` for a fluid with
    the given parameters and a permeability `K` experiencing a pressure drop
    `dP`.

    .. math::
        Be_p = \frac{\Delta P K}{\mu \alpha}

    Parameters
    ----------
    dP : float
        Pressure drop, [Pa]
    K : float
        Permeability, [m^2]
    mu : float, optional
        Dynamic viscosity, [Pa*s]
    alpha : float
        Thermal diffusivity, [m^2/s]

    Returns
    -------
    Be_p : float
        Bejan number with respect to pore characteristics []

    Notes
    -----
    Termed a dimensionless number by someone in 1988.

    Examples
    --------
    >>> Bejan_p(1E4, 1, 1E-3, 1E-6)
    10000000000000.0

    References
    ----------
    .. [1] Awad, M. M. "The Science and the History of the Two Bejan Numbers."
       International Journal of Heat and Mass Transfer 94 (March 2016): 101-3.
       doi:10.1016/j.ijheatmasstransfer.2015.11.073.
    .. [2] Bejan, Adrian. Convection Heat Transfer. 4E. Hoboken, New Jersey:
       Wiley, 2013.
    '''
    return dP*K/(alpha*mu)


def Boiling(G, q, Hvap):
    r'''Calculates Boiling number or `Bg` using heat flux, two-phase mass flux,
    and heat of vaporization of the fluid flowing. Used in two-phase heat
    transfer calculations.

    .. math::
        \text{Bg} = \frac{q}{G_{tp} \Delta H_{vap}}

    Parameters
    ----------
    G : float
        Two-phase mass flux in a channel (combined liquid and vapor) [kg/m^2/s]
    q : float
        Heat flux [W/m^2]
    Hvap : float
        Heat of vaporization of the fluid [J/kg]

    Returns
    -------
    Bg : float
        Boiling number [-]

    Notes
    -----
    Most often uses the symbol `Bo` instead of `Bg`, but this conflicts with
    Bond number.

    .. math::
        \text{Bg} = \frac{\text{mass liquid evaporated / area heat transfer
        surface}}{\text{mass flow rate fluid / flow cross sectional area}}

    First defined in [4]_, though not named.

    Examples
    --------
    >>> Boiling(300, 3000, 800000)
    1.25e-05

    References
    ----------
    .. [1] Winterton, Richard H.S. BOILING NUMBER. Thermopedia. Hemisphere,
       2011. 10.1615/AtoZ.b.boiling_number
    .. [2] Collier, John G., and John R. Thome. Convective Boiling and
       Condensation. 3rd edition. Clarendon Press, 1996.
    .. [3] Stephan, Karl. Heat Transfer in Condensation and Boiling. Translated
       by C. V. Green.. 1992 edition. Berlin; New York: Springer, 2013.
    .. [4] W. F. Davidson, P. H. Hardie, C. G. R. Humphreys, A. A. Markson,
       A. R. Mumford and T. Ravese "Studies of heat transmission through boiler
       tubing at pressures from 500 to 3300 pounds" Trans. ASME, Vol. 65, 9,
       February 1943, pp. 553-591.
    '''
    return q/(G*Hvap)


def Dean(Re, Di, D):
    r'''Calculates Dean number, `De`, for a fluid with the Reynolds number `Re`,
    inner diameter `Di`, and a secondary diameter `D`. `D` may be the
    diameter of curvature, the diameter of a spiral, or some other dimension.

    .. math::
        \text{De} = \sqrt{\frac{D_i}{D}} \text{Re} = \sqrt{\frac{D_i}{D}}
        \frac{\rho v D}{\mu}

    Parameters
    ----------
    Re : float
        Reynolds number []
    Di : float
        Inner diameter []
    D : float
        Diameter of curvature or outer spiral or other dimension []

    Returns
    -------
    De : float
        Dean number [-]

    Notes
    -----
    Used in flow in curved geometry.

    .. math::
        \text{De} = \frac{\sqrt{\text{centripetal forces}\cdot
        \text{inertial forces}}}{\text{viscous forces}}

    Examples
    --------
    >>> Dean(10000, 0.1, 0.4)
    5000.0

    References
    ----------
    .. [1] Catchpole, John P., and George. Fulford. "DIMENSIONLESS GROUPS."
       Industrial & Engineering Chemistry 58, no. 3 (March 1, 1966): 46-60.
       doi:10.1021/ie50675a012.
    '''
    return sqrt(Di/D)*Re


def relative_roughness(D, roughness=1.52e-06):
    r'''Calculates relative roughness `eD` using a diameter and the roughness
    of the material of the wall. Default roughness is that of steel.

    .. math::
        eD=\frac{\epsilon}{D}

    Parameters
    ----------
    D : float
        Diameter of pipe, [m]
    roughness : float, optional
        Roughness of pipe wall [m]

    Returns
    -------
    eD : float
        Relative Roughness, [-]

    Examples
    --------
    >>> relative_roughness(0.5, 1E-4)
    0.0002

    References
    ----------
    .. [1] Green, Don, and Robert Perry. Perry's Chemical Engineers' Handbook,
       Eighth Edition. McGraw-Hill Professional, 2007.
    .. [2] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    return roughness/D


### Misc utilities

def nu_mu_converter(rho, mu=None, nu=None):
    r'''Calculates either kinematic or dynamic viscosity, depending on inputs.
    Used when one type of viscosity is known as well as density, to obtain
    the other type. Raises an error if both types of viscosity or neither type
    of viscosity is provided.

    .. math::
        \nu = \frac{\mu}{\rho}

    .. math::
        \mu = \nu\rho

    Parameters
    ----------
    rho : float
        Density, [kg/m^3]
    mu : float, optional
        Dynamic viscosity, [Pa*s]
    nu : float, optional
        Kinematic viscosity, [m^2/s]

    Returns
    -------
    mu or nu : float
        Dynamic viscosity, Pa*s or Kinematic viscosity, m^2/s

    Examples
    --------
    >>> nu_mu_converter(998., nu=1.0E-6)
    0.000998

    References
    ----------
    .. [1] Cengel, Yunus, and John Cimbala. Fluid Mechanics: Fundamentals and
       Applications. Boston: McGraw Hill Higher Education, 2006.
    '''
    if (nu is not None and mu is not None) or rho is None or (nu is None and mu is None):
        raise ValueError('Inputs must be rho and one of mu and nu.')
    if mu is not None:
        return mu/rho
    else:
        return nu*rho


def gravity(latitude, H):
    r'''Calculates local acceleration due to gravity `g` according to [1]_.
    Uses latitude and height to calculate `g`.

    .. math::
        g = 9.780356(1 + 0.0052885\sin^2\phi - 0.0000059^22\phi)
        - 3.086\times 10^{-6} H

    Parameters
    ----------
    latitude : float
        Degrees, [degrees]
    H : float
        Height above earth's surface [m]

    Returns
    -------
    g : float
        Acceleration due to gravity, [m/s^2]

    Notes
    -----
    Better models, such as EGM2008 exist.

    Examples
    --------
    >>> gravity(55, 1E4)
    9.784151976863571

    References
    ----------
    .. [1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of
       Chemistry and Physics. [Boca Raton, FL]: CRC press, 2014.
    '''
    lat = latitude*pi/180
    g = 9.780356*(1+0.0052885*sin(lat)**2 -0.0000059*sin(2*lat)**2)-3.086E-6*H
    return g

### Friction loss conversion functions

def K_from_f(fd, L, D):
    r'''Calculates loss coefficient, K, for a given section of pipe
    at a specified friction factor.

    .. math::
        K = f_dL/D

    Parameters
    ----------
    fd : float
        friction factor of pipe, []
    L : float
        Length of pipe, [m]
    D : float
        Inner diameter of pipe, [m]

    Returns
    -------
    K : float
        Loss coefficient, []

    Notes
    -----
    For fittings with a specified L/D ratio, use D = 1 and set L to
    specified L/D ratio.

    Examples
    --------
    >>> K_from_f(fd=0.018, L=100., D=.3)
    6.0
    '''
    return fd*L/D

def f_from_K(K, L, D):
    r'''Calculates friction factor, `fd`, from a loss coefficient, K,
    for a given section of pipe.

    .. math::
        f_d = \frac{K D}{L}

    Parameters
    ----------
    K : float
        Loss coefficient, []
    L : float
        Length of pipe, [m]
    D : float
        Inner diameter of pipe, [m]

    Returns
    -------
    fd : float
        Darcy friction factor of pipe, [-]

    Notes
    -----
    This can be useful to blend fittings at specific locations in a pipe into
    a pressure drop which is evenly distributed along a pipe.

    Examples
    --------
    >>> f_from_K(K=0.6, L=100., D=.3)
    0.0018
    '''
    return K*D/L


def K_from_L_equiv(L_D, fd=0.015):
    r'''Calculates loss coefficient, for a given equivalent length (L/D).

    .. math::
        K = f_d \frac{L}{D}

    Parameters
    ----------
    L_D : float
        Length over diameter, []
    fd : float, optional
        Darcy friction factor, [-]

    Returns
    -------
    K : float
        Loss coefficient, []

    Notes
    -----
    Almost identical to `K_from_f`, but with a default friction factor for
    fully turbulent flow in steel pipes.

    Examples
    --------
    >>> K_from_L_equiv(240)
    3.5999999999999996
    '''
    return fd*L_D


def L_equiv_from_K(K, fd=0.015):
    r'''Calculates equivalent length of pipe (L/D), for a given loss
    coefficient.

    .. math::
        \frac{L}{D} = \frac{K}{f_d}

    Parameters
    ----------
    K : float
        Loss coefficient, [-]
    fd : float, optional
        Darcy friction factor, [-]

    Returns
    -------
    L_D : float
        Length over diameter, [-]

    Notes
    -----
    Assumes a default friction factor for fully turbulent flow in steel pipes.

    Examples
    --------
    >>> L_equiv_from_K(3.6)
    240.00000000000003
    '''
    return K/fd


def L_from_K(K, D, fd=0.015):
    r'''Calculates the length of straight pipe at a specified friction factor
    required to produce a given loss coefficient `K`.

    .. math::
        L = \frac{K D}{f_d}

    Parameters
    ----------
    K : float
        Loss coefficient, []
    D : float
        Inner diameter of pipe, [m]
    fd : float
        friction factor of pipe, []

    Returns
    -------
    L : float
        Length of pipe, [m]

    Examples
    --------
    >>> L_from_K(K=6, D=.3, fd=0.018)
    100.0
    '''
    return K*D/fd


def dP_from_K(K, rho, V):
    r'''Calculates pressure drop, for a given loss coefficient,
    at a specified density and velocity.

    .. math::
        dP = 0.5K\rho V^2

    Parameters
    ----------
    K : float
        Loss coefficient, []
    rho : float
        Density of fluid, [kg/m^3]
    V : float
        Velocity of fluid in pipe, [m/s]

    Returns
    -------
    dP : float
        Pressure drop, [Pa]

    Notes
    -----
    Loss coefficient `K` is usually the sum of several factors, including
    the friction factor.

    Examples
    --------
    >>> dP_from_K(K=10, rho=1000, V=3)
    45000.0
    '''
    return K*0.5*rho*V*V


def head_from_K(K, V, g=g):
    r'''Calculates head loss, for a given loss coefficient,
    at a specified velocity.

    .. math::
        \text{head} = \frac{K V^2}{2g}

    Parameters
    ----------
    K : float
        Loss coefficient, []
    V : float
        Velocity of fluid in pipe, [m/s]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    head : float
        Head loss, [m]

    Notes
    -----
    Loss coefficient `K` is usually the sum of several factors, including
    the friction factor.

    Examples
    --------
    >>> head_from_K(K=10, V=1.5)
    1.1471807396001694
    '''
    return K*0.5*V*V/g


def head_from_P(P, rho, g=g):
    r'''Calculates head for a fluid of specified density at specified
    pressure.

    .. math::
        \text{head} = {P\over{\rho g}}

    Parameters
    ----------
    P : float
        Pressure fluid in pipe, [Pa]
    rho : float
        Density of fluid, [kg/m^3]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    head : float
        Head, [m]

    Notes
    -----
    By definition. Head varies with location, inversely proportional to the
    increase in gravitational constant.

    Examples
    --------
    >>> head_from_P(P=98066.5, rho=1000)
    10.000000000000002
    '''
    return P/rho/g


def P_from_head(head, rho, g=g):
    r'''Calculates head for a fluid of specified density at specified
    pressure.

    .. math::
        P = \rho g \cdot \text{head}

    Parameters
    ----------
    head : float
        Head, [m]
    rho : float
        Density of fluid, [kg/m^3]
    g : float, optional
        Acceleration due to gravity, [m/s^2]

    Returns
    -------
    P : float
        Pressure fluid in pipe, [Pa]

    Notes
    -----

    Examples
    --------
    >>> P_from_head(head=5., rho=800.)
    39226.6
    '''
    return head*rho*g



### Synonyms
alpha = thermal_diffusivity # synonym for thermal diffusivity
Pr = Prandtl # Synonym


# temperature in kelvin
zero_Celsius = 273.15
degree_Fahrenheit = 1.0/1.8 # only for differences

def C2K(C):
    """Convert Celsius to Kelvin.

    Parameters
    ----------
    C : float
        Celsius temperature to be converted, [degC]

    Returns
    -------
    K : float
        Equivalent Kelvin temperature, [K]

    Notes
    -----
    Computes ``K = C + zero_Celsius`` where `zero_Celsius` = 273.15, i.e.,
    (the absolute value of) temperature "absolute zero" as measured in Celsius.

    Examples
    --------
    >>> C2K(-40)
    233.14999999999998
    """
    return C + zero_Celsius


def K2C(K):
    """Convert Kelvin to Celsius.

    Parameters
    ----------
    K : float
        Kelvin temperature to be converted.

    Returns
    -------
    C : float
        Equivalent Celsius temperature.

    Notes
    -----
    Computes ``C = K - zero_Celsius`` where `zero_Celsius` = 273.15, i.e.,
    (the absolute value of) temperature "absolute zero" as measured in Celsius.

    Examples
    --------
    >>> K2C(233.15)
    -39.99999999999997
    """
    return K - zero_Celsius


def F2C(F):
    """Convert Fahrenheit to Celsius.

    Parameters
    ----------
    F : float
        Fahrenheit temperature to be converted.

    Returns
    -------
    C : float
        Equivalent Celsius temperature.

    Notes
    -----
    Computes ``C = (F - 32) / 1.8``.

    Examples
    --------
    >>> F2C(-40.0)
    -40.0
    """
    return (F - 32.0) / 1.8


def C2F(C):
    """Convert Celsius to Fahrenheit.

    Parameters
    ----------
    C : float
        Celsius temperature to be converted.

    Returns
    -------
    F : float
        Equivalent Fahrenheit temperature.

    Notes
    -----
    Computes ``F = 1.8 * C + 32``.

    Examples
    --------
    >>> C2F(-40.0)
    -40.0
    """
    return 1.8*C + 32.0


def F2K(F):
    """Convert Fahrenheit to Kelvin.

    Parameters
    ----------
    F : float
        Fahrenheit temperature to be converted.

    Returns
    -------
    K : float
        Equivalent Kelvin temperature.

    Notes
    -----
    Computes ``K = (F - 32)/1.8 + zero_Celsius`` where `zero_Celsius` =
    273.15, i.e., (the absolute value of) temperature "absolute zero" as
    measured in Celsius.

    Examples
    --------
    >>> F2K(-40)
    233.14999999999998
    """
    return (F - 32.0)/1.8 + zero_Celsius


def K2F(K):
    """Convert Kelvin to Fahrenheit.

    Parameters
    ----------
    K : float
        Kelvin temperature to be converted.

    Returns
    -------
    F : float
        Equivalent Fahrenheit temperature.

    Notes
    -----
    Computes ``F = 1.8 * (K - zero_Celsius) + 32`` where `zero_Celsius` =
    273.15, i.e., (the absolute value of) temperature "absolute zero" as
    measured in Celsius.

    Examples
    --------
    >>> K2F(233.15)
    -39.99999999999996
    """
    return 1.8*(K - zero_Celsius) + 32.0


def C2R(C):
    """Convert Celsius to Rankine.

    Parameters
    ----------
    C : float
        Celsius temperature to be converted.

    Returns
    -------
    Ra : float
        Equivalent Rankine temperature.

    Notes
    -----
    Computes ``Ra = 1.8 * (C + zero_Celsius)`` where `zero_Celsius` = 273.15,
    i.e., (the absolute value of) temperature "absolute zero" as measured in
    Celsius.

    Examples
    --------
    >>> C2R(-40)
    419.66999999999996
    """
    return 1.8 * (C + zero_Celsius)


def K2R(K):
    """Convert Kelvin to Rankine.

    Parameters
    ----------
    K : float
        Kelvin temperature to be converted.

    Returns
    -------
    Ra : float
        Equivalent Rankine temperature.

    Notes
    -----
    Computes ``Ra = 1.8 * K``.

    Examples
    --------
    >>> K2R(273.15)
    491.66999999999996
    """
    return 1.8 * K


def F2R(F):
    """Convert Fahrenheit to Rankine.

    Parameters
    ----------
    F : float
        Fahrenheit temperature to be converted.

    Returns
    -------
    Ra : float
        Equivalent Rankine temperature.

    Notes
    -----
    Computes ``Ra = F - 32 + 1.8 * zero_Celsius`` where `zero_Celsius` = 273.15,
    i.e., (the absolute value of) temperature "absolute zero" as measured in
    Celsius.

    Examples
    --------
    >>> F2R(100)
    559.67
    """
    return F - 32.0 + 1.8 * zero_Celsius


def R2C(Ra):
    """Convert Rankine to Celsius.

    Parameters
    ----------
    Ra : float
        Rankine temperature to be converted.

    Returns
    -------
    C : float
        Equivalent Celsius temperature.

    Notes
    -----
    Computes ``C = Ra / 1.8 - zero_Celsius`` where `zero_Celsius` = 273.15,
    i.e., (the absolute value of) temperature "absolute zero" as measured in
    Celsius.

    Examples
    --------
    >>> R2C(459.67)
    -17.777777777777743
    """
    return Ra / 1.8 - zero_Celsius


def R2K(Ra):
    """Convert Rankine to Kelvin.

    Parameters
    ----------
    Ra : float
        Rankine temperature to be converted.

    Returns
    -------
    K : float
        Equivalent Kelvin temperature.

    Notes
    -----
    Computes ``K = Ra / 1.8``.

    Examples
    --------
    >>> R2K(491.67)
    273.15
    """
    return Ra / 1.8


def R2F(Ra):
    """Convert Rankine to Fahrenheit.

    Parameters
    ----------
    Ra : float
        Rankine temperature to be converted.

    Returns
    -------
    F : float
        Equivalent Fahrenheit temperature.

    Notes
    -----
    Computes ``F = Ra + 32 - 1.8 * zero_Celsius`` where `zero_Celsius` = 273.15,
    i.e., (the absolute value of) temperature "absolute zero" as measured in
    Celsius.

    Examples
    --------
    >>> R2F(491.67)
    32.00000000000006
    """
    return Ra - 1.8*zero_Celsius + 32.0


def Engauge_2d_parser(lines, flat=False):
    """Not exposed function to read a 2D file generated by engauge-digitizer;
    for curve fitting.
    """
    z_values = []
    x_lists = []
    y_lists = []
    working_xs = []
    working_ys = []

    new_curve = True
    for line in lines:
        if line.strip() == '':
            new_curve = True
        elif new_curve:
            z = float(line.split(',')[1])
            z_values.append(z)
            if working_xs and working_ys:
                x_lists.append(working_xs)
                y_lists.append(working_ys)
            working_xs = []
            working_ys = []
            new_curve = False
        else:
            x, y = (float(i) for i in line.strip().split(','))
            working_xs.append(x)
            working_ys.append(y)
    x_lists.append(working_xs)
    y_lists.append(working_ys)

    if flat:
        all_zs = []
        all_xs = []
        all_ys = []
        for z, xs, ys in zip(z_values, x_lists, y_lists):
            for x, y in zip(xs, ys):
                all_zs.append(z)
                all_xs.append(x)
                all_ys.append(y)
        return all_zs, all_xs, all_ys

    return z_values, x_lists, y_lists