1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018, 2020 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains some basic functions for fluid mechanics mixing
calculations.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Misc Functions
--------------
.. autofunction:: size_tee
.. autofunction:: COV_motionless_mixer
.. autofunction:: K_motionless_mixer
.. autofunction:: agitator_time_homogeneous
.. autofunction:: Kp_helical_ribbon_Rieger
.. autofunction:: time_helical_ribbon_Grenville
"""
from math import log, pi, sqrt
from fluids.constants import g
__all__ = ['agitator_time_homogeneous',
'Kp_helical_ribbon_Rieger', 'time_helical_ribbon_Grenville', 'size_tee',
'COV_motionless_mixer', 'K_motionless_mixer']
max_Fo_for_turbulent = 1/1225.
min_regime_constant_for_turbulent = 6370.
def adjust_homogeneity(fraction):
'''Base: 95% homogeneity'''
multiplier = log(1-fraction)/log(0.05)
return multiplier
def agitator_time_homogeneous(N, P, T, H, mu, rho, D=None, homogeneity=.95):
r'''Calculates time for a fluid mizing in a tank with an impeller to
reach a specified level of homogeneity, according to [1]_.
.. math::
N_p = \frac{Pg}{\rho N^3 D^5}
.. math::
Re_{imp} = \frac{\rho D^2 N}{\mu}
.. math::
\text{constant} = N_p^{1/3} Re_{imp}
.. math::
Fo = 5.2/\text{constant} \text{for turbulent regime}
.. math::
Fo = (183/\text{constant})^2 \text{for transition regime}
Parameters
----------
N : float:
Speed of impeller, [revolutions/s]
P : float
Actual power required to mix, ignoring mechanical inefficiencies [W]
T : float
Tank diameter, [m]
H : float
Tank height, [m]
mu : float
Mixture viscosity, [Pa*s]
rho : float
Mixture density, [kg/m^3]
D : float, optional
Impeller diameter [m]
homogeneity : float, optional
Fraction completion of mixing, []
Returns
-------
t : float
Time for specified degree of homogeneity [s]
Notes
-----
If impeller diameter is not specified, assumed to be 0.5 tank diameters.
The first example is solved forward rather than backwards here. A rather
different result is obtained, but is accurate.
No check to see if the mixture if laminar is currently implemented.
This would under predict the required time.
Examples
--------
>>> agitator_time_homogeneous(D=36*.0254, N=56/60., P=957., T=1.83, H=1.83, mu=0.018, rho=1020, homogeneity=.995)
15.143198226374668
>>> agitator_time_homogeneous(D=1, N=125/60., P=298., T=3, H=2.5, mu=.5, rho=980, homogeneity=.95)
67.7575069865228
References
----------
.. [1] Paul, Edward L, Victor A Atiemo-Obeng, and Suzanne M Kresta.
Handbook of Industrial Mixing: Science and Practice.
Hoboken, N.J.: Wiley-Interscience, 2004.
'''
if not D:
D = T*0.5
Np = P*g/rho/N**3/D**5
Re_imp = rho/mu*D**2*N
regime_constant = Np**(1/3.)*Re_imp
if regime_constant >= min_regime_constant_for_turbulent:
Fo = (5.2/regime_constant)
else:
Fo = (183./regime_constant)**2
time = rho*T**1.5*sqrt(H)/mu*Fo
multiplier = adjust_homogeneity(homogeneity)
return time*multiplier
def Kp_helical_ribbon_Rieger(D, h, nb, pitch, width, T):
r'''Calculates product of power number and Reynolds number for a
specified geometry for a heilical ribbon mixer in the laminar regime.
One of several correlations listed in [1]_, it used more data than other
listed correlations and was recommended.
.. math::
K_p = 82.8\frac{h}{D}\left(\frac{c}{D}\right)^{-0.38} \left(\frac{p}{D}\right)^{-0.35}
\left(\frac{w}{D}\right)^{0.20} n_b^{0.78}
Parameters
----------
D : float
Impeller diameter [m]
h : float
Ribbon mixer height, [m]
nb : float:
Number of blades, [-]
pitch : float
Height of one turn around a helix [m]
width : float
Width of one blade [m]
T : float
Tank diameter, [m]
Returns
-------
Kp : float
Product of Power number and Reynolds number for laminar regime []
Notes
-----
Example is from example 9-6 in [1]_. Confirmed.
Examples
--------
>>> Kp_helical_ribbon_Rieger(D=1.9, h=1.9, nb=2, pitch=1.9, width=.19, T=2)
357.39749163259256
References
----------
.. [1] Paul, Edward L, Victor A Atiemo-Obeng, and Suzanne M Kresta.
Handbook of Industrial Mixing: Science and Practice.
Hoboken, N.J.: Wiley-Interscience, 2004.
.. [2] Rieger, F., V. Novak, and D. Havelkov (1988). The influence of the
geometrical shape on the power requirements of ribbon impellers,
Int. Chem. Eng., 28, 376-383.
'''
c = 0.5*(T - D)
return 82.8*h/D*(c/D)**-.38*(pitch/D)**-0.35*(width/D)**0.2*nb**0.78
def time_helical_ribbon_Grenville(Kp, N):
r'''Calculates product of time required for mixing in a helical ribbon
coil in the laminar regime according to the Grenville [2]_ method
recommended in [1]_.
.. math::
t = 896\times10^3K_p^{-1.69}/N
Parameters
----------
Kp : float
Product of power number and Reynolds number for laminar regime []
N : float
Speed of impeller, [revolutions/s]
Returns
-------
t : float
Time for homogeneity [s]
Notes
-----
Degree of homogeneity is not specified.
Example is from example 9-6 in [1]_. Confirmed.
Examples
--------
>>> time_helical_ribbon_Grenville(357.4, 4/60.)
650.980654028894
References
----------
.. [1] Paul, Edward L, Victor A Atiemo-Obeng, and Suzanne M Kresta.
Handbook of Industrial Mixing: Science and Practice.
Hoboken, N.J.: Wiley-Interscience, 2004.
.. [2] Grenville, R. K., T. M. Hutchinson, and R. W. Higbee (2001).
Optimisation of helical ribbon geometry for blending in the laminar
regime, presented at MIXING XVIII, NAMF.
'''
return 896E3*Kp**-1.69/N
### Tee mixer
def size_tee(Q1, Q2, D, D2, n=1, pipe_diameters=5):
r'''Calculates CoV of an optimal or specified tee for mixing at a tee
according to [1]_. Assumes turbulent flow.
The smaller stream in injected into the main pipe, which continues
straight.
COV calculation is according to [2]_.
Parameters
----------
Q1 : float
Volumetric flow rate of larger stream [m^3/s]
Q2 : float
Volumetric flow rate of smaller stream [m^3/s]
D : float
Diameter of pipe after tee [m]
D2 : float
Diameter of mixing inlet, optional (optimally calculated if not
specified) [m]
n : float
Number of jets, 1 to 4 []
pipe_diameters : float
Number of diameters along tail pipe for CoV calculation, 0 to 5 []
Returns
-------
CoV : float
Standard deviation of dimensionless concentration [-]
Notes
-----
Not specified if this works for liquid also, though probably not.
Example is from example Example 9-6 in [1]_. Low precision used in example.
Examples
--------
>>> size_tee(Q1=11.7, Q2=2.74, D=0.762, D2=None, n=1, pipe_diameters=5)
0.2940930233038544
References
----------
.. [1] Paul, Edward L, Victor A Atiemo-Obeng, and Suzanne M Kresta.
Handbook of Industrial Mixing: Science and Practice.
Hoboken, N.J.: Wiley-Interscience, 2004.
.. [2] Giorges, Aklilu T. G., Larry J. Forney, and Xiaodong Wang.
"Numerical Study of Multi-Jet Mixing." Chemical Engineering Research and
Design, Fluid Flow, 79, no. 5 (July 2001): 515-22.
doi:10.1205/02638760152424280.
'''
V1 = Q1/(pi/4*D**2)
# Cv = Q2/(Q1 + Q2)
# COV0 = sqrt((1-Cv)/Cv)
if D2 is None:
D2 = (Q2/Q1)**(2/3.)*D
V2 = Q2/(pi/4*D2**2)
B = n**2*(D2/D)**2*(V2/V1)**2
if not n == 1 and not n == 2 and not n == 3 and not n ==4:
raise ValueError('Only 1 or 4 side streams investigated')
if n == 1:
if B < 0.7:
E = 1.33
else:
E = 1/33. + 0.95*log(B/0.7)
elif n == 2:
if B < 0.8:
E = 1.44
else:
E = 1.44 + 0.95*log(B/0.8)**1.5
elif n == 3:
if B < 0.8:
E = 1.75
else:
E = 1.75 + 0.95*log(B/0.8)**1.8
else:
if B < 2:
E = 1.97
else:
E = 1.97 + 0.95*log(B/2.)**2
COV = sqrt(0.32/B**0.86*(pipe_diameters)**-E)
return COV
### Commercial motionless mixers
"""Data from:
Paul, Edward L, Victor A Atiemo-Obeng, and Suzanne M Kresta.
Handbook of Industrial Mixing: Science and Practice.
Hoboken, N.J.: Wiley-Interscience, 2004."""
StatixMixers = {}
StatixMixers['KMS'] = {'Name': 'KMS', 'Vendor': 'Chemineer', 'Description': 'Twisted ribbon. Alternating left and right twists.', 'KL': 6.9, 'KiL': 0.87, 'KT': 150, 'KiT': 0.5}
StatixMixers['SMX'] = {'Name': 'SMX', 'Vendor': 'Koch-Glitsch', 'Description': 'Guide vanes 45 degrees to pipe axis. Adjacent elements rotated 90 degrees.', 'KL': 37.5, 'KiL': 0.63, 'KT': 500, 'KiT': 0.46}
StatixMixers['SMXL'] = {'Name': 'SMXL', 'Vendor': 'Koch-Glitsch', 'Description': 'Similar to SMX, but intersection bars at 30 degrees to pipe axis.', 'KL': 7.8, 'KiL': 0.85, 'KT': 100, 'KiT': 0.87}
StatixMixers['SMF'] = {'Name': 'SMF', 'Vendor': 'Koch-Glitsch', 'Description': 'Three guide vanes projecting from the tube wall in a way as to not contact. Designed for applications subject to plugging.', 'KL': 5.6, 'KiL': 0.83, 'KT': 130, 'KiT': 0.4}
def COV_motionless_mixer(Ki, Q1, Q2, pipe_diameters):
r'''Calculates CoV of a motionless mixer with a regression parameter in
[1]_ and originally in [2]_.
.. math::
\frac{CoV}{CoV_0} = K_i^{L/D}
Parameters
----------
Ki : float
Correlation parameter specific to a mixer's design, [-]
Q1 : float
Volumetric flow rate of larger stream [m^3/s]
Q2 : float
Volumetric flow rate of smaller stream [m^3/s]
pipe_diameters : float
Number of diameters along tail pipe for CoV calculation, 0 to 5 []
Returns
-------
CoV : float
Standard deviation of dimensionless concentration [-]
Notes
-----
Example 7-8.3.2 in [1]_, solved backwards.
Examples
--------
>>> COV_motionless_mixer(Ki=.33, Q1=11.7, Q2=2.74, pipe_diameters=4.74/.762)
0.0020900028665727685
References
----------
.. [1] Paul, Edward L, Victor A Atiemo-Obeng, and Suzanne M Kresta.
Handbook of Industrial Mixing: Science and Practice.
Hoboken, N.J.: Wiley-Interscience, 2004.
.. [2] Streiff, F. A., S. Jaffer, and G. Schneider (1999). Design and
application of motionless mixer technology, Proc. ISMIP3, Osaka,
pp. 107-114.
'''
Cv = Q2/(Q1 + Q2)
COV0 = sqrt((1-Cv)/Cv)
COVr = Ki**(pipe_diameters)
COV = COV0*COVr
return COV
def K_motionless_mixer(K, L, D, fd):
r'''Calculates loss coefficient of a motionless mixer with a regression
parameter in [1]_ and originally in [2]_.
.. math::
K = K_{L/T}f\frac{L}{D}
Parameters
----------
K : float
Correlation parameter specific to a mixer's design, [-]
Also specific to laminar or turbulent regime.
L : float
Length of the motionless mixer [m]
D : float
Diameter of pipe [m]
fd : float
Darcy friction factor [-]
Returns
-------
K : float
Loss coefficient of mixer [-]
Notes
-----
Related to example 7-8.3.2 in [1]_.
Examples
--------
>>> K_motionless_mixer(K=150, L=.762*5, D=.762, fd=.01)
7.5
References
----------
.. [1] Paul, Edward L, Victor A Atiemo-Obeng, and Suzanne M Kresta.
Handbook of Industrial Mixing: Science and Practice.
Hoboken, N.J.: Wiley-Interscience, 2004.
.. [2] Streiff, F. A., S. Jaffer, and G. Schneider (1999). Design and
application of motionless mixer technology, Proc. ISMIP3, Osaka,
pp. 107-114.
'''
return L/D*fd*K
|