1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
__all__ = ['get_clean_isd_history', 'IntegratedSurfaceDatabaseStation',
'get_closest_station', 'get_station_year_text', 'gsod_day_parser',
'StationDataGSOD', 'heating_degree_days', 'cooling_degree_days', 'stations',
# 'geopy_geolocator', 'geopy_cache', 'SimpleGeolocatorCache',
'geocode']
import datetime
import gzip
import os
from calendar import isleap
from collections import namedtuple
from io import BytesIO as StringIO
from urllib.request import urlopen
import numpy as np
from scipy.spatial import cKDTree
from fluids.constants import inch, knot, mile
try: # pragma: no cover
from appdirs import user_config_dir
data_dir = user_config_dir('fluids')
except ImportError: # pragma: no cover
data_dir = ''
try: # pragma: no cover
# No point loading cPickle or sqlite for this reason
import sqlite3
import geopy
from geopy.location import Location
except ImportError: # pragma: no cover
geopy = None
Location = None
# Geopy cache/lookup layer, also requires appdirs for caching, can work without
geolocator = None
geolocator_user_agent = 'fluids'
geolocator_disk_cache_name = 'simple_geolocator_cache.sqlite3'
geolocator_disk_cache_loc = os.path.join(data_dir, geolocator_disk_cache_name)
simple_geopy_cache = None
geopy_missing_msg = """Geocoder module `geopy` is required for this
functionality."""
def geopy_geolocator():
"""Lazy loader for geocoder from geopy.
This currently loads the `Nominatim` geocode and returns an instance of it,
taking ~2 us.
"""
global geolocator
if geolocator is None:
try:
from geopy.geocoders import Nominatim
except ImportError:
return None
geolocator = Nominatim(user_agent=geolocator_user_agent)
return geolocator
return geolocator
def geopy_cache():
"""Lazy loader for the singleton `SimpleGeolocatorCache`.
This creates a sqlite database if one does not exist and initializes a
connection to it.
"""
global simple_geopy_cache
if simple_geopy_cache is None:
simple_geopy_cache = SimpleGeolocatorCache(geolocator_disk_cache_loc)
return simple_geopy_cache
return simple_geopy_cache
class SimpleGeolocatorCache:
"""Very basic on-disk address -> (lat, lon) cache, using Python's sqlite
database for on-disk persistence.
Offers very reasonable performance compared to online lookups.
"""
def __init__(self, file_name):
self.connection = conn = sqlite3.connect(file_name)
cursor = self.connection.cursor()
cursor.execute('CREATE TABLE IF NOT EXISTS geopy ( '
'address STRING PRIMARY KEY, latitude real, longitude real )')
self.connection.commit()
def cached_address(self, address):
cursor = self.connection.cursor()
cursor.execute('SELECT latitude, longitude FROM geopy WHERE address=?', (address, ))
res = cursor.fetchone()
if res is None:
return None
return res
def cache_address(self, address, latitude, longitude):
cursor = self.connection.cursor()
cursor.execute('INSERT INTO geopy(address, latitude, longitude) VALUES(?, ?, ?)',
(address, latitude, longitude))
self.connection.commit()
def geocode(address):
"""Query function to obtain a latitude and longitude from a location string
such as `Houston, TX` or`Colombia`. This uses an online lookup, currently
wrapping the `geopy` library, and providing an on-disk cache of queries.
Parameters
----------
address : str
Search string to retrieve the location, [-]
Returns
-------
latitude : float
Latitude of address, [degrees]
longitude : float
Longitude of address, [degrees]
Notes
-----
If a query has been retrieved before, this function will take under 1 ms;
it takes several seconds otherwise.
Examples
--------
>>> geocode('Fredericton, NB') # doctest: +SKIP
(45.966425, -66.645813)
"""
loc_tuple = None
try:
cache = geopy_cache()
loc_tuple = cache.cached_address(address)
except:
# Handle bugs in the cache, i.e. if there is no space on disk to create
# the database, by ignoring them
pass
if loc_tuple is not None:
return loc_tuple
else:
geocoder = geopy_geolocator()
if geocoder is None:
return geopy_missing_msg
location = geocoder.geocode(address)
try:
cache.cache_address(address, location.latitude, location.longitude)
except:
pass
return (location.latitude, location.longitude)
folder = os.path.join(os.path.dirname(__file__), 'data')
def heating_degree_days(T, T_base=291.4833333333333, truncate=True):
r'''Calculates the heating degree days for a period of time.
.. math::
\text{heating degree days} = max(T - T_{base}, 0)
Parameters
----------
T : float
Measured temperature; sometimes an average over a length of time is used,
other times the average of the lowest and highest temperature in a
period are used, [K]
T_base : float, optional
Reference temperature for the degree day calculation, defaults
to 65 °F (18.33 °C, 291.483 K), the value most used in the US, [K]
truncate : bool
If truncate is True, no negative values will be returned; if negative,
the value is truncated to 0, [-]
Returns
-------
heating_degree_days : float
Degree above the base temperature multiplied by the length of time of
the measurement, normally days [day*K]
Notes
-----
Some common base temperatures are 18 °C (Canada), 15.5 °C (EU),
17 °C (Denmark, Finland), 12 °C Switzerland. The base temperature
should always be presented with the results.
The time unit does not have to be days; it can be any time unit, and the
calculation behaves the same.
Examples
--------
>>> heating_degree_days(303.8)
12.31666666666672
>>> heating_degree_days(273)
0.0
>>> heating_degree_days(322, T_base=300)
22
References
----------
.. [1] "Heating Degree Day." Wikipedia, January 24, 2018.
https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764.
'''
dd = T - T_base
if truncate and dd < 0.0:
dd = 0.0
return dd
def cooling_degree_days(T, T_base=283.15, truncate=True):
r'''Calculates the cooling degree days for a period of time.
.. math::
\text{cooling degree days} = max(T_{base} - T, 0)
Parameters
----------
T : float
Measured temperature; sometimes an average over a length of time is used,
other times the average of the lowest and highest temperature in a
period are used, [K]
T_base : float, optional
Reference temperature for the degree day calculation, defaults
to 10 °C, 283.15 K, a common value, [K]
truncate : bool
If truncate is True, no negative values will be returned; if negative,
the value is truncated to 0, [-]
Returns
-------
cooling_degree_days : float
Degree below the base temperature multiplied by the length of time of
the measurement, normally days [day*K]
Notes
-----
The base temperature should always be presented with the results.
The time unit does not have to be days; it can be time unit, and the
calculation behaves the same.
Examples
--------
>>> cooling_degree_days(250)
33.14999999999998
>>> cooling_degree_days(300)
0.0
>>> cooling_degree_days(250, T_base=300)
50
References
----------
.. [1] "Heating Degree Day." Wikipedia, January 24, 2018.
https://en.wikipedia.org/w/index.php?title=Heating_degree_day&oldid=822187764.
'''
dd = T_base - T
if truncate and dd < 0.0:
dd = 0.0
return dd
def get_clean_isd_history(dest=os.path.join(folder, 'isd-history-cleaned.tsv'),
url="ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-history.csv"): # pragma: no cover
"""Basic method to update the isd-history file from the NOAA. This is useful
as new weather stations are updated all the time.
This function requires pandas to run. If fluids is installed for the
superuser, this method must be called in an instance of Python running
as the superuser (administrator).
Retrieving the file from ftp typically takes several seconds.
Pandas reads the file in ~30 ms and writes it in ~220 ms. Reading it with
the code below takes ~220 ms but is necessary to prevent a pandas
dependency.
Parameters
----------
dest : str, optional
The file to store the data retrieved; leave as the default argument
for it to be accessible by fluids.
url : str, optional
The location of the data file; this can be anywhere that can be read
by pandas, including a local file as would be useful in an offline
situation.
"""
import pandas as pd
df = pd.read_csv(url, dtype={'USAF': str, 'WBAN': str})
df.to_csv(dest, sep='\t', index=False, header=False)
class IntegratedSurfaceDatabaseStation:
"""Class to hold data on a weather station in the Integrated Surface
Database.
License information for the database can be found at the following link:
https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
Note: Of the 28000 + stations in the database, approximately 3000 have WBAN
identifiers; 26000 have unique names; 24000 have USAF identifiers; and
there are only 25800 unique lat/lon pairs.
To uniquely represent a weather station, a combination of identifiers
must be used. (Name, USAF, WBAN) makes a good choice.
Parameters
----------
USAF : str or None if unassigned
Air Force station ID. May contain a letter in the first position.
WBAN : str or None if unassigned
NCDC WBAN number
NAME : str
Name of the station; ex. 'CENTRAL COLORADO REGIONAL AP'
CTRY : str or None if unspecified
FIPS country ID
ST : str or None if not in the US
State for US stations
ICAO : str or None if not an airport
ICAO airport code
LAT : float
Latitude with a precision of one thousandths of a decimal degree,
[degrees]
LON : float
Longitude with a precision of one thousandths of a decimal degree,
[degrees]
ELEV : float
Elevation of weather station, [m]
BEGIN : float
Beginning Period Of Record (YYYYMMDD). There may be reporting gaps
within the P.O.R.
END : Ending Period Of Record (YYYYMMDD). There may be reporting gaps
within the P.O.R.
"""
__slots__ = ['USAF', 'WBAN', 'NAME', 'CTRY', 'ST', 'ICAO', 'LAT', 'LON',
'ELEV', 'BEGIN', 'END', 'raw_data', 'parsed_data']
def __repr__(self):
s = ('<Weather station registered in the Integrated Surface Database, '
'name %s, country %s, USAF %s, WBAN %s, coords (%s, %s) '
'Weather data from %s to %s>' )
return s%(self.NAME, self.CTRY, self.USAF, self.WBAN, self.LAT, self.LON, str(self.BEGIN)[0:4], str(self.END)[0:4])
def __init__(self, USAF, WBAN, NAME, CTRY, ST, ICAO, LAT, LON, ELEV, BEGIN,
END):
try:
self.USAF = int(USAF)
except:
self.USAF = USAF # Nones
self.WBAN = WBAN
self.NAME = NAME
self.CTRY = CTRY
self.ST = ST
self.ICAO = ICAO
self.LAT = LAT
self.LON = LON
self.ELEV = ELEV
self.BEGIN = int(BEGIN)
self.END = int(END)
class StationDataGSOD:
# Holds data, caches and retrieves data
def __init__(self, station, data_dir_override=None):
self.data_dir_override = data_dir_override
self.station = station
self.begin = datetime.datetime.strptime(str(self.station.BEGIN), '%Y%m%d')
self.end = datetime.datetime.strptime(str(self.station.END), '%Y%m%d')
self.year_range = range(self.begin.year, self.end.year + 1)
# Would be nice to create these later, when using a download_data method
self.raw_text = {}
self.raw_data = {}
self.parsed_data = {}
self.load_empty_vectors()
self.download_data()
self.parse_data()
def load_empty_vectors(self):
for year in self.year_range:
days_in_year = 366 if isleap(year) else 365
self.raw_data[year] = [None]*days_in_year
self.parsed_data[year] = [None]*days_in_year
self.raw_text[year] = None
# days = [None]*days_in_year(y)
def download_data(self):
for year in self.year_range:
if self.raw_text[year] is None:
try:
year_data = get_station_year_text(self.station.USAF, self.station.WBAN, year, data_dir_override=self.data_dir_override)
self.raw_text[year] = year_data
except:
pass
def parse_data(self):
for year, data in self.raw_text.items():
if data is not None:
days = self.parsed_data[year]
for line in data.split('\n')[1:-1]:
parsed = gsod_day_parser(line)
doy = parsed.DATE.timetuple().tm_yday-1
days[doy] = parsed
def coldest_month(self, older_year=None, newer_year=None, minimum_days=23):
# Tested
month_data = self.month_average_temperature(older_year=older_year,
newer_year=newer_year,
minimum_days=minimum_days)
return month_data.index(min(month_data))
def warmest_month(self, older_year=None, newer_year=None, minimum_days=23):
# Tested
month_data = self.month_average_temperature(older_year=older_year,
newer_year=newer_year,
minimum_days=minimum_days)
return month_data.index(max(month_data))
def month_average_temperature(self, older_year=None, newer_year=None,
include_yearly=False, minimum_days=23):
'''
>> station = get_closest_station(38.8572, -77.0369)
>> station_data = StationDataGSOD(station)
>> station_data.month_average_temperature(1990, 2000, include_yearly=False)
[276.1599380905833, 277.5375516246206, 281.1881231671554, 286.7367003367004, 291.8689638318671, 296.79545454545456, 299.51868686868687, 298.2097914630174, 294.4116161616162, 288.25883023786247, 282.3188552188553, 277.8282339524275]
'''
# Take years, make them inclusive; add minimum valid days.
year_month_averages = {}
year_month_counts = {}
for year, data in self.parsed_data.items():
if not (older_year <= year <= newer_year):
continue # Ignore out-of-range years easily
year_month_averages[year] = [0.0]*12
year_month_counts[year] = [0]*12
for i, day in enumerate(data):
if day is None:
continue
# Don't do these comparisons to make it fast
if day.DATE.year < older_year or day.DATE.year > newer_year:
continue # Ignore out-of-range days as possible
T = day.TEMP
if T is None:
continue
# Cache these lookups
year_month_averages[year][day.DATE.month-1] += T
year_month_counts[year][day.DATE.month-1] += 1
for month in range(12):
count = year_month_counts[year][month]
if count < minimum_days:
ans = None
else:
ans = year_month_averages[year][month]/count
year_month_averages[year][month] = ans
# Compute the average of the month
actual_averages = [0.0]*12
actual_averages_counts = [0]*12
for year, average in year_month_averages.items():
for month in range(12):
if average is not None and average[month] is not None:
count = actual_averages_counts[month]
if count is None:
count = 1
else:
count += 1
actual_averages_counts[month] = count
month_average_sum = actual_averages[month]
if month_average_sum is None:
month_average_sum = average[month]
else:
month_average_sum += average[month]
actual_averages[month] = month_average_sum
for month in range(12):
actual_averages[month] = actual_averages[month]/actual_averages_counts[month]
# Don't set anything as properties - too many variables used in calculating thems
# Speed is not that important.
if include_yearly:
return actual_averages, year_month_averages
else:
return actual_averages
# Copy and paste
def month_average_windspeed(self, older_year=None, newer_year=None,
include_yearly=False, minimum_days=23):
# Take years, make them inclusive; add minimum valid days.
year_month_averages = {}
year_month_counts = {}
for year, data in self.parsed_data.items():
if not (older_year <= year <= newer_year):
continue # Ignore out-of-range years easily
year_month_averages[year] = [0.0]*12
year_month_counts[year] = [0]*12
for i, day in enumerate(data):
if day is None:
continue
# Don't do these comparisons to make it fast
if day.DATE.year < older_year or day.DATE.year > newer_year:
continue # Ignore out-of-range days as possible
wind_speed = day.WDSP
if wind_speed is None:
continue
# Cache these lookups
year_month_averages[year][day.DATE.month-1] += wind_speed
year_month_counts[year][day.DATE.month-1] += 1
for month in range(12):
count = year_month_counts[year][month]
if count < minimum_days:
ans = None
else:
ans = year_month_averages[year][month]/count
year_month_averages[year][month] = ans
# Compute the average of the month
actual_averages = [0.0]*12
actual_averages_counts = [0]*12
for year, average in year_month_averages.items():
for month in range(12):
if average is not None and average[month] is not None:
count = actual_averages_counts[month]
if count is None:
count = 1
else:
count += 1
actual_averages_counts[month] = count
month_average_sum = actual_averages[month]
if month_average_sum is None:
month_average_sum = average[month]
else:
month_average_sum += average[month]
actual_averages[month] = month_average_sum
for month in range(12):
actual_averages[month] = actual_averages[month]/actual_averages_counts[month]
# Don't set anything as properties - too many variables used in calculating thems
# Speed is not that important.
if include_yearly:
return actual_averages, year_month_averages
else:
return actual_averages
def percentile_extreme_condition(self, older_year=None, newer_year=None,
include_yearly=False, minimum_days=23, attr='WDSP'):
# Really need to normalize data with interpolation etc here.
# Need to get the data, and process it and score interpolation regimes.
# Or could just randomly drop data and try to fill it in.
accepted_values = []
for year in self.parsed_data.keys():
if not (older_year <= year <= newer_year):
continue # Ignore out-of-range years easily
stations = []
_latlongs = []
"""Read in the parsed data into
1) a list of latitudes and longitudes, temporary, which will get converted to
a numpy array for use in KDTree
2) a list of IntegratedSurfaceDatabaseStation objects; the query will return
the index of the nearest weather stations.
"""
with open(os.path.join(folder, 'isd-history-cleaned.tsv')) as f:
for line in f:
values = line.split('\t')
for i in range(11):
# First two are not values
v = values[i]
if v == '':
values[i] = None # '' case
else:
try:
if i > 2:
values[i] = float(v)
if int(v) == 99999:
values[i] = None
except:
continue
lat, lon = values[6], values[7]
if lat and lon:
# Some stations have no lat-long; this isn't useful
stations.append(IntegratedSurfaceDatabaseStation(*values))
_latlongs.append((lat, lon))
_latlongs = np.array(_latlongs)
station_count = len(stations)
kd_tree = cKDTree(_latlongs) # _latlongs must be unchanged as data is not copied
def get_closest_station(latitude, longitude, minumum_recent_data=20140000,
match_max=100):
"""Query function to find the nearest weather station to a particular set of
coordinates. Optionally allows for a recent date by which the station is
required to be still active at.
Parameters
----------
latitude : float
Latitude to search for nearby weather stations at, [degrees]
longitude : float
Longitude to search for nearby weather stations at, [degrees]
minumum_recent_data : int, optional
Date that the weather station is required to have more recent
weather data than; format YYYYMMDD; set this to 0 to not restrict data
by date.
match_max : int, optional
The maximum number of results in the KDTree to search for before
applying the filtering criteria; an internal parameter which is
increased automatically if the default value is insufficient [-]
Returns
-------
station : IntegratedSurfaceDatabaseStation
Instance of IntegratedSurfaceDatabaseStation which was nearest
to the requested coordinates and with sufficiently recent data
available [-]
Notes
-----
Searching for 100 stations is a reasonable choice as it takes, ~70
microseconds vs 50 microsecond to find only 1 station. The search does get
slower as more points are requested. Bad data is returned from a KDTree
search if more points are requested than are available.
Examples
--------
>>> get_closest_station(51.02532675, -114.049868485806, 20150000)
<Weather station registered in the Integrated Surface Database, name CALGARY INTL CS, country CA, USAF 713930, WBAN None, coords (51.1, -114.0) Weather data from 2004 to 2020>
"""
# Both station strings may be important
# Searching for 100 stations is fine, 70 microseconds vs 50 microsecond for 1
# but there's little point for more points, it gets slower.
# bad data is returned if k > station_count
distances, indexes = kd_tree.query([latitude, longitude], k=min(match_max, station_count))
for i in indexes:
latlon = _latlongs[i]
enddate = stations[i].END
# Iterate for all indexes until one is found whose date is current
if enddate > minumum_recent_data:
return stations[i]
if match_max < station_count:
return get_closest_station(latitude, longitude, minumum_recent_data=minumum_recent_data, match_max=match_max*10)
raise ValueError('Could not find a station with more recent data than '
'specified near the specified coordinates.')
# This should be aggressively cached
def get_station_year_text(WMO, WBAN, year, data_dir_override=None):
"""Basic method to download data from the GSOD database, given a station
identifier and year.
Parameters
----------
WMO : int or None
World Meteorological Organization (WMO) identifiers, [-]
WBAN : int or None
Weather Bureau Army Navy (WBAN) weather station identifier, [-]
year : int
Year data should be retrieved from, [year]
data_dir_override : str, optional
Directory to store the downloaded data (instead of the
configuration directory), [-]
Returns
-------
data : str
Downloaded data file
"""
if WMO is None:
WMO = 999999
if WBAN is None:
WBAN = 99999
station = str(int(WMO)) + '-' + str(WBAN)
if data_dir_override is None:
gsod_year_dir = os.path.join(data_dir, 'gsod', str(year))
else:
gsod_year_dir = os.path.join(data_dir_override, str(year))
path = os.path.join(gsod_year_dir, station + '.op')
if os.path.exists(path):
with open(path) as f:
data = f.read()
if data and data != 'Exception':
return data
else:
# Remove the bad file and try to redownload it
try:
os.remove(path)
except:
pass
# raise ValueError(data)
toget = ('ftp://ftp.ncdc.noaa.gov/pub/data/gsod/' + str(year) + '/'
+ station + '-' + str(year) +'.op.gz')
try:
data = urlopen(toget, timeout=5)
except Exception as e:
if not os.path.exists(gsod_year_dir):
os.makedirs(gsod_year_dir)
with open(path, 'w') as f:
f.write('Exception')
raise ValueError('Could not obtain desired data; check '
'if the year has data published for the '
'specified station and the station was specified '
f'in the correct form. The full error is {e}')
data = data.read()
data_thing = StringIO(data)
f = gzip.GzipFile(fileobj=data_thing, mode="r")
year_station_data = f.read()
try:
year_station_data = year_station_data.decode('utf-8')
except:
pass
# Cache the data for future use
if not os.path.exists(gsod_year_dir):
os.makedirs(gsod_year_dir)
open(path, 'w').write(year_station_data)
return year_station_data
gsod_fields = ['DATE', # 15-18 int year; 19-22 int month/day
'TEMP', # 25-30 Real Mean temperature for the day in degrees Fahrenheit to tenths. Missing = 9999.9
'TEMP_COUNT', # 32-33 Int. Number of observations used in calculating mean temperature
'DEWP', # 36-41 Real Mean dew point for the day in degrees Fahrenheit to tenths. Missing = 9999.9
'DEWP_COUNT', # 43-44 Int. Number of observations used in calculating mean dew point
'SLP', # 47-52 Real Mean sea level pressure for the day in millibars to tenths. Missing = 9999.9
'SLP_COUNT', # 54-55 Int. Number of observations used in calculating mean sea level pressure
'STP', # 58-63 Real Mean station pressure for the day in millibars to tenths. Missing = 9999.9
'STP_COUNT', # 65-66 Int. Number of observations used in calculating mean station pressure
'VISIB', # 69-73 Real Mean visibility for the day in miles to tenths. Missing = 999.9
'VISIB_COUNT', # 75-76 Int. Number of observations used in calculating mean visibility
'WDSP', # 79-83 Real Mean wind speed for the day in knots to tenths. Missing = 999.9
'WDSP_COUNT', # 85-86 Int. Number of observations used in calculating mean wind speed
'MXSPD', # 89-93 Real Maximum sustained wind speed reported for the day in knots to tenths. Missing = 999.9
'GUST', # 96-100 Real Maximum wind gust reported for the day in knots to tenths. Missing = 999.9
'MAX', # 103-108 Real Maximum temperature reported during the
# day in Fahrenheit to tenths--time of max temp report varies by country and
# region, so this will sometimes not be the max for the calendar day.
# Missing = 9999.9; FLAG of '*' is present on 109-109!
'MIN', # 111-116 Real Minimum temperature reported during the day in Fahrenheit to tenths--time of min
# temp report varies by country and region, so this will sometimes not be
# the min for the calendar day. Missing = 9999.9 FLAG of '*' is present on 117-117!
'PRCP', # 119-123 Real Total precipitation (rain and/or melted snow) reported during the day in inches
# and hundredths; will usually not end with the midnight observation--i.e.,
# may include latter part of previous day. .00 indicates no measurable
# precipitation (includes a trace).
# Missing = 99.99
'SNDP', # 126-130 Real Snow depth in inches to tenths--last report for the day if reported more than
# once. Missing = 999.9 Note: Most stations do not report '0' on days with no snow on the
# ground--therefore, '999.9' will often appear on these days.
'FRSHTT' # 133-138 Int. Indicators (1 = yes, 0 = no/not reported) for the occurrence during the day of:
# Fog ('F' - 1st digit).
# Rain or Drizzle ('R' - 2nd digit).
# Snow or Ice Pellets ('S' - 3rd digit).
# Hail ('H' - 4th digit).
# Thunder ('T' - 5th digit).
# Tornado or Funnel Cloud ('T' - 6th digit).
]
# Use TEMP and DEWP and STP to calculate wet bulb temperatures
# Values to be converted to floats always
gsod_float_fields = ('TEMP', 'DEWP', 'SLP', 'STP', 'VISIB', 'WDSP', 'MXSPD',
'GUST', 'MAX', 'MIN', 'PRCP', 'SNDP')
# Values to be converted to ints always
gsod_int_fields = ('TEMP_COUNT', 'DEWP_COUNT', 'SLP_COUNT', 'STP_COUNT',
'VISIB_COUNT', 'WDSP_COUNT')
# Values which signify flags
gsod_flag_chars = '*ABCDEFGHI'
# Values which should be converted to None, as normally there is no value
gsod_bad_values = frozenset(['99.99', '999.9', '9999.9'])
gsod_indicator_names = ['fog', 'rain', 'snow_ice', 'hail', 'thunder',
'tornado']
five_ninths = 5.0/9.0
gsod_day = namedtuple('gsod_day', gsod_fields + gsod_indicator_names)
def gsod_day_parser(line, SI=True, to_datetime=True):
"""One line (one file) parser of data in the format of the GSOD database.
Returns all parsed results as a namedtuple for reduced memory consumption.
Will convert all data to base SI units unless the `SI` flag is set to False.
As the values are rounded to one or two decimal places in the GSOD database
in Imperial units, it may be useful to look at the values directly.
The names columns of the columns in the GSOD database are retained and used
as the attributes of the namedtuple results.
The day, month, and year are normally converted to a datetime instance in
resulting namedtuple; this behavior can be disabled by setting the
`datetime` flag to False; it will be a string in the format YYYYMMDD if so.
This may be useful because datetime conversion roughly doubles the speed of
this function.
Parameters
----------
line : str
Line in format of GSOD documentation, [-]
SI : bool
Whether or not the results get converted to base SI units, [-]
to_datetime : bool
Whether or not the date gets converted to a datetime instance or stays
as a string, [-]
Returns
-------
gsod_day_instance : gsod_day
namedtuple with fields described in the source (all values in SI units,
if `SI` is True, i.e. meters, m/s, Kelvin, Pascal; otherwise the
original unit set is used), [-]
"""
# Ignore STN--- and WBAN, 8-12 characters
fields = line.strip().split()[2:]
# For the case the field is blank, set it to None; strip it either way
for i in range(len(fields)):
field = fields[i].rstrip()
if not field:
field = None
fields[i] = field
obj = dict(zip(gsod_fields, fields))
# Convert the date to a datetime object if specified
if to_datetime and obj['DATE'] is not None:
date = obj['DATE']
obj['DATE'] = datetime.datetime(int(date[0:4]), int(date[4:6]), int(date[6:]))
#obj['DATE'] = datetime.datetime.strptime(obj['DATE'], '%Y%m%d')
# Parse float values as floats
for field in gsod_float_fields:
value = obj[field].rstrip(gsod_flag_chars)
if value in gsod_bad_values:
value = None
else:
value = float(value)
obj[field] = value
if SI:
# All temperatures are in deg F
for field in ('TEMP', 'DEWP', 'MAX', 'MIN'):
value = obj[field]
if value is not None:
# F2K inline for efficiency unfortunately
obj[field] = (value + 459.67)*five_ninths
# Convert visibility, wind speed, pressures
# to si units of meters, Pascal, and meters/second.
if obj['VISIB'] is not None:
obj['VISIB'] = obj['VISIB']*mile
if obj['PRCP'] is not None:
obj['PRCP'] = obj['PRCP']*inch
if obj['SNDP'] is not None:
obj['SNDP'] = obj['SNDP']*inch
if obj['WDSP'] is not None:
obj['WDSP'] = obj['WDSP']*knot
if obj['MXSPD'] is not None:
obj['MXSPD'] = obj['MXSPD']*knot
if obj['GUST'] is not None:
obj['GUST'] = obj['GUST']*knot
if obj['SLP'] is not None:
obj['SLP'] = obj['SLP']*100.0
if obj['STP'] is not None:
obj['STP'] = obj['STP']*100.0
# Parse int values as ints
for field in gsod_int_fields:
value = obj[field]
if value is not None:
obj[field] = int(value)
indicator_values = [flag == '1' for flag in obj['FRSHTT']]
obj.update(zip(gsod_indicator_names, indicator_values))
return gsod_day(**obj)
|