1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018, 2019, 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains correlations, standards, and solvers for orifice plates
and other flow metering devices. Both permanent and measured pressure drop
is included, and models work for both liquids and gases. A number of
non-standard devices are included, as well as limited two-phase functionality.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Flow Meter Solvers
------------------
.. autofunction:: differential_pressure_meter_solver
Flow Meter Interfaces
---------------------
.. autofunction:: differential_pressure_meter_dP
.. autofunction:: differential_pressure_meter_C_epsilon
.. autofunction:: differential_pressure_meter_beta
.. autofunction:: dP_orifice
Orifice Plate Correlations
--------------------------
.. autofunction:: C_Reader_Harris_Gallagher
.. autofunction:: C_eccentric_orifice_ISO_15377_1998
.. autofunction:: C_quarter_circle_orifice_ISO_15377_1998
.. autofunction:: C_Miller_1996
.. autofunction:: orifice_expansibility
.. autofunction:: orifice_expansibility_1989
.. autodata:: ISO_15377_CONICAL_ORIFICE_C
Nozzle Flow Meters
------------------
.. autofunction:: C_long_radius_nozzle
.. autofunction:: C_ISA_1932_nozzle
.. autofunction:: C_venturi_nozzle
.. autofunction:: nozzle_expansibility
Venturi Tube Meters
-------------------
.. autodata:: ROUGH_WELDED_CONVERGENT_VENTURI_TUBE_C
.. autodata:: MACHINED_CONVERGENT_VENTURI_TUBE_C
.. autodata:: AS_CAST_VENTURI_TUBE_C
.. autofunction:: dP_venturi_tube
.. autofunction:: C_Reader_Harris_Gallagher_wet_venturi_tube
.. autofunction:: dP_Reader_Harris_Gallagher_wet_venturi_tube
Cone Meters
-----------
.. autodata:: CONE_METER_C
.. autofunction:: diameter_ratio_cone_meter
.. autofunction:: cone_meter_expansibility_Stewart
.. autofunction:: dP_cone_meter
Wedge Meters
------------
.. autofunction:: C_wedge_meter_ISO_5167_6_2017
.. autofunction:: C_wedge_meter_Miller
.. autofunction:: diameter_ratio_wedge_meter
.. autofunction:: dP_wedge_meter
Flow Meter Utilities
--------------------
.. autofunction:: discharge_coefficient_to_K
.. autofunction:: K_to_discharge_coefficient
.. autofunction:: velocity_of_approach_factor
.. autofunction:: flow_coefficient
.. autofunction:: flow_meter_discharge
.. autodata:: all_meters
"""
from math import acos, exp, log, log10, pi, sqrt
from fluids.constants import inch, inch_inv, pi_inv, root_two
from fluids.core import Froude_densimetric
from fluids.numerics import bisplev, brenth, implementation_optimize_tck, interp, secant
__all__ = ['C_Reader_Harris_Gallagher',
'differential_pressure_meter_solver',
'differential_pressure_meter_dP',
'flow_meter_discharge', 'orifice_expansibility',
'discharge_coefficient_to_K', 'K_to_discharge_coefficient',
'dP_orifice', 'velocity_of_approach_factor',
'flow_coefficient', 'nozzle_expansibility',
'C_long_radius_nozzle', 'C_ISA_1932_nozzle', 'C_venturi_nozzle',
'orifice_expansibility_1989', 'dP_venturi_tube',
'diameter_ratio_cone_meter', 'diameter_ratio_wedge_meter',
'cone_meter_expansibility_Stewart', 'dP_cone_meter',
'C_wedge_meter_Miller', 'C_wedge_meter_ISO_5167_6_2017',
'dP_wedge_meter',
'C_Reader_Harris_Gallagher_wet_venturi_tube',
'dP_Reader_Harris_Gallagher_wet_venturi_tube',
'differential_pressure_meter_C_epsilon',
'differential_pressure_meter_beta',
'C_eccentric_orifice_ISO_15377_1998',
'C_quarter_circle_orifice_ISO_15377_1998',
'C_Miller_1996',
'all_meters',
]
CONCENTRIC_ORIFICE = 'orifice' # normal
ECCENTRIC_ORIFICE = 'eccentric orifice'
CONICAL_ORIFICE = 'conical orifice'
SEGMENTAL_ORIFICE = 'segmental orifice'
QUARTER_CIRCLE_ORIFICE = 'quarter circle orifice'
CONDITIONING_4_HOLE_ORIFICE = 'Rosemount 4 hole self conditioing'
ORIFICE_HOLE_TYPES = [CONCENTRIC_ORIFICE, ECCENTRIC_ORIFICE, CONICAL_ORIFICE,
SEGMENTAL_ORIFICE, QUARTER_CIRCLE_ORIFICE]
ORIFICE_CORNER_TAPS = 'corner'
ORIFICE_FLANGE_TAPS = 'flange'
ORIFICE_D_AND_D_2_TAPS = 'D and D/2'
ORIFICE_PIPE_TAPS = 'pipe' # Not in ISO 5167
ORIFICE_VENA_CONTRACTA_TAPS = 'vena contracta' # Not in ISO 5167, normally segmental or eccentric orifices
# Used by miller; modifier on taps
TAPS_OPPOSITE = '180 degree'
TAPS_SIDE = '90 degree'
ISO_5167_ORIFICE = 'ISO 5167 orifice'
ISO_15377_ECCENTRIC_ORIFICE = 'ISO 15377 eccentric orifice'
ISO_15377_QUARTER_CIRCLE_ORIFICE = 'ISO 15377 quarter-circle orifice'
ISO_15377_CONICAL_ORIFICE = 'ISO 15377 conical orifice'
MILLER_ORIFICE = 'Miller orifice'
MILLER_ECCENTRIC_ORIFICE = 'Miller eccentric orifice'
MILLER_SEGMENTAL_ORIFICE = 'Miller segmental orifice'
MILLER_CONICAL_ORIFICE = 'Miller conical orifice'
MILLER_QUARTER_CIRCLE_ORIFICE = 'Miller quarter circle orifice'
UNSPECIFIED_METER = 'unspecified meter'
LONG_RADIUS_NOZZLE = 'long radius nozzle'
ISA_1932_NOZZLE = 'ISA 1932 nozzle'
VENTURI_NOZZLE = 'venuri nozzle'
AS_CAST_VENTURI_TUBE = 'as cast convergent venturi tube'
MACHINED_CONVERGENT_VENTURI_TUBE = 'machined convergent venturi tube'
ROUGH_WELDED_CONVERGENT_VENTURI_TUBE = 'rough welded convergent venturi tube'
HOLLINGSHEAD_ORIFICE = 'Hollingshead orifice'
HOLLINGSHEAD_VENTURI_SMOOTH = 'Hollingshead venturi smooth'
HOLLINGSHEAD_VENTURI_SHARP = 'Hollingshead venturi sharp'
HOLLINGSHEAD_CONE = 'Hollingshead v cone'
HOLLINGSHEAD_WEDGE = 'Hollingshead wedge'
CONE_METER = 'cone meter'
WEDGE_METER = 'wedge meter'
__all__.extend(['ISO_5167_ORIFICE','ISO_15377_ECCENTRIC_ORIFICE', 'MILLER_ORIFICE',
'MILLER_ECCENTRIC_ORIFICE', 'MILLER_SEGMENTAL_ORIFICE',
'LONG_RADIUS_NOZZLE', 'ISA_1932_NOZZLE',
'VENTURI_NOZZLE', 'AS_CAST_VENTURI_TUBE',
'MACHINED_CONVERGENT_VENTURI_TUBE',
'ROUGH_WELDED_CONVERGENT_VENTURI_TUBE', 'CONE_METER',
'WEDGE_METER', 'ISO_15377_CONICAL_ORIFICE',
'MILLER_CONICAL_ORIFICE',
'MILLER_QUARTER_CIRCLE_ORIFICE',
'ISO_15377_QUARTER_CIRCLE_ORIFICE', 'UNSPECIFIED_METER',
'HOLLINGSHEAD_ORIFICE', 'HOLLINGSHEAD_CONE', 'HOLLINGSHEAD_WEDGE',
'HOLLINGSHEAD_VENTURI_SMOOTH', 'HOLLINGSHEAD_VENTURI_SHARP'])
__all__.extend(['ORIFICE_CORNER_TAPS', 'ORIFICE_FLANGE_TAPS',
'ORIFICE_D_AND_D_2_TAPS', 'ORIFICE_PIPE_TAPS',
'ORIFICE_VENA_CONTRACTA_TAPS', 'TAPS_OPPOSITE', 'TAPS_SIDE'])
__all__.extend(['CONCENTRIC_ORIFICE', 'ECCENTRIC_ORIFICE',
'CONICAL_ORIFICE', 'SEGMENTAL_ORIFICE',
'QUARTER_CIRCLE_ORIFICE'])
def flow_meter_discharge(D, Do, P1, P2, rho, C, expansibility=1.0):
r'''Calculates the flow rate of an orifice plate based on the geometry
of the plate, measured pressures of the orifice, and the density of the
fluid.
.. math::
m = \left(\frac{\pi D_o^2}{4}\right) C \frac{\sqrt{2\Delta P \rho_1}}
{\sqrt{1 - \beta^4}}\cdot \epsilon
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
P1 : float
Static pressure of fluid upstream of orifice at the cross-section of
the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of orifice at the cross-section of
the pressure tap, [Pa]
rho : float
Density of fluid at `P1`, [kg/m^3]
C : float
Coefficient of discharge of the orifice, [-]
expansibility : float, optional
Expansibility factor (1 for incompressible fluids, less than 1 for
real fluids), [-]
Returns
-------
m : float
Mass flow rate of fluid, [kg/s]
Notes
-----
This is formula 1-12 in [1]_ and also [2]_.
Examples
--------
>>> flow_meter_discharge(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, rho=1.1646,
... C=0.5988, expansibility=0.9975)
0.01120390943807026
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 2: Orifice Plates.
'''
beta = Do/D
beta2 = beta*beta
return (0.25*pi*Do*Do)*C*expansibility*sqrt((2.0*rho*(P1 - P2))/(1.0 - beta2*beta2))
def orifice_expansibility(D, Do, P1, P2, k):
r'''Calculates the expansibility factor for orifice plate calculations
based on the geometry of the plate, measured pressures of the orifice, and
the isentropic exponent of the fluid.
.. math::
\epsilon = 1 - (0.351 + 0.256\beta^4 + 0.93\beta^8)
\left[1-\left(\frac{P_2}{P_1}\right)^{1/\kappa}\right]
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
P1 : float
Static pressure of fluid upstream of orifice at the cross-section of
the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of orifice at the cross-section of
the pressure tap, [Pa]
k : float
Isentropic exponent of fluid, [-]
Returns
-------
expansibility : float, optional
Expansibility factor (1 for incompressible fluids, less than 1 for
real fluids), [-]
Notes
-----
This formula was determined for the range of P2/P1 >= 0.80, and for fluids
of air, steam, and natural gas. However, there is no objection to using
it for other fluids.
It is said in [1]_ that for liquids this should not be used. The result
can be forced by setting `k` to a really high number like 1E20.
Examples
--------
>>> orifice_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
0.9974739057343425
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 2: Orifice Plates.
'''
beta = Do/D
beta2 = beta*beta
beta4 = beta2*beta2
return (1.0 - (0.351 + beta4*(0.93*beta4 + 0.256))*(
1.0 - (P2/P1)**(1./k)))
def orifice_expansibility_1989(D, Do, P1, P2, k):
r'''Calculates the expansibility factor for orifice plate calculations
based on the geometry of the plate, measured pressures of the orifice, and
the isentropic exponent of the fluid.
.. math::
\epsilon = 1- (0.41 + 0.35\beta^4)\Delta P/\kappa/P_1
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
P1 : float
Static pressure of fluid upstream of orifice at the cross-section of
the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of orifice at the cross-section of
the pressure tap, [Pa]
k : float
Isentropic exponent of fluid, [-]
Returns
-------
expansibility : float
Expansibility factor (1 for incompressible fluids, less than 1 for
real fluids), [-]
Notes
-----
This formula was determined for the range of P2/P1 >= 0.75, and for fluids
of air, steam, and natural gas. However, there is no objection to using
it for other fluids.
This is an older formula used to calculate expansibility factors for
orifice plates.
In this standard, an expansibility factor formula transformation in terms
of the pressure after the orifice is presented as well. This is the more
standard formulation in terms of the upstream conditions. The other formula
is below for reference only:
.. math::
\epsilon_2 = \sqrt{1 + \frac{\Delta P}{P_2}} - (0.41 + 0.35\beta^4)
\frac{\Delta P}{\kappa P_2 \sqrt{1 + \frac{\Delta P}{P_2}}}
[2]_ recommends this formulation for wedge meters as well.
Examples
--------
>>> orifice_expansibility_1989(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
0.9970510687411718
References
----------
.. [1] American Society of Mechanical Engineers. MFC-3M-1989 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2005.
.. [2] Miller, Richard W. Flow Measurement Engineering Handbook. 3rd
edition. New York: McGraw-Hill Education, 1996.
'''
beta_ratio_4 = Do/D
beta_ratio_4 = beta_ratio_4*beta_ratio_4
beta_ratio_4 = beta_ratio_4*beta_ratio_4
return 1.0 - (0.41 + 0.35*beta_ratio_4)*(P1 - P2)/(k*P1)
def C_Reader_Harris_Gallagher(D, Do, rho, mu, m, taps='corner'):
r'''Calculates the coefficient of discharge of the orifice based on the
geometry of the plate, measured pressures of the orifice, mass flow rate
through the orifice, and the density and viscosity of the fluid.
.. math::
C = 0.5961 + 0.0261\beta^2 - 0.216\beta^8 + 0.000521\left(\frac{
10^6\beta}{Re_D}\right)^{0.7}\\
+ (0.0188 + 0.0063A)\beta^{3.5} \left(\frac{10^6}{Re_D}\right)^{0.3} \\
+(0.043 + 0.080\exp(-10L_1) -0.123\exp(-7L_1))(1-0.11A)\frac{\beta^4}
{1-\beta^4} \\
- 0.031(M_2' - 0.8M_2'^{1.1})\beta^{1.3}
.. math::
M_2' = \frac{2L_2'}{1-\beta}
.. math::
A = \left(\frac{19000\beta}{Re_{D}}\right)^{0.8}
.. math::
Re_D = \frac{\rho v D}{\mu}
If D < 71.12 mm (2.8 in.) (Note this is a continuous addition; there is no
discontinuity):
.. math::
C += 0.11(0.75-\beta)\left(2.8-\frac{D}{0.0254}\right)
If the orifice has corner taps:
.. math::
L_1 = L_2' = 0
If the orifice has D and D/2 taps:
.. math::
L_1 = 1
.. math::
L_2' = 0.47
If the orifice has Flange taps:
.. math::
L_1 = L_2' = \frac{0.0254}{D}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
rho : float
Density of fluid at `P1`, [kg/m^3]
mu : float
Viscosity of fluid at `P1`, [Pa*s]
m : float
Mass flow rate of fluid through the orifice, [kg/s]
taps : str
The orientation of the taps; one of 'corner', 'flange', 'D', or 'D/2',
[-]
Returns
-------
C : float
Coefficient of discharge of the orifice, [-]
Notes
-----
The following limits apply to the orifice plate standard [1]_:
The measured pressure difference for the orifice plate should be under
250 kPa.
There are roughness limits as well; the roughness should be under 6
micrometers, although there are many more conditions to that given in [1]_.
For orifice plates with D and D/2 or corner pressure taps:
* Orifice bore diameter muse be larger than 12.5 mm (0.5 inches)
* Pipe diameter between 50 mm and 1 m (2 to 40 inches)
* Beta between 0.1 and 0.75 inclusive
* Reynolds number larger than 5000 (for :math:`0.10 \le \beta \le 0.56`)
or for :math:`\beta \ge 0.56, Re_D \ge 16000\beta^2`
For orifice plates with flange pressure taps:
* Orifice bore diameter muse be larger than 12.5 mm (0.5 inches)
* Pipe diameter between 50 mm and 1 m (2 to 40 inches)
* Beta between 0.1 and 0.75 inclusive
* Reynolds number larger than 5000 and also larger than
:math:`170000\beta^2 D`.
This is also presented in Crane's TP410 (2009) publication, whereas the
1999 and 1982 editions showed only a graph for discharge coefficients.
Examples
--------
>>> C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5,
... m=0.12, taps='flange')
0.5990326277163659
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 2: Orifice Plates.
.. [3] Reader-Harris, M. J., "The Equation for the Expansibility Factor for
Orifice Plates," Proceedings of FLOMEKO 1998, Lund, Sweden, 1998:
209-214.
.. [4] Reader-Harris, Michael. Orifice Plates and Venturi Tubes. Springer,
2015.
'''
A_pipe = 0.25*pi*D*D
v = m/(A_pipe*rho)
Re_D = rho*v*D/mu
Re_D_inv = 1.0/Re_D
beta = Do/D
if taps == 'corner':
L1, L2_prime = 0.0, 0.0
elif taps == 'flange':
L1 = L2_prime = 0.0254/D
elif taps in ('D', 'D/2', ORIFICE_D_AND_D_2_TAPS):
L1 = 1.0
L2_prime = 0.47
else:
raise ValueError('Unsupported tap location')
beta2 = beta*beta
beta4 = beta2*beta2
beta8 = beta4*beta4
A = 2648.5177066967326*(beta*Re_D_inv)**0.8 # 19000.0^0.8 = 2648.51....
M2_prime = 2.0*L2_prime/(1.0 - beta)
# These two exps
expnL1 = exp(-L1)
expnL2 = expnL1*expnL1
expnL3 = expnL1*expnL2
delta_C_upstream = ((0.043 + expnL3*expnL2*expnL2*(0.080*expnL3 - 0.123))
*(1.0 - 0.11*A)*beta4/(1.0 - beta4))
# The max part is not in the ISO standard
t1 = log10(3700.*Re_D_inv)
if t1 < 0.0:
t1 = 0.0
delta_C_downstream = (-0.031*(M2_prime - 0.8*M2_prime**1.1)*beta**1.3
*(1.0 + 8.0*t1))
# C_inf is discharge coefficient with corner taps for infinite Re
# Cs, slope term, provides increase in discharge coefficient for lower
# Reynolds numbers.
x1 = 63.095734448019314*(Re_D_inv)**0.3 # 63.095... = (1e6)**0.3
x2 = 22.7 - 0.0047*Re_D
t2 = max(x2, x1)
# max term is not in the ISO standard
C_inf_C_s = (0.5961 + 0.0261*beta2 - 0.216*beta8
+ 0.000521*(1E6*beta*Re_D_inv)**0.7
+ (0.0188 + 0.0063*A)*beta2*beta*sqrt(beta)*(
t2))
C = (C_inf_C_s + delta_C_upstream + delta_C_downstream)
if D < 0.07112:
# Limit is 2.8 inches, .1 inches smaller than the internal diameter of
# a sched. 80 pipe.
# Suggested to be required not becausue of any effect of small
# diameters themselves, but because of edge radius differences.
# max term is given in [4]_ Reader-Harris, Michael book
# There is a check for t3 being negative and setting it to zero if so
# in some sources but that only occurs when t3 is exactly the limit
# (0.07112) so it is not needed
t3 = (2.8 - D*inch_inv)
delta_C_diameter = 0.011*(0.75 - beta)*t3
C += delta_C_diameter
return C
_Miller_1996_unsupported_type = "Supported orifice types are {}".format(str(
(CONCENTRIC_ORIFICE, SEGMENTAL_ORIFICE, ECCENTRIC_ORIFICE,
CONICAL_ORIFICE, QUARTER_CIRCLE_ORIFICE)))
_Miller_1996_unsupported_tap_concentric = "Supported taps for subtype '{}' are {}".format(
CONCENTRIC_ORIFICE, (ORIFICE_CORNER_TAPS, ORIFICE_FLANGE_TAPS,
ORIFICE_D_AND_D_2_TAPS, ORIFICE_PIPE_TAPS))
_Miller_1996_unsupported_tap_pos_eccentric = f"Supported tap positions for subtype '{ECCENTRIC_ORIFICE}' are {(TAPS_OPPOSITE, TAPS_SIDE)}"
_Miller_1996_unsupported_tap_eccentric = f"Supported taps for subtype '{ECCENTRIC_ORIFICE}' are {(ORIFICE_FLANGE_TAPS, ORIFICE_VENA_CONTRACTA_TAPS)}"
_Miller_1996_unsupported_tap_segmental = f"Supported taps for subtype '{SEGMENTAL_ORIFICE}' are {(ORIFICE_FLANGE_TAPS, ORIFICE_VENA_CONTRACTA_TAPS)}"
def C_Miller_1996(D, Do, rho, mu, m, subtype='orifice',
taps=ORIFICE_CORNER_TAPS, tap_position=TAPS_OPPOSITE):
r'''Calculates the coefficient of discharge of any of the orifice types
supported by the Miller (1996) [1]_ correlation set. These correlations
cover a wide range of industrial applications and sizes. Most of them are
functions of `beta` ratio and Reynolds number. Unlike the ISO standards,
these correlations do not come with well defined ranges of validity, so
caution should be applied using there correlations.
The base equation is as follows, and each orifice type and range has
different values or correlations for :math:`C_{\infty}`, `b`, and `n`.
.. math::
C = C_{\infty} + \frac{b}{{Re}_D^n}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
rho : float
Density of fluid at `P1`, [kg/m^3]
mu : float
Viscosity of fluid at `P1`, [Pa*s]
m : float
Mass flow rate of fluid through the orifice, [kg/s]
subtype : str, optional
One of 'orifice', 'eccentric orifice', 'segmental orifice',
'conical orifice', or 'quarter circle orifice', [-]
taps : str, optional
The orientation of the taps; one of 'corner', 'flange',
'D and D/2', 'pipe', or 'vena contracta'; not all orifice subtypes
support the all tap types [-]
tap_position : str, optional
The rotation of the taps, used **only for the eccentric orifice case**
where the pressure profile is are not symmetric; '180 degree' for the
normal case where the taps are opposite the orifice bore, and
'90 degree' for the case where, normally for operational reasons, the
taps are near the bore [-]
Returns
-------
C : float
Coefficient of discharge of the orifice, [-]
Notes
-----
Many of the correlations transition at a pipe diameter of 100 mm to
different equations, which will lead to discontinuous behavior.
It should also be noted the author of these correlations developed a
commercial flow meter rating software package, at [2]_.
He passed away in 2014, but contributed massively to the field of flow
measurement.
The numerous equations for the different cases are as follows:
For all **regular (concentric) orifices**, the `b` equation is as follows
and n = 0.75:
.. math::
b = 91.706\beta^{2.5}
Regular (concentric) orifice, corner taps:
.. math::
C_{\infty} = 0.5959 + 0.0312\beta^2.1 - 0.184\beta^8
Regular (concentric) orifice, flange taps, D > 58.4 mm:
.. math::
C_{\infty} = 0.5959 + 0.0312\beta^{2.1} - 0.184\beta^8
+ \frac{2.286\beta^4}{(D_{mm}(1.0 - \beta^4))}
- \frac{0.856\beta^3}{D_{mm}}
Regular (concentric) orifice, flange taps, D < 58.4 mm:
.. math::
C_{\infty} = 0.5959 + 0.0312\beta^{2.1} - 0.184\beta^8
+ \frac{0.039\beta^4}{(1.0 - \beta^4)} - \frac{0.856\beta^3}{D_{mm}}
Regular (concentric) orifice, 'D and D/2' taps:
.. math::
C_{\infty} = 0.5959 + 0.0312\beta^{2.1} - 0.184\beta^8
+ \frac{0.039\beta^4}{(1.0 - \beta^4)} - 0.01584
Regular (concentric) orifice, 'pipe' taps:
.. math::
C_{\infty} = 0.5959 + 0.461\beta^{2.1} + 0.48\beta^8
+ \frac{0.039\beta^4}{(1.0 - \beta^4)}
For the case of a **conical orifice**, there is no tap dependence
and one equation (`b` = 0, `n` = 0):
.. math::
C_{\infty} = 0.734 \text{ if } 250\beta \le Re \le 500\beta \text{ else } 0.730
For the case of a **quarter circle orifice**, corner and flange taps have
the same dependence (`b` = 0, `n` = 0):
.. math::
C_{\infty} = (0.7746 - 0.1334\beta^{2.1} + 1.4098\beta^8
+ \frac{0.0675\beta^4}{(1 - \beta^4)} + 0.3865\beta^3)
For all **segmental orifice** types, `b` = 0 and `n` = 0
Segmental orifice, 'flange' taps, D < 10 cm:
.. math::
C_{\infty} = 0.6284 + 0.1462\beta^{2.1} - 0.8464\beta^8
+ \frac{0.2603\beta^4}{(1-\beta^4)} - 0.2886\beta^3
Segmental orifice, 'flange' taps, D > 10 cm:
.. math::
C_{\infty} = 0.6276 + 0.0828\beta^{2.1} + 0.2739\beta^8
- \frac{0.0934\beta^4}{(1-\beta^4)} - 0.1132\beta^3
Segmental orifice, 'vena contracta' taps, D < 10 cm:
.. math::
C_{\infty} = 0.6261 + 0.1851\beta^{2.1} - 0.2879\beta^8
+ \frac{0.1170\beta^4}{(1-\beta^4)} - 0.2845\beta^3
Segmental orifice, 'vena contracta' taps, D > 10 cm:
.. math::
C_{\infty} = 0.6276 + 0.0828\beta^{2.1} + 0.2739\beta^8
- \frac{0.0934\beta^4}{(1-\beta^4)} - 0.1132\beta^3
For all **eccentric orifice** types, `n` = 0.75 and `b` is fit to a
polynomial of `beta`.
Eccentric orifice, 'flange' taps, 180 degree opposite taps, D < 10 cm:
.. math::
C_{\infty} = 0.5917 + 0.3061\beta^{2.1} + .3406\beta^8 -\frac{.1019\beta^4}{(1-\beta^4)} - 0.2715\beta^3
.. math::
b = 7.3 - 15.7\beta + 170.8\beta^2 - 399.7\beta^3 + 332.2\beta^4
Eccentric orifice, 'flange' taps, 180 degree opposite taps, D > 10 cm:
.. math::
C_{\infty} = 0.6016 + 0.3312\beta^{2.1} -1.5581\beta^8 + \frac{0.6510\beta^4}{(1-\beta^4)} - 0.7308\beta^3
.. math::
b = -139.7 + 1328.8\beta - 4228.2\beta^2 + 5691.9\beta^3 - 2710.4\beta^4
Eccentric orifice, 'flange' taps, 90 degree side taps, D < 10 cm:
.. math::
C_{\infty} = 0.5866 + 0.3917\beta^{2.1} + .7586\beta^8 - \frac{.2273\beta^4}{(1-\beta^4)} - .3343\beta^3
.. math::
b = 69.1 - 469.4\beta + 1245.6\beta^2 -1287.5\beta^3 + 486.2\beta^4
Eccentric orifice, 'flange' taps, 90 degree side taps, D > 10 cm:
.. math::
C_{\infty} = 0.6037 + 0.1598\beta^{2.1} -.2918\beta^8 + \frac{0.0244\beta^4}{(1-\beta^4)} - 0.0790\beta^3
.. math::
b = -103.2 + 898.3\beta - 2557.3\beta^2 + 2977.0\beta^3 - 1131.3\beta^4
Eccentric orifice, 'vena contracta' taps, 180 degree opposite taps, D < 10 cm:
.. math::
C_{\infty} = 0.5925 + 0.3380\beta^{2.1} + 0.4016\beta^8 - \frac{.1046\beta^4}{(1-\beta^4)} - 0.3212\beta^3
.. math::
b = 23.3 -207.0\beta + 821.5\beta^2 -1388.6\beta^3 + 900.3\beta^4
Eccentric orifice, 'vena contracta' taps, 180 degree opposite taps, D > 10 cm:
.. math::
C_{\infty} = 0.5922 + 0.3932\beta^{2.1} + .3412\beta^8 - \frac{.0569\beta^4}{(1-\beta^4)} - 0.4628\beta^3
.. math::
b = 55.7 - 471.4\beta + 1721.8\beta^2 - 2722.6\beta^3 + 1569.4\beta^4
Eccentric orifice, 'vena contracta' taps, 90 degree side taps, D < 10 cm:
.. math::
C_{\infty} = 0.5875 + 0.3813\beta^{2.1} + 0.6898\beta^8 - \frac{0.1963\beta^4}{(1-\beta^4)} - 0.3366\beta^3
.. math::
b = -69.3 + 556.9\beta - 1332.2\beta^2 + 1303.7\beta^3 - 394.8\beta^4
Eccentric orifice, 'vena contracta' taps, 90 degree side taps, D > 10 cm:
.. math::
C_{\infty} = 0.5949 + 0.4078\beta^{2.1} + 0.0547\beta^8 + \frac{0.0955\beta^4}{(1-\beta^4)} - 0.5608\beta^3
.. math::
b = 52.8 - 434.2\beta + 1571.2\beta^2 - 2460.9\beta^3 + 1420.2\beta^4
Examples
--------
>>> C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps='flange', subtype='orifice')
0.599065557156788
References
----------
.. [1] Miller, Richard W. Flow Measurement Engineering Handbook.
McGraw-Hill Education, 1996.
.. [2] "RW Miller & Associates." Accessed April 13, 2020.
http://rwmillerassociates.com/.
'''
A_pipe = 0.25*pi*D*D
v = m/(A_pipe*rho)
Re = rho*v*D/mu
D_mm = D*1000.0
beta = Do/D
beta2 = beta*beta
beta3 = beta2*beta
beta4 = beta*beta3
beta8 = beta4*beta4
beta21 = beta**2.1
if subtype in (MILLER_ORIFICE, CONCENTRIC_ORIFICE):
b = 91.706*beta2*sqrt(beta)
n = 0.75
if taps == ORIFICE_CORNER_TAPS:
C_inf = 0.5959 + 0.0312*beta21 - 0.184*beta8
elif taps == ORIFICE_FLANGE_TAPS:
if D_mm >= 58.4:
C_inf = 0.5959 + 0.0312*beta21 - 0.184*beta8 + 2.286*beta4/(D_mm*(1.0 - beta4)) - 0.856*beta3/D_mm
else:
C_inf = 0.5959 + 0.0312*beta21 - 0.184*beta8 + 0.039*beta4/(1.0 - beta4) - 0.856*beta3/D_mm
elif taps == ORIFICE_D_AND_D_2_TAPS:
C_inf = 0.5959 + 0.0312*beta21 - 0.184*beta8 + 0.039*beta4/(1.0 - beta4) - 0.01584
elif taps == ORIFICE_PIPE_TAPS:
C_inf = 0.5959 + 0.461*beta21 + 0.48*beta8 + 0.039*beta4/(1.0 - beta4)
else:
raise ValueError(_Miller_1996_unsupported_tap_concentric)
elif subtype in (MILLER_ECCENTRIC_ORIFICE, ECCENTRIC_ORIFICE):
if tap_position not in (TAPS_OPPOSITE, TAPS_SIDE):
raise ValueError(_Miller_1996_unsupported_tap_pos_eccentric)
n = 0.75
if taps == ORIFICE_FLANGE_TAPS:
if tap_position == TAPS_OPPOSITE:
if D < 0.1:
b = 7.3 - 15.7*beta + 170.8*beta2 - 399.7*beta3 + 332.2*beta4
C_inf = 0.5917 + 0.3061*beta21 + .3406*beta8 -.1019*beta4/(1.0-beta4) - 0.2715*beta3
else:
b = -139.7 + 1328.8*beta - 4228.2*beta2 + 5691.9*beta3 - 2710.4*beta4
C_inf = 0.6016 + 0.3312*beta21 - 1.5581*beta8 + 0.6510*beta4/(1.0-beta4) - 0.7308*beta3
elif tap_position == TAPS_SIDE:
if D < 0.1:
b = 69.1 - 469.4*beta + 1245.6*beta2 -1287.5*beta3 + 486.2*beta4
C_inf = 0.5866 + 0.3917*beta21 + 0.7586*beta8 -.2273*beta4/(1.0-beta4) - .3343*beta3
else:
b = -103.2 + 898.3*beta - 2557.3*beta2 + 2977.0*beta3 - 1131.3*beta4
C_inf = 0.6037 + 0.1598*beta21 - 0.2918*beta8 + 0.0244*beta4/(1.0-beta4) - 0.0790*beta3
elif taps == ORIFICE_VENA_CONTRACTA_TAPS:
if tap_position == TAPS_OPPOSITE:
if D < 0.1:
b = 23.3 -207.0*beta + 821.5*beta2 -1388.6*beta3 + 900.3*beta4
C_inf = 0.5925 + 0.3380*beta21 + 0.4016*beta8 -.1046*beta4/(1.0-beta4) - 0.3212*beta3
else:
b = 55.7 - 471.4*beta + 1721.8*beta2 - 2722.6*beta3 + 1569.4*beta4
C_inf = 0.5922 + 0.3932*beta21 + .3412*beta8 -.0569*beta4/(1.0-beta4) - 0.4628*beta3
elif tap_position == TAPS_SIDE:
if D < 0.1:
b = -69.3 + 556.9*beta - 1332.2*beta2 + 1303.7*beta3 - 394.8*beta4
C_inf = 0.5875 + 0.3813*beta21 + 0.6898*beta8 -0.1963*beta4/(1.0-beta4) - 0.3366*beta3
else:
b = 52.8 - 434.2*beta + 1571.2*beta2 - 2460.9*beta3 + 1420.2*beta4
C_inf = 0.5949 + 0.4078*beta21 + 0.0547*beta8 +0.0955*beta4/(1.0-beta4) - 0.5608*beta3
else:
raise ValueError(_Miller_1996_unsupported_tap_eccentric)
elif subtype in (MILLER_SEGMENTAL_ORIFICE, SEGMENTAL_ORIFICE):
n = b = 0.0
if taps == ORIFICE_FLANGE_TAPS:
if D < 0.1:
C_inf = 0.6284 + 0.1462*beta21 - 0.8464*beta8 + 0.2603*beta4/(1.0-beta4) - 0.2886*beta3
else:
C_inf = 0.6276 + 0.0828*beta21 + 0.2739*beta8 - 0.0934*beta4/(1.0-beta4) - 0.1132*beta3
elif taps == ORIFICE_VENA_CONTRACTA_TAPS:
if D < 0.1:
C_inf = 0.6261 + 0.1851*beta21 - 0.2879*beta8 + 0.1170*beta4/(1.0-beta4) - 0.2845*beta3
else:
# Yes these are supposed to be the same as the flange, large set
C_inf = 0.6276 + 0.0828*beta21 + 0.2739*beta8 - 0.0934*beta4/(1.0-beta4) - 0.1132*beta3
else:
raise ValueError(_Miller_1996_unsupported_tap_segmental)
elif subtype in (MILLER_CONICAL_ORIFICE, CONICAL_ORIFICE):
n = b = 0.0
if 250.0*beta <= Re <= 500.0*beta:
C_inf = 0.734
else:
C_inf = 0.730
elif subtype in (MILLER_QUARTER_CIRCLE_ORIFICE, QUARTER_CIRCLE_ORIFICE):
n = b = 0.0
C_inf = (0.7746 - 0.1334*beta21 + 1.4098*beta8
+ 0.0675*beta4/(1.0 - beta4) + 0.3865*beta3)
else:
raise ValueError(_Miller_1996_unsupported_type)
C = C_inf + b*Re**-n
return C
# Data from: Discharge Coefficient Performance of Venturi, Standard Concentric Orifice Plate, V-Cone, and Wedge Flow Meters at Small Reynolds Numbers
orifice_std_Res_Hollingshead = [1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 60.0, 80.0, 100.0, 200.0, 300.0, 500.0, 1000.0, 2000.0, 3000.0, 5000.0, 10000.0, 100000.0,
1000000.0, 10000000.0, 50000000.0
]
orifice_std_logRes_Hollingshead = [0.0, 1.6094379124341003, 2.302585092994046, 2.995732273553991, 3.4011973816621555, 3.6888794541139363, 4.0943445622221,
4.382026634673881, 4.605170185988092, 5.298317366548036, 5.703782474656201, 6.214608098422191, 6.907755278982137, 7.600902459542082, 8.006367567650246,
8.517193191416238, 9.210340371976184, 11.512925464970229, 13.815510557964274, 16.11809565095832, 17.72753356339242
]
orifice_std_betas_Hollingshead = [0.5, 0.6, 0.65, 0.7]
orifice_std_beta_5_Hollingshead_Cs = [0.233, 0.478, 0.585, 0.654, 0.677, 0.688, 0.697, 0.700, 0.702, 0.699, 0.693, 0.684, 0.67, 0.648, 0.639, 0.632, 0.629,
0.619, 0.615, 0.614, 0.614
]
orifice_std_beta_6_Hollingshead_Cs = [0.212, 0.448, 0.568, 0.657, 0.689, 0.707, 0.721, 0.725, 0.727, 0.725, 0.719, 0.707, 0.688, 0.658, 0.642, 0.633, 0.624,
0.61, 0.605, 0.602, 0.595
]
orifice_std_beta_65_Hollingshead_Cs = [0.202, 0.425, 0.546, 0.648, 0.692, 0.715, 0.738, 0.748, 0.754, 0.764, 0.763, 0.755, 0.736, 0.685, 0.666, 0.656, 0.641,
0.622, 0.612, 0.61, 0.607
]
orifice_std_beta_7_Hollingshead_Cs = [0.191, 0.407, 0.532, 0.644, 0.696, 0.726, 0.756, 0.772, 0.781, 0.795, 0.796, 0.788, 0.765, 0.7, 0.67, 0.659, 0.646, 0.623,
0.616, 0.607, 0.604
]
orifice_std_Hollingshead_Cs = [orifice_std_beta_5_Hollingshead_Cs, orifice_std_beta_6_Hollingshead_Cs,
orifice_std_beta_65_Hollingshead_Cs, orifice_std_beta_7_Hollingshead_Cs
]
orifice_std_Hollingshead_tck = implementation_optimize_tck([
[0.5, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.7],
[0.0, 0.0, 0.0, 0.0, 2.302585092994046, 2.995732273553991, 3.4011973816621555, 3.6888794541139363, 4.0943445622221, 4.382026634673881,
4.605170185988092, 5.298317366548036, 5.703782474656201, 6.214608098422191, 6.907755278982137, 7.600902459542082, 8.006367567650246,
8.517193191416238, 9.210340371976184, 11.512925464970229, 13.815510557964274, 17.72753356339242, 17.72753356339242, 17.72753356339242,
17.72753356339242
],
[0.23300000000000026, 0.3040793845022822, 0.5397693379388018, 0.6509414325648643, 0.6761419937262648, 0.6901697401156808, 0.6972240707909276,
0.6996759572505151, 0.7040223363705952, 0.7008741587711967, 0.692665226515394, 0.6826387818678974, 0.6727930643166521, 0.6490542161859936,
0.6378780959698012, 0.6302027504736312, 0.6284904523610422, 0.616773266650063, 0.6144108030024114, 0.6137270770149181, 0.6140000000000004,
0.21722222222222212, 0.26754856063815036, 0.547178981607613, 0.6825835849471493, 0.6848255120880751, 0.712775784969247, 0.7066842545008245,
0.7020345744268808, 0.6931476737316041, 0.6710886785478944, 0.6501218695989138, 0.6257164975579488, 0.5888463567232898, 0.6237505336392806,
0.578149766754485, 0.5761890160080455, 0.5922303103985014, 0.5657790974864929, 0.6013376373672517, 0.5693593555949975, 0.5528888888888888,
0.206777777777778, 0.2644342350096853, 0.4630985572034346, 0.6306849522311501, 0.6899260188747366, 0.7092703879134302, 0.7331416654072416,
0.7403866219900521, 0.7531493636395633, 0.7685019053395048, 0.771007019842085, 0.7649533772965396, 0.7707020081746302, 0.6897832472092346,
0.6910618341373851, 0.6805763529796045, 0.6291884772151493, 0.6470904244660671, 0.5962879899497537, 0.6353096798316025, 0.6277777777777779,
0.19100000000000003, 0.23712276889270198, 0.44482842661392175, 0.6337225464930397, 0.6926462978136392, 0.7316874888663132, 0.7542057211530093,
0.77172737538752, 0.7876049778429112, 0.795143180926116, 0.7977570986094262, 0.7861445043222344, 0.777182818678971, 0.7057345800650827,
0.6626698628526632, 0.6600690433654985, 0.6323396431072075, 0.6212684034830293, 0.616281323630018, 0.603728515722033, 0.6040000000000001
], 3, 3
])
def C_eccentric_orifice_ISO_15377_1998(D, Do):
r'''Calculates the coefficient of discharge of an eccentric orifice based
on the geometry of the plate according to ISO 15377, first introduced in
1998 and also presented in the second 2007 edition. It also appears in BS
1042-1.2: 1989.
.. math::
C = 0.9355 - 1.6889\beta + 3.0428\beta^2 - 1.7989\beta^3
This type of plate is normally used to avoid obstructing entrained gas,
liquid, or sediment.
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
Returns
-------
C : float
Coefficient of discharge of the eccentric orifice, [-]
Notes
-----
No correction for where the orifice bore is located is included.
The following limits apply to the orifice plate standard [1]_:
* Bore diameter above 50 mm.
* Pipe diameter between 10 cm and 1 m.
* Beta ratio between 0.46 and 0.84
* :math:`2\times 10^5 \beta^2 \le Re_D \le 10^6 \beta`
The uncertainty of this equation for `C` is said to be 1% if `beta` is
under 0.75, otherwise 2%.
The `orifice_expansibility` function should be used with this method as
well.
Additional specifications are:
* The thickness of the orifice should be between 0.005`D` and 0.02`D`.
* Corner tappings should be used, with hole diameter between 3 and 10 mm.
The angular orientation of the tappings matters because the flow meter
is not symmetrical. The angle should ideally be at the top or bottom of
the plate, opposite which side the bore is on - but this can cause
issues with deposition if the taps are on the bottom or gas bubbles if
the taps are on the taps. The taps are often placed 30 degrees away from
the ideal position to counteract this effect, with under an extra 2%
error.
Some comparisons with CFD results can be found in [2]_.
Examples
--------
>>> C_eccentric_orifice_ISO_15377_1998(.2, .075)
0.6351923828125
References
----------
.. [1] TC 30/SC 2, ISO. ISO/TR 15377:1998, Measurement of Fluid Flow by
Means of Pressure-Differential Devices - Guide for the Specification of
Nozzles and Orifice Plates beyond the Scope of ISO 5167-1.
.. [2] Yashvanth, S., Varadarajan Seshadri, and J. YogeshKumarK. "CFD
Analysis of Flow through Single and Multi Stage Eccentric Orifice Plate
Assemblies," 2017.
'''
beta = Do/D
C = beta*(beta*(3.0428 - 1.7989*beta) - 1.6889) + 0.9355
return C
def C_quarter_circle_orifice_ISO_15377_1998(D, Do):
r'''Calculates the coefficient of discharge of a quarter circle orifice based
on the geometry of the plate according to ISO 15377, first introduced in
1998 and also presented in the second 2007 edition. It also appears in BS
1042-1.2: 1989.
.. math::
C = 0.73823 + 0.3309\beta - 1.1615\beta^2 + 1.5084\beta^3
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
Returns
-------
C : float
Coefficient of discharge of the quarter circle orifice, [-]
Notes
-----
The discharge coefficient of this type of orifice plate remains
constant down to a lower than normal `Re`, as occurs in highly
viscous applications.
The following limits apply to the orifice plate standard [1]_:
* Bore diameter >= 1.5 cm
* Pipe diameter <= 50 cm
* Beta ratio between 0.245 and 0.6
* :math:`Re_d \le 10^5 \beta`
There is also a table in [1]_ which lists increased minimum
upstream pipe diameters for pipes of different roughnesses; the
higher the roughness, the larger the pipe diameter required,
and the table goes up to 20 cm for rusty cast iron.
Corner taps should be used up to pipe diameters of 40 mm;
for larger pipes, corner or flange taps can be used. No impact
on the flow coefficient is included in the correlation.
The recommended expansibility method for this type of orifice is
:obj:`orifice_expansibility`.
Examples
--------
>>> C_quarter_circle_orifice_ISO_15377_1998(.2, .075)
0.77851484375000
References
----------
.. [1] TC 30/SC 2, ISO. ISO/TR 15377:1998, Measurement of Fluid Flow by
Means of Pressure-Differential Devices - Guide for the Specification of
Nozzles and Orifice Plates beyond the Scope of ISO 5167-1.
'''
beta = Do/D
C = beta*(beta*(1.5084*beta - 1.16158) + 0.3309) + 0.73823
return C
def discharge_coefficient_to_K(D, Do, C):
r'''Converts a discharge coefficient to a standard loss coefficient,
for use in computation of the actual pressure drop of an orifice or other
device.
.. math::
K = \left[\frac{\sqrt{1-\beta^4(1-C^2)}}{C\beta^2} - 1\right]^2
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
C : float
Coefficient of discharge of the orifice, [-]
Returns
-------
K : float
Loss coefficient with respect to the velocity and density of the fluid
just upstream of the orifice, [-]
Notes
-----
If expansibility is used in the orifice calculation, the result will not
match with the specified pressure drop formula in [1]_; it can almost
be matched by dividing the calculated mass flow by the expansibility factor
and using that mass flow with the loss coefficient.
Examples
--------
>>> discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512)
5.2314291729754
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 2: Orifice Plates.
'''
beta = Do/D
beta2 = beta*beta
beta4 = beta2*beta2
root_K = (sqrt(1.0 - beta4*(1.0 - C*C))/(C*beta2) - 1.0)
return root_K*root_K
def K_to_discharge_coefficient(D, Do, K):
r'''Converts a standard loss coefficient to a discharge coefficient.
.. math::
C = \sqrt{\frac{1}{2 \sqrt{K} \beta^{4} + K \beta^{4}}
- \frac{\beta^{4}}{2 \sqrt{K} \beta^{4} + K \beta^{4}} }
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
K : float
Loss coefficient with respect to the velocity and density of the fluid
just upstream of the orifice, [-]
Returns
-------
C : float
Coefficient of discharge of the orifice, [-]
Notes
-----
If expansibility is used in the orifice calculation, the result will not
match with the specified pressure drop formula in [1]_; it can almost
be matched by dividing the calculated mass flow by the expansibility factor
and using that mass flow with the loss coefficient.
This expression was derived with SymPy, and checked numerically. There were
three other, incorrect roots.
Examples
--------
>>> K_to_discharge_coefficient(D=0.07366, Do=0.05, K=5.2314291729754)
0.6151200000000001
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 2: Orifice Plates.
'''
beta = Do/D
beta2 = beta*beta
beta4 = beta2*beta2
root_K = sqrt(K)
return sqrt((1.0 - beta4)/((2.0*root_K + K)*beta4))
def dP_orifice(D, Do, P1, P2, C):
r'''Calculates the non-recoverable pressure drop of an orifice plate based
on the pressure drop and the geometry of the plate and the discharge
coefficient.
.. math::
\Delta\bar w = \frac{\sqrt{1-\beta^4(1-C^2)}-C\beta^2}
{\sqrt{1-\beta^4(1-C^2)}+C\beta^2} (P_1 - P_2)
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
P1 : float
Static pressure of fluid upstream of orifice at the cross-section of
the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of orifice at the cross-section of
the pressure tap, [Pa]
C : float
Coefficient of discharge of the orifice, [-]
Returns
-------
dP : float
Non-recoverable pressure drop of the orifice plate, [Pa]
Notes
-----
This formula can be well approximated by:
.. math::
\Delta\bar w = \left(1 - \beta^{1.9}\right)(P_1 - P_2)
The recoverable pressure drop should be recovered by 6 pipe diameters
downstream of the orifice plate.
Examples
--------
>>> dP_orifice(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0, C=0.61512)
9069.474705745388
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 2: Orifice Plates.
'''
beta = Do/D
beta2 = beta*beta
beta4 = beta2*beta2
dP = P1 - P2
delta_w = (sqrt(1.0 - beta4*(1.0 - C*C)) - C*beta2)/(
sqrt(1.0 - beta4*(1.0 - C*C)) + C*beta2)*dP
return delta_w
def velocity_of_approach_factor(D, Do):
r'''Calculates a factor for orifice plate design called the `velocity of
approach`.
.. math::
\text{Velocity of approach} = \frac{1}{\sqrt{1 - \beta^4}}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
Returns
-------
velocity_of_approach : float
Coefficient of discharge of the orifice, [-]
Notes
-----
Examples
--------
>>> velocity_of_approach_factor(D=0.0739, Do=0.0222)
1.0040970074165514
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
'''
beta_ratio_4 = Do/D
beta_ratio_4 *= beta_ratio_4
beta_ratio_4 *= beta_ratio_4
return 1.0/sqrt(1.0 - beta_ratio_4)
def flow_coefficient(D, Do, C):
r'''Calculates a factor for differential pressure flow meter design called
the `flow coefficient`. This should not be confused with the flow
coefficient often used when discussing valves.
.. math::
\text{Flow coefficient} = \frac{C}{\sqrt{1 - \beta^4}}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of flow meter characteristic dimension at flow conditions, [m]
C : float
Coefficient of discharge of the flow meter, [-]
Returns
-------
flow_coefficient : float
Differential pressure flow meter flow coefficient, [-]
Notes
-----
This measure is used not just for orifices but for other differential
pressure flow meters [2]_.
It is sometimes given the symbol K. It is also equal to the product of the
diacharge coefficient and the velocity of approach factor [2]_.
Examples
--------
>>> flow_coefficient(D=0.0739, Do=0.0222, C=0.6)
0.6024582044499308
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] Miller, Richard W. Flow Measurement Engineering Handbook. 3rd
edition. New York: McGraw-Hill Education, 1996.
'''
beta_ratio_4 = Do/D
beta_ratio_4 *= beta_ratio_4
beta_ratio_4 *= beta_ratio_4
return C*1.0/sqrt(1.0 - beta_ratio_4)
def nozzle_expansibility(D, Do, P1, P2, k, beta=None):
r'''Calculates the expansibility factor for a nozzle or venturi nozzle,
based on the geometry of the plate, measured pressures of the orifice, and
the isentropic exponent of the fluid.
.. math::
\epsilon = \left\{\left(\frac{\kappa \tau^{2/\kappa}}{\kappa-1}\right)
\left(\frac{1 - \beta^4}{1 - \beta^4 \tau^{2/\kappa}}\right)
\left[\frac{1 - \tau^{(\kappa-1)/\kappa}}{1 - \tau}
\right] \right\}^{0.5}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice of the venturi or nozzle, [m]
P1 : float
Static pressure of fluid upstream of orifice at the cross-section of
the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of orifice at the cross-section of
the pressure tap, [Pa]
k : float
Isentropic exponent of fluid, [-]
beta : float, optional
Optional `beta` ratio, which is useful to specify for wedge meters or
flow meters which have a different beta ratio calculation, [-]
Returns
-------
expansibility : float
Expansibility factor (1 for incompressible fluids, less than 1 for
real fluids), [-]
Notes
-----
This formula was determined for the range of P2/P1 >= 0.75.
Mathematically the equation cannot be evaluated at `k` = 1, but if the
limit of the equation is taken the following equation is obtained and is
implemented:
.. math::
\epsilon = \sqrt{\frac{- D^{4} P_{1} P_{2}^{2} \log{\left(\frac{P_{2}}
{P_{1}} \right)} + Do^{4} P_{1} P_{2}^{2} \log{\left(\frac{P_{2}}{P_{1}}
\right)}}{D^{4} P_{1}^{3} - D^{4} P_{1}^{2} P_{2} - Do^{4} P_{1}
P_{2}^{2} + Do^{4} P_{2}^{3}}}
Note also there is a small amount of floating-point error around the range
of `k` ~1+1e-5 to ~1-1e-5, starting with 1e-7 and increasing to the point
of giving values larger than 1 or zero in the `k` ~1+1e-12 to ~1-1e-12
range.
Examples
--------
>>> nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
0.994570234456
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 3: Nozzles and Venturi Nozzles.
'''
if beta is None:
beta = Do/D
beta2 = beta*beta
beta4 = beta2*beta2
tau = P2/P1
if k == 1.0:
"""Avoid a zero division error:
from sympy import *
D, Do, P1, P2, k = symbols('D, Do, P1, P2, k')
beta = Do/D
tau = P2/P1
term1 = k*tau**(2/k )/(k - 1)
term2 = (1 - beta**4)/(1 - beta**4*tau**(2/k))
term3 = (1 - tau**((k - 1)/k))/(1 - tau)
val= sqrt(term1*term2*term3)
print(simplify(limit((term1*term2*term3), k, 1)))
"""
limit_val = (P1*P2**2*(-D**4 + Do**4)*log(P2/P1)/(D**4*P1**3
- D**4*P1**2*P2 - Do**4*P1*P2**2 + Do**4*P2**3))
return sqrt(limit_val)
term1 = k*tau**(2.0/k)/(k - 1.0)
term2 = (1.0 - beta4)/(1.0 - beta4*tau**(2.0/k))
if tau == 1.0:
"""Avoid a zero division error.
Obtained with:
from sympy import *
tau, k = symbols('tau, k')
expr = (1 - tau**((k - 1)/k))/(1 - tau)
limit(expr, tau, 1)
"""
term3 = (k - 1.0)/k
else:
# This form of the equation is mathematically equivalent but
# does not have issues where k = `.
term3 = (P1 - P2*(tau)**(-1.0/k))/(P1 - P2)
# term3 = (1.0 - tau**((k - 1.0)/k))/(1.0 - tau)
return sqrt(term1*term2*term3)
def C_long_radius_nozzle(D, Do, rho, mu, m):
r'''Calculates the coefficient of discharge of a long radius nozzle used
for measuring flow rate of fluid, based on the geometry of the nozzle,
mass flow rate through the nozzle, and the density and viscosity of the
fluid.
.. math::
C = 0.9965 - 0.00653\beta^{0.5} \left(\frac{10^6}{Re_D}\right)^{0.5}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of long radius nozzle orifice at flow conditions, [m]
rho : float
Density of fluid at `P1`, [kg/m^3]
mu : float
Viscosity of fluid at `P1`, [Pa*s]
m : float
Mass flow rate of fluid through the nozzle, [kg/s]
Returns
-------
C : float
Coefficient of discharge of the long radius nozzle orifice, [-]
Notes
-----
Examples
--------
>>> C_long_radius_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
0.9805503704679863
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 3: Nozzles and Venturi Nozzles.
'''
A_pipe = 0.25*pi*D*D
v = m/(A_pipe*rho)
Re_D = rho*v*D/mu
beta = Do/D
return 0.9965 - 0.00653*sqrt(beta)*sqrt(1E6/Re_D)
def C_ISA_1932_nozzle(D, Do, rho, mu, m):
r'''Calculates the coefficient of discharge of an ISA 1932 style nozzle
used for measuring flow rate of fluid, based on the geometry of the nozzle,
mass flow rate through the nozzle, and the density and viscosity of the
fluid.
.. math::
C = 0.9900 - 0.2262\beta^{4.1} - (0.00175\beta^2 - 0.0033\beta^{4.15})
\left(\frac{10^6}{Re_D}\right)^{1.15}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of nozzle orifice at flow conditions, [m]
rho : float
Density of fluid at `P1`, [kg/m^3]
mu : float
Viscosity of fluid at `P1`, [Pa*s]
m : float
Mass flow rate of fluid through the nozzle, [kg/s]
Returns
-------
C : float
Coefficient of discharge of the nozzle orifice, [-]
Notes
-----
Examples
--------
>>> C_ISA_1932_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
0.9635849973250495
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 3: Nozzles and Venturi Nozzles.
'''
A_pipe = 0.25*pi*D*D
v = m/(A_pipe*rho)
Re_D = rho*v*D/mu
beta = Do/D
C = (0.9900 - 0.2262*beta**4.1
- (0.00175*beta*beta - 0.0033*beta**4.15)*(1E6/Re_D)**1.15)
return C
def C_venturi_nozzle(D, Do):
r'''Calculates the coefficient of discharge of an Venturi style nozzle
used for measuring flow rate of fluid, based on the geometry of the nozzle.
.. math::
C = 0.9858 - 0.196\beta^{4.5}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of nozzle orifice at flow conditions, [m]
Returns
-------
C : float
Coefficient of discharge of the nozzle orifice, [-]
Notes
-----
Examples
--------
>>> C_venturi_nozzle(D=0.07391, Do=0.0422)
0.9698996454169576
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-3:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 3: Nozzles and Venturi Nozzles.
'''
beta = Do/D
beta_ratio_4 = beta*beta
beta_ratio_4 *= beta_ratio_4
return 0.9858 - 0.198*beta_ratio_4*sqrt(beta)
# Relative pressure loss as a function of beta reatio for venturi nozzles
# Venturi nozzles should be between 65 mm and 500 mm; there are high and low
# loss ratios , with the high losses corresponding to small diameters,
# low high losses corresponding to large diameters
# Interpolation can be performed.
venturi_tube_betas = [0.299160, 0.299470, 0.312390, 0.319010, 0.326580, 0.337290,
0.342020, 0.347060, 0.359030, 0.365960, 0.372580, 0.384870,
0.385810, 0.401250, 0.405350, 0.415740, 0.424250, 0.434010,
0.447880, 0.452590, 0.471810, 0.473090, 0.493540, 0.499240,
0.516530, 0.523800, 0.537630, 0.548060, 0.556840, 0.573890,
0.582350, 0.597820, 0.601560, 0.622650, 0.626490, 0.649480,
0.650990, 0.668700, 0.675870, 0.688550, 0.693180, 0.706180,
0.713330, 0.723510, 0.749540, 0.749650]
venturi_tube_dP_high = [0.164534, 0.164504, 0.163591, 0.163508, 0.163439,
0.162652, 0.162224, 0.161866, 0.161238, 0.160786,
0.160295, 0.159280, 0.159193, 0.157776, 0.157467,
0.156517, 0.155323, 0.153835, 0.151862, 0.151154,
0.147840, 0.147613, 0.144052, 0.143050, 0.140107,
0.138981, 0.136794, 0.134737, 0.132847, 0.129303,
0.127637, 0.124758, 0.124006, 0.119269, 0.118449,
0.113605, 0.113269, 0.108995, 0.107109, 0.103688,
0.102529, 0.099567, 0.097791, 0.095055, 0.087681,
0.087648]
venturi_tube_dP_low = [0.089232, 0.089218, 0.088671, 0.088435, 0.088206,
0.087853, 0.087655, 0.087404, 0.086693, 0.086241,
0.085813, 0.085142, 0.085102, 0.084446, 0.084202,
0.083301, 0.082470, 0.081650, 0.080582, 0.080213,
0.078509, 0.078378, 0.075989, 0.075226, 0.072700,
0.071598, 0.069562, 0.068128, 0.066986, 0.064658,
0.063298, 0.060872, 0.060378, 0.057879, 0.057403,
0.054091, 0.053879, 0.051726, 0.050931, 0.049362,
0.048675, 0.046522, 0.045381, 0.043840, 0.039913,
0.039896]
#ratios_average = 0.5*(ratios_high + ratios_low)
D_bound_venturi_tube = [0.065, 0.5]
def dP_venturi_tube(D, Do, P1, P2):
r'''Calculates the non-recoverable pressure drop of a venturi tube
differential pressure meter based on the pressure drop and the geometry of
the venturi meter.
.. math::
\epsilon = \frac{\Delta\bar w }{\Delta P}
The :math:`\epsilon` value is looked up in a table of values as a function
of beta ratio and upstream pipe diameter (roughness impact).
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of venturi tube at flow conditions, [m]
P1 : float
Static pressure of fluid upstream of venturi tube at the cross-section
of the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of venturi tube at the
cross-section of the pressure tap, [Pa]
Returns
-------
dP : float
Non-recoverable pressure drop of the venturi tube, [Pa]
Notes
-----
The recoverable pressure drop should be recovered by 6 pipe diameters
downstream of the venturi tube.
Note there is some information on the effect of Reynolds number as well
in [1]_ and [2]_, with a curve showing an increased pressure drop
from 1E5-6E5 to with a decreasing multiplier from 1.75 to 1; the multiplier
is 1 for higher Reynolds numbers. This is not currently included in this
implementation.
Examples
--------
>>> dP_venturi_tube(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0)
1788.5717754177406
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-4:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 4: Venturi Tubes.
'''
# Effect of Re is not currently included
beta = Do/D
epsilon_D65 = interp(beta, venturi_tube_betas, venturi_tube_dP_high)
epsilon_D500 = interp(beta, venturi_tube_betas, venturi_tube_dP_low)
epsilon = interp(D, D_bound_venturi_tube, [epsilon_D65, epsilon_D500])
return epsilon*(P1 - P2)
def diameter_ratio_cone_meter(D, Dc):
r'''Calculates the diameter ratio `beta` used to characterize a cone
flow meter.
.. math::
\beta = \sqrt{1 - \frac{d_c^2}{D^2}}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Dc : float
Diameter of the largest end of the cone meter, [m]
Returns
-------
beta : float
Cone meter diameter ratio, [-]
Notes
-----
A mathematically equivalent formula often written is:
.. math::
\beta = \frac{\sqrt{D^2 - d_c^2}}{D}
Examples
--------
>>> diameter_ratio_cone_meter(D=0.2575, Dc=0.184)
0.6995709873957624
References
----------
.. [1] Hollingshead, Colter. "Discharge Coefficient Performance of Venturi,
Standard Concentric Orifice Plate, V-Cone, and Wedge Flow Meters at
Small Reynolds Numbers." May 1, 2011.
https://digitalcommons.usu.edu/etd/869.
'''
D_ratio = Dc/D
return sqrt(1.0 - D_ratio*D_ratio)
def cone_meter_expansibility_Stewart(D, Dc, P1, P2, k):
r'''Calculates the expansibility factor for a cone flow meter,
based on the geometry of the cone meter, measured pressures of the orifice,
and the isentropic exponent of the fluid. Developed in [1]_, also shown
in [2]_.
.. math::
\epsilon = 1 - (0.649 + 0.696\beta^4) \frac{\Delta P}{\kappa P_1}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Dc : float
Diameter of the largest end of the cone meter, [m]
P1 : float
Static pressure of fluid upstream of cone meter at the cross-section of
the pressure tap, [Pa]
P2 : float
Static pressure of fluid at the end of the center of the cone pressure
tap, [Pa]
k : float
Isentropic exponent of fluid, [-]
Returns
-------
expansibility : float
Expansibility factor (1 for incompressible fluids, less than 1 for
real fluids), [-]
Notes
-----
This formula was determined for the range of P2/P1 >= 0.75; the only gas
used to determine the formula is air.
Examples
--------
>>> cone_meter_expansibility_Stewart(D=1, Dc=0.9, P1=1E6, P2=8.5E5, k=1.2)
0.9157343
References
----------
.. [1] Stewart, D. G., M. Reader-Harris, and NEL Dr RJW Peters. "Derivation
of an Expansibility Factor for the V-Cone Meter." In Flow Measurement
International Conference, Peebles, Scotland, UK, 2001.
.. [2] ISO 5167-5:2016 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 5: Cone meters.
'''
dP = P1 - P2
beta = diameter_ratio_cone_meter(D, Dc)
beta *= beta
beta *= beta
return 1.0 - (0.649 + 0.696*beta)*dP/(k*P1)
def dP_cone_meter(D, Dc, P1, P2):
r'''Calculates the non-recoverable pressure drop of a cone meter
based on the measured pressures before and at the cone end, and the
geometry of the cone meter according to [1]_.
.. math::
\Delta \bar \omega = (1.09 - 0.813\beta)\Delta P
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Dc : float
Diameter of the largest end of the cone meter, [m]
P1 : float
Static pressure of fluid upstream of cone meter at the cross-section of
the pressure tap, [Pa]
P2 : float
Static pressure of fluid at the end of the center of the cone pressure
tap, [Pa]
Returns
-------
dP : float
Non-recoverable pressure drop of the orifice plate, [Pa]
Notes
-----
The recoverable pressure drop should be recovered by 6 pipe diameters
downstream of the cone meter.
Examples
--------
>>> dP_cone_meter(1, .7, 1E6, 9.5E5)
25470.093437973323
References
----------
.. [1] ISO 5167-5:2016 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 5: Cone meters.
'''
dP = P1 - P2
beta = diameter_ratio_cone_meter(D, Dc)
return (1.09 - 0.813*beta)*dP
def diameter_ratio_wedge_meter(D, H):
r'''Calculates the diameter ratio `beta` used to characterize a wedge
flow meter as given in [1]_ and [2]_.
.. math::
\beta = \left(\frac{1}{\pi}\left\{\arccos\left[1 - \frac{2H}{D}
\right] - 2 \left[1 - \frac{2H}{D}
\right]\left(\frac{H}{D} - \left[\frac{H}{D}\right]^2
\right)^{0.5}\right\}\right)^{0.5}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
H : float
Portion of the diameter of the clear segment of the pipe up to the
wedge blocking flow; the height of the pipe up to the wedge, [m]
Returns
-------
beta : float
Wedge meter diameter ratio, [-]
Notes
-----
Examples
--------
>>> diameter_ratio_wedge_meter(D=0.2027, H=0.0608)
0.5022531424646643
References
----------
.. [1] Hollingshead, Colter. "Discharge Coefficient Performance of Venturi,
Standard Concentric Orifice Plate, V-Cone, and Wedge Flow Meters at
Small Reynolds Numbers." May 1, 2011.
https://digitalcommons.usu.edu/etd/869.
.. [2] IntraWedge WEDGE FLOW METER Type: IWM. January 2011.
http://www.intra-automation.com/download.php?file=pdf/products/technical_information/en/ti_iwm_en.pdf
'''
H_D = H/D
t0 = 1.0 - 2.0*H_D
t1 = acos(t0)
t2 = t0 + t0
t3 = sqrt(H_D - H_D*H_D)
t4 = t1 - t2*t3
return sqrt(pi_inv*t4)
def C_wedge_meter_Miller(D, H):
r'''Calculates the coefficient of discharge of an wedge flow meter
used for measuring flow rate of fluid, based on the geometry of the
differential pressure flow meter.
For half-inch lines:
.. math::
C = 0.7883 + 0.107(1 - \beta^2)
For 1 to 1.5 inch lines:
.. math::
C = 0.6143 + 0.718(1 - \beta^2)
For 1.5 to 24 inch lines:
.. math::
C = 0.5433 + 0.2453(1 - \beta^2)
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
H : float
Portion of the diameter of the clear segment of the pipe up to the
wedge blocking flow; the height of the pipe up to the wedge, [m]
Returns
-------
C : float
Coefficient of discharge of the wedge flow meter, [-]
Notes
-----
There is an ISO standard being developed to cover wedge meters as of 2018.
Wedge meters can have varying angles; 60 and 90 degree wedge meters have
been reported. Tap locations 1 or 2 diameters (upstream and downstream),
and 2D upstream/1D downstream have been used. Some wedges are sharp;
some are smooth. [2]_ gives some experimental values.
Examples
--------
>>> C_wedge_meter_Miller(D=0.1524, H=0.3*0.1524)
0.7267069372687651
References
----------
.. [1] Miller, Richard W. Flow Measurement Engineering Handbook. 3rd
edition. New York: McGraw-Hill Education, 1996.
.. [2] Seshadri, V., S. N. Singh, and S. Bhargava. "Effect of Wedge Shape
and Pressure Tap Locations on the Characteristics of a Wedge Flowmeter."
IJEMS Vol.01(5), October 1994.
'''
beta = diameter_ratio_wedge_meter(D, H)
beta *= beta
if D <= 0.7*inch:
# suggested limit 0.5 inch for this equation
C = 0.7883 + 0.107*(1.0 - beta)
elif D <= 1.4*inch:
# Suggested limit is under 1.5 inches
C = 0.6143 + 0.718*(1.0 - beta)
else:
C = 0.5433 + 0.2453*(1.0 - beta)
return C
def C_wedge_meter_ISO_5167_6_2017(D, H):
r'''Calculates the coefficient of discharge of an wedge flow meter
used for measuring flow rate of fluid, based on the geometry of the
differential pressure flow meter according to the ISO 5167-6 standard
(draft 2017).
.. math::
C = 0.77 - 0.09\beta
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
H : float
Portion of the diameter of the clear segment of the pipe up to the
wedge blocking flow; the height of the pipe up to the wedge, [m]
Returns
-------
C : float
Coefficient of discharge of the wedge flow meter, [-]
Notes
-----
This standard applies for wedge meters in line sizes between 50 and 600 mm;
and height ratios between 0.2 and 0.6. The range of allowable Reynolds
numbers is large; between 1E4 and 9E6. The uncertainty of the flow
coefficient is approximately 4%. Usually a 10:1 span of flow can be
measured accurately. The discharge and entry length of the meters must be
at least half a pipe diameter. The wedge angle must be 90 degrees, plus or
minus two degrees.
The orientation of the wedge meter does not change the accuracy of this
model.
There should be a straight run of 10 pipe diameters before the wedge meter
inlet, and two of the same pipe diameters after it.
Examples
--------
>>> C_wedge_meter_ISO_5167_6_2017(D=0.1524, H=0.3*0.1524)
0.724792059539853
References
----------
.. [1] ISO/DIS 5167-6 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 6: Wedge Meters.
'''
beta = diameter_ratio_wedge_meter(D, H)
return 0.77 - 0.09*beta
def dP_wedge_meter(D, H, P1, P2):
r'''Calculates the non-recoverable pressure drop of a wedge meter
based on the measured pressures before and at the wedge meter, and the
geometry of the wedge meter according to [1]_.
.. math::
\Delta \bar \omega = (1.09 - 0.79\beta)\Delta P
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
H : float
Portion of the diameter of the clear segment of the pipe up to the
wedge blocking flow; the height of the pipe up to the wedge, [m]
P1 : float
Static pressure of fluid upstream of wedge meter at the cross-section
of the pressure tap, [Pa]
P2 : float
Static pressure of fluid at the end of the wedge meter pressure tap, [
Pa]
Returns
-------
dP : float
Non-recoverable pressure drop of the wedge meter, [Pa]
Notes
-----
The recoverable pressure drop should be recovered by 5 pipe diameters
downstream of the wedge meter.
Examples
--------
>>> dP_wedge_meter(1, .7, 1E6, 9.5E5)
20344.849697483587
References
----------
.. [1] ISO/DIS 5167-6 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 6: Wedge Meters.
'''
dP = P1 - P2
beta = diameter_ratio_wedge_meter(D, H)
return (1.09 - 0.79*beta)*dP
def C_Reader_Harris_Gallagher_wet_venturi_tube(mg, ml, rhog, rhol, D, Do, H=1):
r'''Calculates the coefficient of discharge of the wet gas venturi tube
based on the geometry of the tube, mass flow rates of liquid and vapor
through the tube, the density of the liquid and gas phases, and an
adjustable coefficient `H`.
.. math::
C = 1 - 0.0463\exp(-0.05Fr_{gas, th}) \cdot \min\left(1,
\sqrt{\frac{X}{0.016}}\right)
.. math::
Fr_{gas, th} = \frac{Fr_{\text{gas, densionetric }}}{\beta^{2.5}}
.. math::
\phi = \sqrt{1 + C_{Ch} X + X^2}
.. math::
C_{Ch} = \left(\frac{\rho_l}{\rho_{1,g}}\right)^n +
\left(\frac{\rho_{1, g}}{\rho_{l}}\right)^n
.. math::
n = \max\left[0.583 - 0.18\beta^2 - 0.578\exp\left(\frac{-0.8
Fr_{\text{gas, densiometric}}}{H}\right),0.392 - 0.18\beta^2 \right]
.. math::
X = \left(\frac{m_l}{m_g}\right) \sqrt{\frac{\rho_{1,g}}{\rho_l}}
.. math::
{Fr_{\text{gas, densiometric}}} = \frac{v_{gas}}{\sqrt{gD}}
\sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
= \frac{4m_g}{\rho_{1,g} \pi D^2 \sqrt{gD}}
\sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
Parameters
----------
mg : float
Mass flow rate of gas through the venturi tube, [kg/s]
ml : float
Mass flow rate of liquid through the venturi tube, [kg/s]
rhog : float
Density of gas at `P1`, [kg/m^3]
rhol : float
Density of liquid at `P1`, [kg/m^3]
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of venturi tube at flow conditions, [m]
H : float, optional
A surface-tension effect coefficient used to adjust for different
fluids, (1 for a hydrocarbon liquid, 1.35 for water, 0.79 for water in
steam) [-]
Returns
-------
C : float
Coefficient of discharge of the wet gas venturi tube flow meter
(includes flow rate of gas ONLY), [-]
Notes
-----
This model has more error than single phase differential pressure meters.
The model was first published in [1]_, and became ISO 11583 later.
The limits of this correlation according to [2]_ are as follows:
.. math::
0.4 \le \beta \le 0.75
.. math::
0 < X \le 0.3
.. math::
Fr_{gas, th} > 3
.. math::
\frac{\rho_g}{\rho_l} > 0.02
.. math::
D \ge 50 \text{ mm}
Examples
--------
>>> C_Reader_Harris_Gallagher_wet_venturi_tube(mg=5.31926, ml=5.31926/2,
... rhog=50.0, rhol=800., D=.1, Do=.06, H=1)
0.9754210845876333
References
----------
.. [1] Reader-harris, Michael, and Tuv Nel. An Improved Model for
Venturi-Tube Over-Reading in Wet Gas, 2009.
.. [2] ISO/TR 11583:2012 Measurement of Wet Gas Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits.
'''
V = 4.0*mg/(rhog*pi*D*D)
Frg = Froude_densimetric(V, L=D, rho1=rhol, rho2=rhog, heavy=False)
beta = Do/D
beta2 = beta*beta
Fr_gas_th = Frg/(beta2*sqrt(beta))
n = max(0.583 - 0.18*beta2 - 0.578*exp(-0.8*Frg/H),
0.392 - 0.18*beta2)
t0 = rhog/rhol
t1 = (t0)**n
C_Ch = t1 + 1.0/t1
X = ml/mg*sqrt(t0)
# OF = sqrt(1.0 + X*(C_Ch + X))
C = 1.0 - 0.0463*exp(-0.05*Fr_gas_th)*min(1.0, sqrt(X/0.016))
return C
def dP_Reader_Harris_Gallagher_wet_venturi_tube(D, Do, P1, P2, ml, mg, rhol,
rhog, H=1.0):
r'''Calculates the non-recoverable pressure drop of a wet gas venturi
nozzle based on the pressure drop and the geometry of the venturi nozzle,
the mass flow rates of liquid and gas through it, the densities of the
vapor and liquid phase, and an adjustable coefficient `H`.
.. math::
Y = \frac{\Delta \bar \omega}{\Delta P} - 0.0896 - 0.48\beta^9
.. math::
Y_{max} = 0.61\exp\left[-11\frac{\rho_{1,g}}{\rho_l}
- 0.045 \frac{Fr_{gas}}{H}\right]
.. math::
\frac{Y}{Y_{max}} = 1 - \exp\left[-35 X^{0.75} \exp
\left( \frac{-0.28Fr_{gas}}{H}\right)\right]
.. math::
X = \left(\frac{m_l}{m_g}\right) \sqrt{\frac{\rho_{1,g}}{\rho_l}}
.. math::
{Fr_{\text{gas, densiometric}}} = \frac{v_{gas}}{\sqrt{gD}}
\sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
= \frac{4m_g}{\rho_{1,g} \pi D^2 \sqrt{gD}}
\sqrt{\frac{\rho_{1,g}}{\rho_l - \rho_{1,g}}}
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of venturi tube at flow conditions, [m]
P1 : float
Static pressure of fluid upstream of venturi tube at the cross-section
of the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of venturi tube at the cross-
section of the pressure tap, [Pa]
ml : float
Mass flow rate of liquid through the venturi tube, [kg/s]
mg : float
Mass flow rate of gas through the venturi tube, [kg/s]
rhol : float
Density of liquid at `P1`, [kg/m^3]
rhog : float
Density of gas at `P1`, [kg/m^3]
H : float, optional
A surface-tension effect coefficient used to adjust for different
fluids, (1 for a hydrocarbon liquid, 1.35 for water, 0.79 for water in
steam) [-]
Returns
-------
C : float
Coefficient of discharge of the wet gas venturi tube flow meter
(includes flow rate of gas ONLY), [-]
Notes
-----
The model was first published in [1]_, and became ISO 11583 later.
Examples
--------
>>> dP_Reader_Harris_Gallagher_wet_venturi_tube(D=.1, Do=.06, H=1,
... P1=6E6, P2=6E6-5E4, ml=5.31926/2, mg=5.31926, rhog=50.0, rhol=800.,)
16957.43843129572
References
----------
.. [1] Reader-harris, Michael, and Tuv Nel. An Improved Model for
Venturi-Tube Over-Reading in Wet Gas, 2009.
.. [2] ISO/TR 11583:2012 Measurement of Wet Gas Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits.
'''
dP = P1 - P2
beta = Do/D
X = ml/mg*sqrt(rhog/rhol)
V = 4*mg/(rhog*pi*D*D)
Frg = Froude_densimetric(V, L=D, rho1=rhol, rho2=rhog, heavy=False)
Y_ratio = 1.0 - exp(-35.0*X**0.75*exp(-0.28*Frg/H))
Y_max = 0.61*exp(-11.0*rhog/rhol - 0.045*Frg/H)
Y = Y_max*Y_ratio
rhs = -0.0896 - 0.48*beta**9
dw = dP*(Y - rhs)
return dw
# Venturi tube loss coefficients as a function of Re
as_cast_convergent_venturi_Res = [4E5, 6E4, 1E5, 1.5E5]
as_cast_convergent_venturi_Cs = [0.957, 0.966, 0.976, 0.982]
machined_convergent_venturi_Res = [5E4, 1E5, 2E5, 3E5,
7.5E5, # 5E5 to 1E6
1.5E6, # 1E6 to 2E6
5E6] # 2E6 to 1E8
machined_convergent_venturi_Cs = [0.970, 0.977, 0.992, 0.998, 0.995, 1.000, 1.010]
rough_welded_convergent_venturi_Res = [4E4, 6E4, 1E5]
rough_welded_convergent_venturi_Cs = [0.96, 0.97, 0.98]
as_cast_convergent_entrance_machined_venturi_Res = [1E4, 6E4, 1E5, 1.5E5,
3.5E5, # 2E5 to 5E5
3.2E6] # 5E5 to 3.2E6
as_cast_convergent_entrance_machined_venturi_Cs = [0.963, 0.978, 0.98, 0.987, 0.992, 0.995]
venturi_Res_Hollingshead = [1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 60.0, 80.0, 100.0, 200.0, 300.0, 500.0, 1000.0, 2000.0, 3000.0, 5000.0, 10000.0, 30000.0, 50000.0, 75000.0, 100000.0, 1000000.0, 10000000.0, 50000000.0]
venturi_logRes_Hollingshead = [0.0, 1.6094379124341003, 2.302585092994046, 2.995732273553991, 3.4011973816621555, 3.6888794541139363, 4.0943445622221, 4.382026634673881, 4.605170185988092, 5.298317366548036, 5.703782474656201, 6.214608098422191, 6.907755278982137, 7.600902459542082, 8.006367567650246, 8.517193191416238, 9.210340371976184, 10.308952660644293, 10.819778284410283, 11.225243392518447, 11.512925464970229, 13.815510557964274, 16.11809565095832, 17.72753356339242]
venturi_smooth_Cs_Hollingshead = [0.163, 0.336, 0.432, 0.515, 0.586, 0.625, 0.679, 0.705, 0.727, 0.803, 0.841, 0.881, 0.921, 0.937, 0.944, 0.954, 0.961, 0.967, 0.967, 0.97, 0.971, 0.973, 0.974, 0.975]
venturi_sharp_Cs_Hollingshead = [0.146, 0.3, 0.401, 0.498, 0.554, 0.596, 0.65, 0.688, 0.715, 0.801, 0.841, 0.884, 0.914, 0.94, 0.947, 0.944, 0.952, 0.959, 0.962, 0.963, 0.965, 0.967, 0.967, 0.967]
CONE_METER_C = 0.82
"""Constant loss coefficient for flow cone meters"""
ROUGH_WELDED_CONVERGENT_VENTURI_TUBE_C = 0.985
"""Constant loss coefficient for rough-welded convergent venturi tubes"""
MACHINED_CONVERGENT_VENTURI_TUBE_C = 0.995
"""Constant loss coefficient for machined convergent venturi tubes"""
AS_CAST_VENTURI_TUBE_C = 0.984
"""Constant loss coefficient for as-cast venturi tubes"""
ISO_15377_CONICAL_ORIFICE_C = 0.734
"""Constant loss coefficient for conical orifice plates according to ISO 15377"""
cone_Res_Hollingshead = [1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 60.0, 80.0, 100.0, 150.0, 200.0, 300.0, 500.0, 1000.0, 2000.0, 3000.0, 4000.0, 5000.0, 7500.0,
10000.0, 20000.0, 30000.0, 100000.0, 1000000.0, 10000000.0, 50000000.0
]
cone_logRes_Hollingshead = [0.0, 1.6094379124341003, 2.302585092994046, 2.995732273553991, 3.4011973816621555, 3.6888794541139363, 4.0943445622221,
4.382026634673881, 4.605170185988092, 5.0106352940962555, 5.298317366548036, 5.703782474656201, 6.214608098422191, 6.907755278982137, 7.600902459542082,
8.006367567650246, 8.294049640102028, 8.517193191416238, 8.922658299524402, 9.210340371976184, 9.903487552536127, 10.308952660644293,
11.512925464970229, 13.815510557964274, 16.11809565095832, 17.72753356339242
]
cone_betas_Hollingshead = [0.6611, 0.6995, 0.8203]
cone_beta_6611_Hollingshead_Cs = [0.066, 0.147, 0.207, 0.289, 0.349, 0.396, 0.462, 0.506, 0.537, 0.588, 0.622, 0.661, 0.7, 0.727, 0.75, 0.759, 0.763, 0.765,
0.767, 0.773, 0.778, 0.789, 0.804, 0.803, 0.805, 0.802
]
cone_beta_6995_Hollingshead_Cs = [0.067, 0.15, 0.21, 0.292, 0.35, 0.394, 0.458, 0.502, 0.533, 0.584, 0.615, 0.645, 0.682, 0.721, 0.742, 0.75, 0.755, 0.757,
0.763, 0.766, 0.774, 0.781, 0.792, 0.792, 0.79, 0.787
]
cone_beta_8203_Hollingshead_Cs = [0.057, 0.128, 0.182, 0.253, 0.303, 0.343, 0.4, 0.44, 0.472, 0.526, 0.557, 0.605, 0.644, 0.685, 0.705, 0.714, 0.721, 0.722,
0.724, 0.723, 0.725, 0.731, 0.73, 0.73, 0.741, 0.734
]
cone_Hollingshead_Cs = [cone_beta_6611_Hollingshead_Cs, cone_beta_6995_Hollingshead_Cs,
cone_beta_8203_Hollingshead_Cs
]
cone_Hollingshead_tck = implementation_optimize_tck([
[0.6611, 0.6611, 0.6611, 0.8203, 0.8203, 0.8203],
[0.0, 0.0, 0.0, 0.0, 2.302585092994046, 2.995732273553991, 3.4011973816621555, 3.6888794541139363, 4.0943445622221, 4.382026634673881,
4.605170185988092, 5.0106352940962555, 5.298317366548036, 5.703782474656201, 6.214608098422191, 6.907755278982137, 7.600902459542082,
8.006367567650246, 8.294049640102028, 8.517193191416238, 8.922658299524402, 9.210340371976184, 9.903487552536127, 10.308952660644293,
11.512925464970229, 13.815510557964274, 17.72753356339242, 17.72753356339242, 17.72753356339242, 17.72753356339242
],
[0.06600000000000003, 0.09181180887944293, 0.1406341453010674, 0.27319769866300025, 0.34177839953532274, 0.4025880076725502, 0.4563149328810349,
0.5035445307357295, 0.5458473693359689, 0.583175639128474, 0.628052124545805, 0.6647198135005781, 0.7091524396786245, 0.7254729823419331,
0.7487816963926843, 0.7588145502817809, 0.7628692532631826, 0.7660482147214834, 0.7644188319583379, 0.7782644144006241, 0.7721508139116487,
0.7994728794028244, 0.8076742194714519, 0.7986221420822799, 0.8086240532850298, 0.802, 0.07016232064017663, 0.1059162635703894,
0.1489681838592814, 0.28830815748629207, 0.35405213706957395, 0.40339795504063664, 0.4544570323055189, 0.5034637712201067, 0.5448190156693709,
0.5840164245031125, 0.6211559598098063, 0.6218648844980823, 0.6621745760710729, 0.7282379546292953, 0.7340030734801267, 0.7396324865779599,
0.7489736798953754, 0.7480726412914717, 0.7671564751169978, 0.756853660688892, 0.7787029642272745, 0.7742381131312691, 0.7887584162443445,
0.7857610450218329, 0.7697076645551957, 0.7718300910596032, 0.05700000000000002, 0.07612544859943549, 0.12401733415778271, 0.24037452209595875,
0.29662463502593156, 0.34859536586855205, 0.39480085719322505, 0.43661601622480606, 0.48091259102454764, 0.5240691286186233, 0.5590609288020619,
0.6144556048716696, 0.6471713640567137, 0.6904158809061184, 0.7032590252050219, 0.712177974557301, 0.7221845303680273, 0.721505707129694,
0.7249822376264551, 0.7218890085289907, 0.7221848475768714, 0.7371751354515526, 0.7252385062304629, 0.7278943803933404, 0.7496546607029086,
0.7340000000000001
],
2, 3
])
wedge_Res_Hollingshead = [1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 60.0, 80.0, 100.0, 200.0, 300.0, 400.0, 500.0, 5000.0, 1.00E+04, 1.00E+05, 1.00E+06, 5.00E+07]
wedge_logRes_Hollingshead = [0.0, 1.6094379124341003, 2.302585092994046, 2.995732273553991, 3.4011973816621555, 3.6888794541139363, 4.0943445622221,
4.382026634673881, 4.605170185988092, 5.298317366548036, 5.703782474656201, 5.991464547107982, 6.214608098422191, 8.517193191416238, 9.210340371976184,
11.512925464970229, 13.815510557964274, 17.72753356339242
]
wedge_beta_5023_Hollingshead = [0.145, 0.318, 0.432, 0.551, 0.61, 0.641, 0.674, 0.69, 0.699, 0.716, 0.721, 0.725, 0.73, 0.729, 0.732, 0.732, 0.731, 0.733]
wedge_beta_611_Hollingshead = [0.127, 0.28, 0.384, 0.503, 0.567, 0.606, 0.645, 0.663, 0.672, 0.688, 0.694, 0.7, 0.705, 0.7, 0.702, 0.695, 0.699, 0.705]
wedge_betas_Hollingshead = [.5023, .611]
wedge_Hollingshead_Cs = [wedge_beta_5023_Hollingshead, wedge_beta_611_Hollingshead]
wedge_Hollingshead_tck = implementation_optimize_tck([
[0.5023, 0.5023, 0.611, 0.611],
[0.0, 0.0, 0.0, 0.0, 2.302585092994046, 2.995732273553991, 3.4011973816621555, 3.6888794541139363, 4.0943445622221, 4.382026634673881,
4.605170185988092, 5.298317366548036, 5.703782474656201, 5.991464547107982, 6.214608098422191, 8.517193191416238, 9.210340371976184,
11.512925464970229, 17.72753356339242, 17.72753356339242, 17.72753356339242, 17.72753356339242
],
[0.14500000000000005, 0.18231832425722, 0.3339917130006919, 0.5379467710226973, 0.6077700659940896, 0.6459542943925077, 0.6729757007770231,
0.6896405007576225, 0.7054863114589583, 0.7155740600632635, 0.7205446407610863, 0.7239576816068966, 0.7483627568160166, 0.7232963355919931,
0.7366325320490953, 0.7264222143567053, 0.7339605394126009, 0.7330000000000001, 0.1270000000000001, 0.16939873865132285, 0.2828494933525669,
0.4889107009077842, 0.5623120043524101, 0.6133092379676948, 0.6437092394687915, 0.6629923366662017, 0.6782934366011034, 0.687302374134782,
0.6927470053128909, 0.6993992364234898, 0.7221204483546849, 0.6947577293284015, 0.7063701306810815, 0.6781614534359871, 0.7185326811948407,
0.7050000000000001
],
1, 3
])
beta_simple_meters = frozenset([ISO_5167_ORIFICE, ISO_15377_ECCENTRIC_ORIFICE,
ISO_15377_CONICAL_ORIFICE, ISO_15377_QUARTER_CIRCLE_ORIFICE,
MILLER_ORIFICE, MILLER_ECCENTRIC_ORIFICE,
MILLER_SEGMENTAL_ORIFICE, MILLER_CONICAL_ORIFICE,
MILLER_QUARTER_CIRCLE_ORIFICE,
CONCENTRIC_ORIFICE, ECCENTRIC_ORIFICE, CONICAL_ORIFICE,
SEGMENTAL_ORIFICE, QUARTER_CIRCLE_ORIFICE,
UNSPECIFIED_METER,
HOLLINGSHEAD_VENTURI_SHARP, HOLLINGSHEAD_VENTURI_SMOOTH, HOLLINGSHEAD_ORIFICE,
LONG_RADIUS_NOZZLE,
ISA_1932_NOZZLE, VENTURI_NOZZLE,
AS_CAST_VENTURI_TUBE,
MACHINED_CONVERGENT_VENTURI_TUBE,
ROUGH_WELDED_CONVERGENT_VENTURI_TUBE])
all_meters = frozenset(list(beta_simple_meters) + [CONE_METER, WEDGE_METER, HOLLINGSHEAD_CONE, HOLLINGSHEAD_WEDGE])
"""Set of string inputs representing all of the different supported flow meters
and their correlations.
"""
_unsupported_meter_msg = f"Supported meter types are {all_meters}"
def differential_pressure_meter_beta(D, D2, meter_type):
r'''Calculates the beta ratio of a differential pressure meter.
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
D2 : float
Diameter of orifice, or venturi meter orifice, or flow tube orifice,
or cone meter end diameter, or wedge meter fluid flow height, [m]
meter_type : str
One of {'conical orifice', 'orifice', 'machined convergent venturi tube',
'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp',
'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice',
'quarter circle orifice', 'Hollingshead v cone', 'wedge meter', 'eccentric orifice',
'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle',
'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth',
'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice',
'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter',
'as cast convergent venturi tube', 'Miller eccentric orifice',
'ISO 15377 eccentric orifice'}, [-]
Returns
-------
beta : float
Differential pressure meter diameter ratio, [-]
Notes
-----
Examples
--------
>>> differential_pressure_meter_beta(D=0.2575, D2=0.184,
... meter_type='cone meter')
0.6995709873957624
'''
if meter_type in beta_simple_meters:
beta = D2/D
elif meter_type in (CONE_METER, HOLLINGSHEAD_CONE):
beta = diameter_ratio_cone_meter(D=D, Dc=D2)
elif meter_type in (WEDGE_METER, HOLLINGSHEAD_WEDGE):
beta = diameter_ratio_wedge_meter(D=D, H=D2)
else:
raise ValueError(_unsupported_meter_msg)
return beta
_meter_type_to_corr_default = {
CONCENTRIC_ORIFICE: ISO_5167_ORIFICE,
ECCENTRIC_ORIFICE: ISO_15377_ECCENTRIC_ORIFICE,
CONICAL_ORIFICE: ISO_15377_CONICAL_ORIFICE,
QUARTER_CIRCLE_ORIFICE: ISO_15377_QUARTER_CIRCLE_ORIFICE,
SEGMENTAL_ORIFICE: MILLER_SEGMENTAL_ORIFICE,
}
def differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho, mu, k,
meter_type, taps=None,
tap_position=None, C_specified=None,
epsilon_specified=None):
r'''Calculates the discharge coefficient and expansibility of a flow
meter given the mass flow rate, the upstream pressure, the second
pressure value, and the orifice diameter for a differential
pressure flow meter based on the geometry of the meter, measured pressures
of the meter, and the density, viscosity, and isentropic exponent of the
fluid.
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
D2 : float
Diameter of orifice, or venturi meter orifice, or flow tube orifice,
or cone meter end diameter, or wedge meter fluid flow height, [m]
m : float
Mass flow rate of fluid through the flow meter, [kg/s]
P1 : float
Static pressure of fluid upstream of differential pressure meter at the
cross-section of the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of differential pressure meter or
at the prescribed location (varies by type of meter) [Pa]
rho : float
Density of fluid at `P1`, [kg/m^3]
mu : float
Viscosity of fluid at `P1`, [Pa*s]
k : float
Isentropic exponent of fluid, [-]
meter_type : str
One of {'conical orifice', 'orifice', 'machined convergent venturi tube',
'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp',
'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice',
'quarter circle orifice', 'Hollingshead v cone', 'wedge meter', 'eccentric orifice',
'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle',
'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth',
'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice',
'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter',
'as cast convergent venturi tube', 'Miller eccentric orifice',
'ISO 15377 eccentric orifice'}, [-]
taps : str, optional
The orientation of the taps; one of 'corner', 'flange', 'D', or 'D/2';
applies for orifice meters only, [-]
tap_position : str, optional
The rotation of the taps, used **only for the eccentric orifice case**
where the pressure profile is are not symmetric; '180 degree' for the
normal case where the taps are opposite the orifice bore, and
'90 degree' for the case where, normally for operational reasons, the
taps are near the bore [-]
C_specified : float, optional
If specified, the correlation for the meter type is not used - this
value is returned for `C`
epsilon_specified : float, optional
If specified, the correlation for the fluid expansibility is not used -
this value is returned for :math:`\epsilon`, [-]
Returns
-------
C : float
Coefficient of discharge of the specified flow meter type at the
specified conditions, [-]
expansibility : float
Expansibility factor (1 for incompressible fluids, less than 1 for
real fluids), [-]
Notes
-----
This function should be called by an outer loop when solving for a
variable.
The latest ISO formulations for `expansibility` are used with the Miller
correlations.
Examples
--------
>>> differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
... P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
... meter_type='ISO 5167 orifice', taps='D')
(0.6151252900244296, 0.9711026966676307)
'''
# # Translate default meter type to implementation specific correlation
if meter_type == CONCENTRIC_ORIFICE:
meter_type = ISO_5167_ORIFICE
elif meter_type == ECCENTRIC_ORIFICE:
meter_type = ISO_15377_ECCENTRIC_ORIFICE
elif meter_type == CONICAL_ORIFICE:
meter_type = ISO_15377_CONICAL_ORIFICE
elif meter_type == QUARTER_CIRCLE_ORIFICE:
meter_type = ISO_15377_QUARTER_CIRCLE_ORIFICE
elif meter_type == SEGMENTAL_ORIFICE:
meter_type = MILLER_SEGMENTAL_ORIFICE
if meter_type == ISO_5167_ORIFICE:
C = C_Reader_Harris_Gallagher(D, D2, rho, mu, m, taps)
epsilon = orifice_expansibility(D, D2, P1, P2, k)
elif meter_type == ISO_15377_ECCENTRIC_ORIFICE:
C = C_eccentric_orifice_ISO_15377_1998(D, D2)
epsilon = orifice_expansibility(D, D2, P1, P2, k)
elif meter_type == ISO_15377_QUARTER_CIRCLE_ORIFICE:
C = C_quarter_circle_orifice_ISO_15377_1998(D, D2)
epsilon = orifice_expansibility(D, D2, P1, P2, k)
elif meter_type == ISO_15377_CONICAL_ORIFICE:
C = ISO_15377_CONICAL_ORIFICE_C
# Average of concentric square edge orifice and ISA 1932 nozzles
epsilon = 0.5*(orifice_expansibility(D, D2, P1, P2, k)
+ nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k))
elif meter_type in (MILLER_ORIFICE, MILLER_ECCENTRIC_ORIFICE,
MILLER_SEGMENTAL_ORIFICE, MILLER_QUARTER_CIRCLE_ORIFICE):
C = C_Miller_1996(D, D2, rho, mu, m, subtype=meter_type, taps=taps,
tap_position=tap_position)
epsilon = orifice_expansibility(D, D2, P1, P2, k)
elif meter_type == MILLER_CONICAL_ORIFICE:
C = C_Miller_1996(D, D2, rho, mu, m, subtype=meter_type, taps=taps,
tap_position=tap_position)
epsilon = 0.5*(orifice_expansibility(D, D2, P1, P2, k)
+ nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k))
elif meter_type == LONG_RADIUS_NOZZLE:
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
C = C_long_radius_nozzle(D=D, Do=D2, rho=rho, mu=mu, m=m)
elif meter_type == ISA_1932_NOZZLE:
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
C = C_ISA_1932_nozzle(D=D, Do=D2, rho=rho, mu=mu, m=m)
elif meter_type == VENTURI_NOZZLE:
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
C = C_venturi_nozzle(D=D, Do=D2)
elif meter_type == AS_CAST_VENTURI_TUBE:
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
C = AS_CAST_VENTURI_TUBE_C
elif meter_type == MACHINED_CONVERGENT_VENTURI_TUBE:
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
C = MACHINED_CONVERGENT_VENTURI_TUBE_C
elif meter_type == ROUGH_WELDED_CONVERGENT_VENTURI_TUBE:
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
C = ROUGH_WELDED_CONVERGENT_VENTURI_TUBE_C
elif meter_type == CONE_METER:
epsilon = cone_meter_expansibility_Stewart(D=D, Dc=D2, P1=P1, P2=P2, k=k)
C = CONE_METER_C
elif meter_type == WEDGE_METER:
beta = diameter_ratio_wedge_meter(D=D, H=D2)
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P1, k=k, beta=beta)
C = C_wedge_meter_ISO_5167_6_2017(D=D, H=D2)
elif meter_type == HOLLINGSHEAD_ORIFICE:
v = m/((0.25*pi*D*D)*rho)
Re_D = rho*v*D/mu
C = float(bisplev(D2/D, log(Re_D), orifice_std_Hollingshead_tck))
epsilon = orifice_expansibility(D, D2, P1, P2, k)
elif meter_type == HOLLINGSHEAD_VENTURI_SMOOTH:
v = m/((0.25*pi*D*D)*rho)
Re_D = rho*v*D/mu
C = interp(log(Re_D), venturi_logRes_Hollingshead, venturi_smooth_Cs_Hollingshead, extrapolate=True)
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
elif meter_type == HOLLINGSHEAD_VENTURI_SHARP:
v = m/((0.25*pi*D*D)*rho)
Re_D = rho*v*D/mu
C = interp(log(Re_D), venturi_logRes_Hollingshead, venturi_sharp_Cs_Hollingshead, extrapolate=True)
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P2, k=k)
elif meter_type == HOLLINGSHEAD_CONE:
v = m/((0.25*pi*D*D)*rho)
Re_D = rho*v*D/mu
beta = diameter_ratio_cone_meter(D, D2)
C = float(bisplev(beta, log(Re_D), cone_Hollingshead_tck))
epsilon = cone_meter_expansibility_Stewart(D=D, Dc=D2, P1=P1, P2=P2, k=k)
elif meter_type == HOLLINGSHEAD_WEDGE:
v = m/((0.25*pi*D*D)*rho)
Re_D = rho*v*D/mu
beta = diameter_ratio_wedge_meter(D=D, H=D2)
C = float(bisplev(beta, log(Re_D), wedge_Hollingshead_tck))
epsilon = nozzle_expansibility(D=D, Do=D2, P1=P1, P2=P1, k=k, beta=beta)
elif meter_type == UNSPECIFIED_METER:
epsilon = orifice_expansibility(D, D2, P1, P2, k) # Default to orifice type expansibility
if C_specified is None:
raise ValueError("For unspecified meter type, C_specified is required")
else:
raise ValueError(_unsupported_meter_msg)
if C_specified is not None:
C = C_specified
if epsilon_specified is not None:
epsilon = epsilon_specified
return C, epsilon
def err_dp_meter_solver_m(m_D, D, D2, P1, P2, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified):
m = m_D*D
C, epsilon = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho,
mu, k, meter_type,
taps=taps, tap_position=tap_position,
C_specified=C_specified, epsilon_specified=epsilon_specified)
m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho,
C=C, expansibility=epsilon)
err = m - m_calc
return err
def err_dp_meter_solver_P2(P2, D, D2, m, P1, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified):
C, epsilon = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho,
mu, k, meter_type,
taps=taps, tap_position=tap_position,
C_specified=C_specified, epsilon_specified=epsilon_specified)
m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho,
C=C, expansibility=epsilon)
return m - m_calc
def err_dp_meter_solver_D2(D2, D, m, P1, P2, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified):
C, epsilon = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho,
mu, k, meter_type,
taps=taps, tap_position=tap_position, C_specified=C_specified,
epsilon_specified=epsilon_specified)
m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho,
C=C, expansibility=epsilon)
return m - m_calc
def err_dp_meter_solver_P1(P1, D, D2, m, P2, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified):
C, epsilon = differential_pressure_meter_C_epsilon(D, D2, m, P1, P2, rho,
mu, k, meter_type,
taps=taps, tap_position=tap_position, C_specified=C_specified,
epsilon_specified=epsilon_specified)
m_calc = flow_meter_discharge(D=D, Do=D2, P1=P1, P2=P2, rho=rho,
C=C, expansibility=epsilon)
return m - m_calc
def differential_pressure_meter_solver(D, rho, mu, k=None, D2=None, P1=None, P2=None,
m=None, meter_type=ISO_5167_ORIFICE,
taps=None, tap_position=None,
C_specified=None, epsilon_specified=None):
r'''Calculates either the mass flow rate, the upstream pressure, the second
pressure value, or the orifice diameter for a differential
pressure flow meter based on the geometry of the meter, measured pressures
of the meter, and the density, viscosity, and isentropic exponent of the
fluid. This solves an equation iteratively to obtain the correct flow rate.
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
rho : float
Density of fluid at `P1`, [kg/m^3]
mu : float
Viscosity of fluid at `P1`, [Pa*s]
k : float, optional
Isentropic exponent of fluid; required unless `epsilon_specified` is
specified , [-]
D2 : float, optional
Diameter of orifice, or venturi meter orifice, or flow tube orifice,
or cone meter end diameter, or wedge meter fluid flow height, [m]
P1 : float, optional
Static pressure of fluid upstream of differential pressure meter at the
cross-section of the pressure tap, [Pa]
P2 : float, optional
Static pressure of fluid downstream of differential pressure meter or
at the prescribed location (varies by type of meter) [Pa]
m : float, optional
Mass flow rate of fluid through the flow meter, [kg/s]
meter_type : str
One of {'conical orifice', 'orifice', 'machined convergent venturi tube',
'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp',
'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice',
'quarter circle orifice', 'Hollingshead v cone', 'wedge meter', 'eccentric orifice',
'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle',
'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth',
'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice',
'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter',
'as cast convergent venturi tube', 'Miller eccentric orifice',
'ISO 15377 eccentric orifice'}, [-]
taps : str, optional
The orientation of the taps; one of 'corner', 'flange', 'D', or 'D/2';
applies for orifice meters only, [-]
tap_position : str, optional
The rotation of the taps, used **only for the eccentric orifice case**
where the pressure profile is are not symmetric; '180 degree' for the
normal case where the taps are opposite the orifice bore, and
'90 degree' for the case where, normally for operational reasons, the
taps are near the bore [-]
C_specified : float, optional
If specified, the correlation for the meter type is not used - this
value is used for `C`
epsilon_specified : float, optional
If specified, the correlation for the fluid expansibility is not used -
this value is used for :math:`\epsilon`. Many publications recommend
this be set to 1 for incompressible fluids [-]
Returns
-------
ans : float
One of `m`, the mass flow rate of the fluid; `P1`, the pressure
upstream of the flow meter; `P2`, the second pressure
tap's value; and `D2`, the diameter of the measuring device; units
of respectively, kg/s, Pa, Pa, or m
Notes
-----
See the appropriate functions for the documentation for the formulas and
references used in each method.
The solvers make some assumptions about the range of values answers may be
in.
Note that the solver for the upstream pressure uses the provided values of
density, viscosity and isentropic exponent; whereas these values all
depend on pressure (albeit to a small extent). An outer loop should be
added with pressure-dependent values calculated in it for maximum accuracy.
It would be possible to solve for the upstream pipe diameter, but there is
no use for that functionality.
If a meter has already been calibrated to have a known `C`, this may be
provided and it will be used in place of calculating one.
Examples
--------
>>> differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,
... P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
... meter_type='ISO 5167 orifice', taps='D')
7.70233803573
>>> differential_pressure_meter_solver(D=0.07366, m=7.702338, P1=200000.0,
... P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
... meter_type='ISO 5167 orifice', taps='D')
0.0499999999
'''
if k is None and epsilon_specified is not None:
k = 1.4
if m is None and D is not None and D2 is not None and P1 is not None and P2 is not None:
# Initialize via analytical formulas
C_guess = 0.7
D4 = D*D
D4 *= D4
D24 = D2*D2
D24 *= D24
m_guess = root_two*pi*C_guess*D2*D2*sqrt(D4*rho*(P1 - P2)/(D4 - D24))*0.25
m_D_guess = m_guess/D
# Diameter to mass flow ratio
# m_D_guess = 40
# if rho < 100.0:
# m_D_guess *= 1e-2
return secant(err_dp_meter_solver_m, m_D_guess, args=(D, D2, P1, P2, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified), low=1e-40)*D
elif D2 is None and D is not None and m is not None and P1 is not None and P2 is not None:
args = (D, m, P1, P2, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified)
try:
try:
return secant(err_dp_meter_solver_D2, D*.3, args=args, high=D, low=D*1e-10, bisection=True)
except:
return secant(err_dp_meter_solver_D2, D*.75, args=args, high=D, low=D*1e-10, bisection=True)
except:
return brenth(err_dp_meter_solver_D2, D*(1-1E-9), D*5E-3, args=args)
elif P2 is None and D is not None and D2 is not None and m is not None and P1 is not None:
args = (D, D2, m, P1, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified)
try:
try:
return secant(err_dp_meter_solver_P2, P1*0.9, low=P1*0.5, args=args, high=P1, bisection=True)
except:
return secant(err_dp_meter_solver_P2, P1*0.9, low=P1*1e-10, args=args, high=P1, bisection=True)
except:
return brenth(err_dp_meter_solver_P2, P1*(1-1E-9), P1*0.5, args=args)
elif P1 is None and D is not None and D2 is not None and m is not None and P2 is not None:
args = (D, D2, m, P2, rho, mu, k, meter_type, taps, tap_position, C_specified, epsilon_specified)
try:
return secant(err_dp_meter_solver_P1, P2*1.5, args=args, low=P2, bisection=True)
except:
return brenth(err_dp_meter_solver_P1, P2*(1+1E-9), P2*1.4, args=args)
else:
raise ValueError('Solver is capable of solving for one of P1, P2, D2, or m only.')
# Set of orifice types that get their dP calculated with `dP_orifice`.
_dP_orifice_set = {ISO_5167_ORIFICE, ISO_15377_ECCENTRIC_ORIFICE,
ISO_15377_CONICAL_ORIFICE, ISO_15377_QUARTER_CIRCLE_ORIFICE,
MILLER_ORIFICE, MILLER_ECCENTRIC_ORIFICE,
MILLER_SEGMENTAL_ORIFICE, MILLER_CONICAL_ORIFICE,
MILLER_QUARTER_CIRCLE_ORIFICE,
HOLLINGSHEAD_ORIFICE,
CONCENTRIC_ORIFICE, ECCENTRIC_ORIFICE, CONICAL_ORIFICE,
SEGMENTAL_ORIFICE, QUARTER_CIRCLE_ORIFICE}
_missing_C_msg = "Parameter C is required for this orifice type"
def differential_pressure_meter_dP(D, D2, P1, P2, C=None,
meter_type=ISO_5167_ORIFICE):
r'''Calculates the non-recoverable pressure drop of a differential
pressure flow meter based on the geometry of the meter, measured pressures
of the meter, and for most models the meter discharge coefficient.
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
D2 : float
Diameter of orifice, or venturi meter orifice, or flow tube orifice,
or cone meter end diameter, or wedge meter fluid flow height, [m]
P1 : float
Static pressure of fluid upstream of differential pressure meter at the
cross-section of the pressure tap, [Pa]
P2 : float
Static pressure of fluid downstream of differential pressure meter or
at the prescribed location (varies by type of meter) [Pa]
C : float, optional
Coefficient of discharge (used only in orifice plates, and venturi
nozzles), [-]
meter_type : str
One of {'conical orifice', 'orifice', 'machined convergent venturi tube',
'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp',
'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice',
'quarter circle orifice', 'Hollingshead v cone', 'wedge meter', 'eccentric orifice',
'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle',
'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth',
'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice',
'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter',
'as cast convergent venturi tube', 'Miller eccentric orifice',
'ISO 15377 eccentric orifice'}, [-]
Returns
-------
dP : float
Non-recoverable pressure drop of the differential pressure flow
meter, [Pa]
Notes
-----
See the appropriate functions for the documentation for the formulas and
references used in each method.
Wedge meters, and venturi nozzles do not have standard formulas available
for pressure drop computation.
Examples
--------
>>> differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0,
... P2=183000.0, meter_type='as cast convergent venturi tube')
1788.5717754177406
'''
if meter_type in _dP_orifice_set:
if C is None:
raise ValueError(_missing_C_msg)
dP = dP_orifice(D=D, Do=D2, P1=P1, P2=P2, C=C)
elif meter_type == LONG_RADIUS_NOZZLE:
if C is None:
raise ValueError(_missing_C_msg)
dP = dP_orifice(D=D, Do=D2, P1=P1, P2=P2, C=C)
elif meter_type == ISA_1932_NOZZLE:
if C is None:
raise ValueError(_missing_C_msg)
dP = dP_orifice(D=D, Do=D2, P1=P1, P2=P2, C=C)
elif meter_type == VENTURI_NOZZLE:
raise NotImplementedError("Venturi meter does not have an implemented pressure drop correlation")
elif (meter_type in (AS_CAST_VENTURI_TUBE, MACHINED_CONVERGENT_VENTURI_TUBE, ROUGH_WELDED_CONVERGENT_VENTURI_TUBE, HOLLINGSHEAD_VENTURI_SMOOTH, HOLLINGSHEAD_VENTURI_SHARP)):
dP = dP_venturi_tube(D=D, Do=D2, P1=P1, P2=P2)
elif meter_type in (CONE_METER, HOLLINGSHEAD_CONE):
dP = dP_cone_meter(D=D, Dc=D2, P1=P1, P2=P2)
elif meter_type in (WEDGE_METER, HOLLINGSHEAD_WEDGE):
dP = dP_wedge_meter(D=D, H=D2, P1=P1, P2=P2)
else:
raise ValueError(_unsupported_meter_msg)
return dP
|