1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains a model for a jet pump, also known as an eductor or an
ejector.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Interfaces
----------
.. autofunction:: liquid_jet_pump
Objective Function
------------------
.. autofunction:: liquid_jet_pump_ancillary
Vacuum Air Leakage Estimation
-----------------------------
.. autofunction:: vacuum_air_leakage_HEI2633
.. autofunction:: vacuum_air_leakage_Ryans_Croll
.. autofunction:: vacuum_air_leakage_Coker_Worthington
.. autofunction:: vacuum_air_leakage_Seider
"""
from math import exp, log, pi, sqrt
from fluids.constants import foot_cubed_inv, hour_inv, inchHg, lb, mmHg_inv, torr_inv
from fluids.numerics import brenth, secant
from fluids.numerics import numpy as np
__all__ = ['liquid_jet_pump', 'liquid_jet_pump_ancillary',
'vacuum_air_leakage_Seider', 'vacuum_air_leakage_Coker_Worthington',
'vacuum_air_leakage_HEI2633', 'vacuum_air_leakage_Ryans_Croll']
def liquid_jet_pump_ancillary(rhop, rhos, Kp, Ks, d_nozzle=None, d_mixing=None,
Qp=None, Qs=None, P1=None, P2=None):
r'''Calculates the remaining variable in a liquid jet pump when solving for
one if the inlet variables only and the rest of them are known. The
equation comes from conservation of energy and momentum in the mixing
chamber.
The variable to be solved for must be one of `d_nozzle`, `d_mixing`,
`Qp`, `Qs`, `P1`, or `P2`.
.. math::
P_1 - P_2 = \frac{1}{2}\rho_pV_n^2(1+K_p)
- \frac{1}{2}\rho_s V_3^2(1+K_s)
Rearrange to express V3 in terms of Vn, and using the density ratio `C`,
the expression becomes:
.. math::
P_1 - P_2 = \frac{1}{2}\rho_p V_n^2\left[(1+K_p) - C(1+K_s)
\left(\frac{MR}{1-R}\right)^2\right]
Using the primary nozzle area and flow rate:
.. math::
P_1 - P_2 = \frac{1}{2}\rho_p \left(\frac{Q_p}{A_n}\right)^2
\left[(1+K_p) - C(1+K_s) \left(\frac{MR}{1-R}\right)^2\right]
For `P`, `P2`, `Qs`, and `Qp`, the equation can be rearranged explicitly
for them. For `d_mixing` and `d_nozzle`, a bounded solver is used searching
between 1E-9 m and 20 times the other diameter which was specified.
Parameters
----------
rhop : float
The density of the primary (motive) fluid, [kg/m^3]
rhos : float
The density of the secondary fluid (drawn from the vacuum chamber),
[kg/m^3]
Kp : float
The primary nozzle loss coefficient, [-]
Ks : float
The secondary inlet loss coefficient, [-]
d_nozzle : float, optional
The inside diameter of the primary fluid's nozle, [m]
d_mixing : float, optional
The diameter of the mixing chamber, [m]
Qp : float, optional
The volumetric flow rate of the primary fluid, [m^3/s]
Qs : float, optional
The volumetric flow rate of the secondary fluid, [m^3/s]
P1 : float, optional
The pressure of the primary fluid entering its nozzle, [Pa]
P2 : float, optional
The pressure of the secondary fluid at the entry of the ejector, [Pa]
Returns
-------
solution : float
The parameter not specified (one of `d_nozzle`, `d_mixing`,
`Qp`, `Qs`, `P1`, or `P2`), (units of `m`, `m`, `m^3/s`, `m^3/s`,
`Pa`, or `Pa` respectively)
Notes
-----
The following SymPy code was used to obtain the analytical formulas (
they are not shown here due to their length):
>>> from sympy import * # doctest: +SKIP
>>> A_nozzle, A_mixing, Qs, Qp, P1, P2, rhos, rhop, Ks, Kp = symbols('A_nozzle, A_mixing, Qs, Qp, P1, P2, rhos, rhop, Ks, Kp') # doctest: +SKIP
>>> R = A_nozzle/A_mixing # doctest: +SKIP
>>> M = Qs/Qp # doctest: +SKIP
>>> C = rhos/rhop # doctest: +SKIP
>>> rhs = rhop/2*(Qp/A_nozzle)**2*((1+Kp) - C*(1 + Ks)*((M*R)/(1-R))**2 ) # doctest: +SKIP
>>> new = Eq(P1 - P2, rhs) # doctest: +SKIP
>>> solve(new, Qp) # doctest: +SKIP
>>> solve(new, Qs) # doctest: +SKIP
>>> solve(new, P1) # doctest: +SKIP
>>> solve(new, P2) # doctest: +SKIP
Examples
--------
Calculating primary fluid nozzle inlet pressure P1:
>>> liquid_jet_pump_ancillary(rhop=998., rhos=1098., Ks=0.11, Kp=.04,
... P2=133600, Qp=0.01, Qs=0.01, d_mixing=0.045, d_nozzle=0.02238)
426434.60314398
References
----------
.. [1] Ejectors and Jet Pumps. Design and Performance for Incompressible
Liquid Flow. 85032. ESDU International PLC, 1985.
'''
unknowns = sum(i is None for i in (d_nozzle, d_mixing, Qs, Qp, P1, P2))
if unknowns > 1:
raise ValueError('Too many unknowns')
elif unknowns < 1:
raise ValueError('Overspecified')
C = rhos/rhop
if Qp is not None and Qs is not None:
M = Qs/Qp
if d_nozzle is not None:
A_nozzle = pi/4*d_nozzle*d_nozzle
if d_mixing is not None:
A_mixing = pi/4*d_mixing*d_mixing
R = A_nozzle/A_mixing
if P1 is None:
return rhop/2*(Qp/A_nozzle)**2*((1+Kp) - C*(1 + Ks)*((M*R)/(1-R))**2 ) + P2
elif P2 is None:
return -rhop/2*(Qp/A_nozzle)**2*((1+Kp) - C*(1 + Ks)*((M*R)/(1-R))**2 ) + P1
elif Qs is None:
try:
return sqrt((-2*A_nozzle**2*P1 + 2*A_nozzle**2*P2 + Kp*Qp**2*rhop + Qp**2*rhop)/(C*rhop*(Ks + 1)))*(A_mixing - A_nozzle)/A_nozzle
except ValueError:
return -1j
elif Qp is None:
return A_nozzle*sqrt((2*A_mixing**2*P1 - 2*A_mixing**2*P2 - 4*A_mixing*A_nozzle*P1 + 4*A_mixing*A_nozzle*P2 + 2*A_nozzle**2*P1 - 2*A_nozzle**2*P2 + C*Ks*Qs**2*rhop + C*Qs**2*rhop)/(rhop*(Kp + 1)))/(A_mixing - A_nozzle)
elif d_nozzle is None:
def err(d_nozzle):
return P1 - liquid_jet_pump_ancillary(rhop=rhop, rhos=rhos, Kp=Kp, Ks=Ks, d_nozzle=d_nozzle, d_mixing=d_mixing, Qp=Qp, Qs=Qs,
P1=None, P2=P2)
return brenth(err, 1E-9, d_mixing*20)
elif d_mixing is None:
def err(d_mixing):
return P1 - liquid_jet_pump_ancillary(rhop=rhop, rhos=rhos, Kp=Kp, Ks=Ks, d_nozzle=d_nozzle, d_mixing=d_mixing, Qp=Qp, Qs=Qs,
P1=None, P2=P2)
try:
return brenth(err, 1E-9, d_nozzle*20)
except:
return secant(err, d_nozzle*2)
def liquid_jet_pump_pressure_ratio(rhop, rhos, Km, Kd, Ks, Kp,
d_nozzle=None, d_mixing=None, d_diffuser=None,
Qp=None, Qs=None, P1=None, P2=None, P5=None,
nozzle_retracted=True):
C = rhos/rhop
if nozzle_retracted:
j = 0.0
else:
j = 1.0
R = d_nozzle**2/d_mixing**2
alpha = d_mixing**2/d_diffuser**2
M = Qs/Qp
M2, R2, alpha2 = M*M, R*R, alpha*alpha
num = 2.0*R + 2*C*M2*R2/(1.0 - R)
num -= R2*(1.0 + C*M)*(1.0 + M)*(1.0 + Km + Kd + alpha2)
num -= C*M2*R2/(1.0 - R)**2*(1.0 + Ks)
den = (1.0 + Kp) - 2.0*R - 2.0*C*M2*R2/(1.0 - R)
den += R2*(1.0 + C*M)*(1.0 + M)*(1.0 + Km + Kd + alpha2)
den += (1.0 - j)*(C*M2/((1.0 - R)/R)**2)*(1.0 - Ks)
N = num/den
if P1 is None:
P1 = (-P2 + P5*N + P5)/N
elif P2 is None:
P2 = -P1*N + P5*N + P5
elif P5 is None:
P5 = (P1*N + P2)/(N + 1.0)
else:
return N - (P5 - P2)/(P1 - P5)
solution = {}
solution['P1'] = P1
solution['P2'] = P2
solution['P5'] = P5
# solution['d_nozzle'] = d_nozzle
# solution['d_mixing'] = d_mixing
# solution['d_diffuser'] = d_diffuser
# solution['Qs'] = Qs
# solution['Qp'] = Qp
# solution['N'] = N
# solution['M'] = M
# solution['R'] = R
# solution['alpha'] = alpha
# solution['efficiency'] = M*N
return solution
def liquid_jet_pump(rhop, rhos, Kp=0.0, Ks=0.1, Km=.15, Kd=0.1,
d_nozzle=None, d_mixing=None, d_diffuser=None,
Qp=None, Qs=None, P1=None, P2=None, P5=None,
nozzle_retracted=True, max_variations=100):
r'''Calculate the remaining two variables in a liquid jet pump, using a
model presented in [1]_ as well as [2]_, [3]_, and [4]_.
.. math::
N = \frac{2R + \frac{2 C M^2 R^2}{1-R} - R^2 (1+CM) (1+M) (1 + K_m
+ K_d + \alpha^2) - \frac{CM^2R^2}{(1-R)^2} (1+K_s)}
{(1+K_p) - 2R - \frac{2CM^2R^2}{1-R} + R^2(1+CM)(1+M)(1+K_m + K_d
+ \alpha^2) + (1-j)\left(\frac{CM^2R^2}{({1-R})^2} \right)(1+K_s)}
.. math::
P_1 - P_2 = \frac{1}{2}\rho_p \left(\frac{Q_p}{A_n}\right)^2
\left[(1+K_p) - C(1+K_s) \left(\frac{MR}{1-R}\right)^2\right]
.. math::
\text{Pressure ratio} = N = \frac{P_5 - P_2}{P_1 - P_5}
.. math::
\text{Volume flow ratio} = M = \frac{Q_s}{Q_p}
.. math::
\text{Jet pump efficiency} = \eta = M\cdot N =
\frac{Q_s(P_5-P_2)}{Q_p(P_1 - P_5)}
.. math::
R = \frac{A_n}{A_m}
.. math::
C = \frac{\rho_s}{\rho_p}
There is no guarantee a solution will be found for the provided variable
values, but every combination of two missing variables are supported.
Parameters
----------
rhop : float
The density of the primary (motive) fluid, [kg/m^3]
rhos : float
The density of the secondary fluid (drawn from the vacuum chamber),
[kg/m^3]
Kp : float, optional
The primary nozzle loss coefficient, [-]
Ks : float, optional
The secondary inlet loss coefficient, [-]
Km : float, optional
The mixing chamber loss coefficient, [-]
Kd : float, optional
The diffuser loss coefficient, [-]
d_nozzle : float, optional
The inside diameter of the primary fluid's nozle, [m]
d_mixing : float, optional
The diameter of the mixing chamber, [m]
d_diffuser : float, optional
The diameter of the diffuser at its exit, [m]
Qp : float, optional
The volumetric flow rate of the primary fluid, [m^3/s]
Qs : float, optional
The volumetric flow rate of the secondary fluid, [m^3/s]
P1 : float, optional
The pressure of the primary fluid entering its nozzle, [Pa]
P2 : float, optional
The pressure of the secondary fluid at the entry of the ejector, [Pa]
P5 : float, optional
The pressure at the exit of the diffuser, [Pa]
nozzle_retracted : bool, optional
Whether or not the primary nozzle's exit is before the mixing chamber,
or somewhat inside it, [-]
max_variations : int, optional
When the initial guesses do not lead to a converged solution, try this
many more guesses at converging the problem, [-]
Returns
-------
solution : dict
Dictionary of calculated parameters, [-]
Notes
-----
The assumptions of the model are:
* The flows are one dimensional except in the mixing chamber.
* The mixing chamber has constant cross-sectional area.
* The mixing happens entirely in the mixing chamber, prior to entry into
the diffuser.
* The primary nozzle is in a straight line with the middle of the mixing
chamber.
* Both fluids are incompressible, and have no excess volume on mixing.
* Primary and secondary flows both enter the mixing throat with their
own uniform velocity distribution; the mixed stream leaves with a uniform
velocity profile.
* If the secondary fluid is a gas, it undergoes isothermal compression in
the throat and diffuser.
* If the secondary fluid is a gas or contains a bubbly gas, it is
homogeneously distributed in a continuous liquid phase.
* Heat transfer between the fluids is negligible - there is no change in
density due to temperature changes
* The change in the solubility of a dissolved gas, if there is one, is
negigibly changed by temperature or pressure changes.
The model can be derived from the equations in
:py:func:`~.liquid_jet_pump_ancillary` and the following:
Conservation of energy at the primary nozzle, secondary inlet, and diffuser exit:
.. math::
P_1 = P_3 + \frac{1}{2}\rho_p V_n^2 + K_p\left(\frac{1}{2}\rho_p V_n^2\right)
.. math::
P_2 = P_3 + \frac{1}{2}\rho_s V_3^2 + K_s\left(\frac{1}{2}\rho_s V_3^2\right)
.. math::
P_5 = P_4 + \frac{1}{2}\rho_d V_4^2 - K_d\left(\frac{1}{2}\rho_d V_4^2\right)
The mixing chamber loss coefficient should be obtained through the following
expression, using the mixing chamber exit velocity to obtain the friction
factor.
.. math::
K_m = \frac{4f_d L}{D}
.. math::
K_d = \frac{P_4 - P_5}{0.5 \rho_d V_4^2} = 1 - \left(\frac{A_4}{A_5}
\right)^2 - C_{pr}
.. math::
K_s = \frac{P_2 - P_3}{0.5\rho_s V_3^2} - 1
.. math::
K_p = \frac{P_1 - P_n}{0.5\rho_p V_n^2} - 1
Continuity of the ejector:
.. math::
\rho_p Q_p + \rho_s Q_s = \rho_d Q_d
Examples
--------
>>> ans = liquid_jet_pump(rhop=998., rhos=1098., Km=.186, Kd=0.12, Ks=0.11,
... Kp=0.04, d_mixing=0.045, Qs=0.01, Qp=.01, P2=133600,
... P5=200E3, nozzle_retracted=False, max_variations=10000)
>>> s = []
>>> for key, value in ans.items():
... s.append('%s: %g' %(key, value))
>>> sorted(s)
['M: 1', 'N: 0.293473', 'P1: 426256', 'P2: 133600', 'P5: 200000', 'Qp: 0.01', 'Qs: 0.01', 'R: 0.247404', 'alpha: 1e-06', 'd_diffuser: 45', 'd_mixing: 0.045', 'd_nozzle: 0.0223829', 'efficiency: 0.293473']
References
----------
.. [1] Karassik, Igor J., Joseph P. Messina, Paul Cooper, and Charles C.
Heald. Pump Handbook. 4th edition. New York: McGraw-Hill Education, 2007.
.. [2] Winoto S. H., Li H., and Shah D. A. "Efficiency of Jet Pumps."
Journal of Hydraulic Engineering 126, no. 2 (February 1, 2000): 150-56.
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(150).
.. [3] Elmore, Emily, Khalid Al-Mutairi, Bilal Hussain, and A. Sheriff
El-Gizawy. "Development of Analytical Model for Predicting Dual-Phase
Ejector Performance," November 11, 2016, V007T09A013.
.. [4] Ejectors and Jet Pumps. Design and Performance for Incompressible
Liquid Flow. 85032. ESDU International PLC, 1985.
'''
from random import uniform
solution_vars = ['d_nozzle', 'd_mixing', 'Qp', 'Qs', 'P1', 'P2', 'P5']
unknown_vars = []
for i in solution_vars:
if locals()[i] is None:
unknown_vars.append(i)
if len(unknown_vars) > 2:
raise ValueError('Too many unknowns')
elif len(unknown_vars) < 2:
raise ValueError('Overspecified')
vals = {'d_nozzle': d_nozzle, 'd_mixing': d_mixing, 'Qp': Qp,
'Qs': Qs, 'P1': P1, 'P2': P2, 'P5': P5}
var_guesses = []
# Initial guess algorithms for each variable here
# No clever algorithms invented yet
for v in unknown_vars:
if v == 'd_nozzle':
try:
var_guesses.append(d_mixing*0.4)
except:
var_guesses.append(0.01)
if v == 'd_mixing':
try:
var_guesses.append(d_nozzle*2)
except:
var_guesses.append(0.02)
elif v == 'P1':
try:
var_guesses.append(P2*5)
except:
var_guesses.append(P5*5)
elif v == 'P2':
try:
var_guesses.append((P1 + P5)*0.5)
except:
try:
var_guesses.append(P1/1.1)
except:
var_guesses.append(P5*1.25)
elif v == 'P5':
try:
var_guesses.append(P1*1.12)
except:
var_guesses.append(P2*1.12)
elif v == 'Qp':
try:
var_guesses.append(Qs*1.04)
except:
var_guesses.append(0.01)
elif v == 'Qs':
try:
var_guesses.append(Qp*0.5)
except:
var_guesses.append(0.01)
C = rhos/rhop
if nozzle_retracted:
j = 0.0
else:
j = 1.0
# The diffuser diameter, if not specified, is set to a very large diameter
# so as to not alter the results
if d_diffuser is None:
if d_mixing is not None:
d_diffuser = d_mixing*1E3
elif d_nozzle is not None:
d_diffuser = d_nozzle*1E3
else:
d_diffuser = 1000.0
vals['d_diffuser'] = d_diffuser
def obj_err(val):
# Use the dictionary `vals` to keep track of the currently iterating
# variables
for i, v in zip(unknown_vars, val):
vals[i] = abs(float(v))
# Keep the pressure limits sane
# if 'P1' in unknown_vars:
# if 'P5' not in unknown_vars:
# vals['P1'] = max(vals['P1'], 1.001*vals['P5'])
# elif 'P2' not in unknown_vars:
# vals['P1'] = max(vals['P1'], 1.001*vals['P2'])
# if 'P2' in unknown_vars:
# if 'P1' not in unknown_vars:
# vals['P2'] = min(vals['P2'], 0.999*vals['P1'])
# if 'P5' not in unknown_vars:
# vals['P2'] = max(vals['P2'], 1.001*vals['P2'])
# Prelimary numbers
A_nozzle = pi/4*vals['d_nozzle']**2
alpha = vals['d_mixing']**2/d_diffuser**2
R = vals['d_nozzle']**2/vals['d_mixing']**2
M = vals['Qs']/vals['Qp']
err1 = liquid_jet_pump_pressure_ratio(rhop=rhop, rhos=rhos, Km=Km, Kd=Kd,
Ks=Ks, Kp=Kp, d_nozzle=vals['d_nozzle'],
d_mixing=vals['d_mixing'],
Qs=vals['Qs'], Qp=vals['Qp'],
P2=vals['P2'], P1=vals['P1'],
P5=vals['P5'],
nozzle_retracted=nozzle_retracted,
d_diffuser=d_diffuser)
rhs = rhop/2.0*(vals['Qp']/A_nozzle)**2*((1.0 + Kp) - C*(1.0 + Ks)*((M*R)/(1.0 - R))**2 )
err2 = rhs - (vals['P1'] - vals['P2'])
vals['N'] = N = (vals['P5'] - vals['P2'])/(vals['P1']-vals['P5'])
vals['M'] = M
vals['R'] = R
vals['alpha'] = alpha
vals['efficiency'] = M*N
if vals['efficiency'] < 0:
if err1 < 0:
err1 -= abs(vals['efficiency'])
else:
err1 += abs(vals['efficiency'])
if err2 < 0:
err2 -= abs(vals['efficiency'])
else:
err2 += abs(vals['efficiency'])
# elif vals['N'] < 0:
# err1, err2 = abs(vals['N']) + err1, abs(vals['N']) + err2
# print(err1, err2)
return err1, err2
# Only one unknown var
if 'P5' in unknown_vars:
ancillary = liquid_jet_pump_ancillary(rhop=rhop, rhos=rhos, Kp=Kp,
Ks=Ks, d_nozzle=d_nozzle,
d_mixing=d_mixing, Qp=Qp, Qs=Qs,
P1=P1, P2=P2)
if unknown_vars[0] == 'P5':
vals[unknown_vars[1]] = ancillary
else:
vals[unknown_vars[0]] = ancillary
vals['P5'] = liquid_jet_pump_pressure_ratio(rhop=rhop, rhos=rhos, Km=Km, Kd=Kd, Ks=Ks, Kp=Kp, d_nozzle=vals['d_nozzle'],
d_mixing=vals['d_mixing'], Qs=vals['Qs'], Qp=vals['Qp'], P2=vals['P2'],
P1=vals['P1'], P5=None,
nozzle_retracted=nozzle_retracted, d_diffuser=d_diffuser)['P5']
# Compute the remaining parameters
obj_err([vals[unknown_vars[0]], vals[unknown_vars[1]]])
return vals
with np.errstate(all='ignore'):
from scipy.optimize import fsolve, root
def solve_with_fsolve(var_guesses):
res = fsolve(obj_err, var_guesses, full_output=True)
if sum(abs(res[1]['fvec'])) > 1E-7:
raise ValueError('Could not solve')
for u, v in zip(unknown_vars, res[0].tolist()):
vals[u] = abs(v)
return vals
try:
return solve_with_fsolve(var_guesses)
except:
pass
# Tying different guesses with fsolve is faster than trying different solvers
for meth in ['hybr', 'lm', 'broyden1', 'broyden2']:
try:
res = root(obj_err, var_guesses, method=meth, tol=1E-9)
if sum(abs(res['fun'])) > 1E-7:
raise ValueError('Could not solve')
for u, v in zip(unknown_vars, res['x'].tolist()):
vals[u] = abs(v)
return vals
except (ValueError, OverflowError):
continue
# Just do variations on this until it works
for _ in range(int(max_variations/8)):
for idx in [0, 1]:
for r in [(1, 10), (0.1, 1)]:
i = uniform(*r)
try:
l = list(var_guesses)
l[idx] = l[idx]*i
return solve_with_fsolve(l)
except:
pass
# Vary both parameters at once
for _ in range(int(max_variations/8)):
for r in [(1, 10), (0.1, 1)]:
i = uniform(*r)
for s in [(1, 10), (0.1, 1)]:
j = uniform(*s)
try:
l = list(var_guesses)
l[0] = l[0]*i
l[1] = l[1]*j
return solve_with_fsolve(l)
except:
pass
raise ValueError('Could not solve')
def vacuum_air_leakage_Ryans_Croll(V, P, P_atm=101325.0):
r'''Calculates an estimated leakage of air into a vessel using
a correlation from Ryans and Croll (1981) [1]_ as given in [2]_ and [3]_.
if P < 10 torr:
.. math::
W = 0.026P^{0.34}V^{0.6}
if P < 100 torr:
.. math::
W = 0.032P^{0.26}V^{0.6}
else:
.. math::
W = 0.106V^{0.6}
In the above equation, the units are lb/hour, torr (vacuum), and cubic feet;
they are converted in this function.
Parameters
----------
V : float
Vessel volume, [m^3]
P : float
Vessel actual absolute operating pressure - less than `P_atm`!, [Pa]
P_atm : float, optional
The atmospheric pressure surrounding the vessel, [Pa]
Returns
-------
m : float
Air leakage flow rate, [kg/s]
Notes
-----
No limits are applied to this function.
Examples
--------
>>> vacuum_air_leakage_Ryans_Croll(10, 10000)
0.0004512
References
----------
.. [1] Ryans, J. L. and Croll, S. "Selecting Vacuum Systems," 1981.
.. [2] Coker, Kayode. Ludwig's Applied Process Design for Chemical and
Petrochemical Plants. 4 edition. Amsterdam ; Boston: Gulf Professional
Publishing, 2007.
.. [3] Govoni, Patrick. "An Overview of Vacuum System Design"
Chemical Engineering Magazine, September 2017.
'''
V *= foot_cubed_inv
P *= torr_inv
P_atm *= torr_inv
P_vacuum = P_atm - P
if P_vacuum < 10:
air_leakage = 0.026*P_vacuum**0.34*V**0.6
elif P_vacuum < 100:
air_leakage = 0.032*P_vacuum**0.26*V**0.6
else:
air_leakage = 0.106*V**0.6
leakage = air_leakage*lb*hour_inv
return leakage
def vacuum_air_leakage_Seider(V, P, P_atm=101325.0):
r'''Calculates an estimated leakage of air into a vessel using
a correlation from Seider [1]_.
.. math::
W = 5 + \left[
0.0298 + 0.03088\ln P - 0.0005733(\ln P)^2
\right]V^{0.66}
In the above equation, the units are lb/hour, torr (vacuum), and cubic feet;
they are converted in this function.
Parameters
----------
V : float
Vessel volume, [m^3]
P : float
Vessel actual absolute operating pressure - less than `P_atm`!, [Pa]
P_atm : float, optional
The atmospheric pressure surrounding the vessel, [Pa]
Returns
-------
m : float
Air leakage flow rate, [kg/s]
Notes
-----
This formula is rough.
Examples
--------
>>> vacuum_air_leakage_Seider(10, 10000)
0.0018775547
References
----------
.. [1] Seider, Warren D., J. D. Seader, and Daniel R. Lewin.
Product and Process Design Principles: Synthesis, Analysis,
and Evaluation. 2nd edition. New York: Wiley, 2003.
'''
P *= torr_inv
P_atm *= torr_inv
P_vacuum = P_atm - P
V *= foot_cubed_inv
lnP = log(P_vacuum)
leakage_lb_hr = 5.0 + (0.0289 + 0.03088*lnP - 0.0005733*lnP*lnP)*V**0.66
leakage = leakage_lb_hr*lb*hour_inv
return leakage
def vacuum_air_leakage_HEI2633(V, P, P_atm=101325.0):
r'''Calculates an estimated leakage of air into a vessel using
fits to a graph of HEI-2633-00 for air leakage in commercially `tight`
vessels [1]_.
There are 5 fits, for < 1 mmHg; 1-3 mmHg; 3-20 mmHg, 20-90 mmHg, and
90 mmHg to atmospheric. The fits are for `maximum` air leakage.
Actual values may be significantly larger or smaller depending on the
condition of the seals, manufacturing defects, and the application.
Parameters
----------
V : float
Vessel volume, [m^3]
P : float
Vessel actual absolute operating pressure - less than `P_atm`!, [Pa]
P_atm : float, optional
The atmospheric pressure surrounding the vessel, [Pa]
Returns
-------
m : float
Air leakage flow rate, [kg/s]
Notes
-----
The volume is capped to 10 ft^3 on the low end, but extrapolation past
the maximum size of 10000 ft^3 is allowed.
It is believed :obj:`vacuum_air_leakage_Seider` was derived from this data,
so this function should be used in preference to it.
Examples
--------
>>> vacuum_air_leakage_HEI2633(10, 10000)
0.001186252403781038
References
----------
.. [1] "Standards for Steam Jet Vacuum Systems", 5th Edition
'''
P_atm *= mmHg_inv
P *= mmHg_inv
P_vacuum = P_atm - P
V *= foot_cubed_inv
if V < 10:
V = 10.0
logV = log(V)
if P_vacuum <= 1:
c0, c1 = 0.6667235169997174, -3.71246576520232
elif P_vacuum <= 3:
c0, c1 = 0.664489357445796, -3.0147277548691274
elif P_vacuum <= 20:
c0, c1 = 0.6656780453394583, -2.34007321331419
elif P_vacuum <= 90:
c0, c1 = 0.663080000739313, -1.9278288516732665
else:
c0, c1 = 0.6658471905826482, -1.6641585778506027
leakage_lb_hr = exp(c1 + logV*c0)
leakage = leakage_lb_hr*lb*hour_inv
return leakage
def vacuum_air_leakage_Coker_Worthington(P, P_atm=101325.0, conservative=True):
r'''Calculates an estimated leakage of air into a vessel using
a tabular lookup from Coker cited as being from Worthington Corp's
1955 Steam-Jet Ejector Application Handbook, Bulletin W-205-E21 [1]_.
Parameters
----------
P : float
Vessel actual absolute operating pressure - less than `P_atm`!, [Pa]
P_atm : float, optional
The atmospheric pressure surrounding the vessel, [Pa]
conservative : bool
Whether to use the high values or low values in the table, [-]
Returns
-------
m : float
Air leakage flow rate, [kg/s]
Notes
-----
Examples
--------
>>> vacuum_air_leakage_Coker_Worthington(10000)
0.005039915222222222
References
----------
.. [1] Coker, Kayode. Ludwig's Applied Process Design for Chemical and
Petrochemical Plants. 4 edition. Amsterdam ; Boston: Gulf Professional
Publishing, 2007.
'''
P /= inchHg # convert to inch Hg
P_atm /= inchHg # convert to inch Hg
P_vacuum = P_atm - P
if conservative:
if P_vacuum > 8:
leakage = 40
elif P_vacuum > 5:
leakage = 30
elif P_vacuum > 3:
leakage = 25
else:
leakage = 20
else:
if P_vacuum > 8:
leakage = 30
elif P_vacuum > 5:
leakage = 25
elif P_vacuum > 3:
leakage = 20
else:
leakage = 10
leakage = leakage*lb*hour_inv
return leakage
|