File: numba.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (747 lines) | stat: -rw-r--r-- 29,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2020, Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import ctypes
import importlib.util
import inspect
import linecache
import os
import re
import string
import types

import numba
import numba.types
import numpy as np
from numba import float64
from numba.experimental import jitclass
from numba.extending import get_cython_function_address, overload

import fluids as normal_fluids
import fluids.optional.spa

disable_numba_cache = os.environ.get('NUMBA_FUNCTION_CACHE_SIZE', None) == '0'

# caching = True
caching = not disable_numba_cache
extra_args_std = {'nogil': True, 'fastmath': True}
extra_args_vec = {}
__all__ = []

__funcs = {}
no_conv_data_names = {'__builtins__', 'fmethods'}

try:
    import scipy.special as sc
    name_to_numba_signatures = {
        'expi': [(float64,)],
        'ellipe': [(float64,)],
        'iv': [(float64, float64,)],
        'gamma': [(float64,)],
        'gammainc': [(float64, float64,)],
        'gammaincc': [(float64, float64,)],
        'i0': [(float64,)],
        'i1': [(float64,)],
        'k0': [(float64,)],
        'k1': [(float64,)],
        'hyp2f1': [(float64, float64, float64, float64,)],
        'ellipkinc': [(float64, float64,)],
        'ellipeinc': [(float64, float64,)],
        'erf': [(float64,)],
    }

    name_and_types_to_pointer = {
        ('expi', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', '__pyx_fuse_1expi')),
        ('ellipe', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'ellipe')),
        ('iv', float64, float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', '__pyx_fuse_1iv')),
        ('gamma', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', '__pyx_fuse_1gamma')),
        ('gammainc', float64, float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'gammainc')),
        ('gammaincc', float64, float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'gammaincc')),
        ('i0', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'i0')),
        ('i1', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'i1')),
        ('k0', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'k0')),
        ('k1', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'k1')),
        ('hyp2f1', float64, float64, float64, float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', '__pyx_fuse_1hyp2f1')),
        ('ellipkinc', float64, float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'ellipkinc')),
        ('ellipeinc', float64, float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', 'ellipeinc')),
        ('erf', float64): ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)(get_cython_function_address('scipy.special.cython_special', '__pyx_fuse_1erf')),
    }


    def select_kernel(name, signature):
        f2 = name_and_types_to_pointer[(name, *signature)]
        second_lambda = lambda *args: lambda *args: f2(*args)
        return second_lambda

    def add_scipy_special_overloads():
        for name, sigs in name_to_numba_signatures.items():
            sig = sigs[0] # Sig is a tuple of arguments
            func = getattr(sc, name)
            overload(func)(select_kernel(name, sigs[0]))

    add_scipy_special_overloads()

except:
    pass


def numba_exec_cacheable(source, lcs=None, gbls=None, cache_name='cache-safe'):
    if lcs is None:
        lcs = {}
    if gbls is None:
        gbls = globals()
    if disable_numba_cache:
        exec(source, gbls, lcs)
        return lcs, gbls

    filepath = f"<ipython-{cache_name}>"
    lines = [line + '\n' for line in source.splitlines()]
    linecache.cache[filepath] = (len(source), None, lines, filepath)
    exec(compile(source, filepath, 'exec'), gbls, lcs)
    return lcs, gbls

# Some unfotrunate code duplication

@numba.njit(cache=caching, **extra_args_std)
def fpbspl(t, n, k, x, l, h, hh):
    h[0] = 1.0
    for j in range(1, k + 1):
        hh[0:j] = h[0:j]
        h[0] = 0.0
        for i in range(j):
            li = l+i
            f = hh[i]/(t[li] - t[li - j])
            h[i] = h[i] + f*(t[li] - x)
            h[i + 1] = f*(x - t[li - j])
    return h, hh

@numba.njit(cache=caching, **extra_args_std)
def init_w(t, k, x, lx, w):
    tb = t[k]
    n = len(t)
    m = len(x)
    h = np.zeros(6, dtype=np.float64)#([0]*6 )
    hh = np.zeros(5, dtype=np.float64)##np.array([0]*5)
    te = t[n - k - 1]
    l1 = k + 1
    l2 = l1 + 1
    for i in range(m):
        arg = x[i]
        if arg < tb:
            arg = tb
        if arg > te:
            arg = te
        while not (arg < t[l1] or l1 == (n - k - 1)):
            l1 = l2
            l2 = l1 + 1
        h, hh = fpbspl(t, n, k, arg, l1, h, hh)

        lx[i] = l1 - k - 1
        for j in range(k + 1):
            w[i][j] = h[j]
    return w
@numba.njit(cache=caching, **extra_args_std)
def cy_bispev(tx, ty, c, kx, ky, x, y):
    nx = len(tx)
    ny = len(ty)
    mx = 1 # hardcode to one point
    my = 1 # hardcode to one point

    kx1 = kx + 1
    ky1 = ky + 1

    nkx1 = nx - kx1
    nky1 = ny - ky1

    wx = np.zeros((mx, kx1))
    wy = np.zeros((my, ky1))
    lx = np.zeros(mx, dtype=np.int32)
    ly = np.zeros(my, dtype=np.int32)

    size_z = mx*my

    z = [0.0]*size_z
    wx = init_w(tx, kx, x, lx, wx)
    wy = init_w(ty, ky, y, ly, wy)
    for j in range(my):
        for i in range(mx):
            sp = 0.0
            err = 0.0
            for i1 in range(kx1):
                for j1 in range(ky1):
                    l2 = lx[i]*nky1 + ly[j] + i1*nky1 + j1
                    a = c[l2]*wx[i][i1]*wy[j][j1] - err
                    tmp = sp + a
                    err = (tmp - sp) - a
                    sp = tmp
            z[j*mx + i] += sp
    return z


@numba.njit(cache=caching, **extra_args_std)
def normalize(values):
    N = len(values)
    tot_inv = 1.0/np.sum(values)
    out = np.zeros(N)
    for i in range(N):
        out[i] = values[i]*tot_inv
    return out

@numba.njit(cache=caching, **extra_args_std)
def bisplev(x, y, tck, dx=0, dy=0):
    tx, ty, c, kx, ky = tck
    return cy_bispev(tx, ty, c, kx, ky, np.array([x]), np.array([y]))[0]


@numba.njit(cache=caching, **extra_args_std)
def combinations(pool, r):
    n = len(pool)
#    indices = tuple(list(range(r)))
    indices = np.arange(r)
    empty = not (n and (0 < r <= n))

    if not empty:
#        yield [pool[i] for i in indices]
#        yield (pool[i] for i in indices)
        yield np.array([pool[i] for i in indices])

    while not empty:
        i = r - 1
        while i >= 0 and indices[i] == i + n - r:
            i -= 1
        if i < 0:
            empty = True
        else:
            indices[i] += 1
            for j in range(i + 1, r):
                indices[j] = indices[j - 1] + 1
            result = np.array([pool[i] for i in indices])
            yield result



to_set_num = ['bisplev', 'cy_bispev', 'init_w', 'fpbspl']





def infer_dictionary_types(d):
    if not d:
        raise ValueError("Empty dictionary cannot infer")
    keys = list(d.keys())
    type_keys = type(keys[0])
    for k in keys:
        if type(k) != type_keys:
            raise ValueError("Inconsistent key types in dictionary")
    values = list(d.values())
    type_values = type(values[0])
    for v in values:
        if type(v) != type_values:
            raise ValueError("Inconsistent value types in dictionary")

    return numba.typeof(keys[0]), numba.typeof(values[0])

def numba_dict(d):
    key_type, value_type = infer_dictionary_types(d)
    new = numba.typed.Dict.empty(key_type=key_type, value_type=value_type)
    for k, v in d.items():
        new[k] = v
    return new

def return_value_numpy(source):
    ret = re.search(r'return +\[', source)
    if ret:
        start_return, start_bracket = ret.regs[-1]
        enclosing = 1
        for i, v in enumerate(source[start_bracket:]):
            if v == '[':
                enclosing += 1
            if v == ']':
                enclosing -= 1
            if not enclosing:
                break
        return source[:start_bracket-1] + f'np.array([{source[start_bracket:i+start_bracket+1]})'
    return source


# Magic to make a lists into arrays
list_mult_expr = r'\[ *([+-]?([0-9]+([.][0-9]*)?|[.][0-9]+)) *\] *\* *([a-zA-Z0-9_]+)'
numpy_not_list_expr = r'np.full((\4,), \1)'

match_prange = r'range\( *([a-zA-Z0-9_]+) *\) *: *# * (numba|NUMBA) *: *(prange|PRANGE)'
sub_prange = r'prange(\1):'

def transform_lists_to_arrays(module, to_change, __funcs, vec=False, cache_blacklist=set()):
    if vec:
        conv_fun = numba.vectorize
        extra_args = extra_args_vec
    else:
        conv_fun = numba.njit
        extra_args = extra_args_std
    for s in to_change:
        func = s.split('.')[-1]
        mod = '.'.join(s.split('.')[:-1])
        fake_mod = __funcs[mod]

        try:
            real_mod = getattr(module, mod)
        except:
            real_mod = module
            for s in mod.split('.'):
                real_mod = getattr(real_mod, s)

        orig_func = getattr(real_mod, func)
        try:
            source = inspect.getsource(orig_func)
        except TypeError:
            # Bad method
            continue
        source = remove_for_numba(source)  # do before anything else
        if type(orig_func) is not type:
            source = return_value_numpy(source)
            source = re.sub(list_mult_expr, numpy_not_list_expr, source)
            parallel = 'prange' in source
            source = re.sub(match_prange, sub_prange, source)
#        if 'roughness_Farshad' in source:
#            print(source)
#            print(parallel, 'hi', extra_args)
        numba_exec_cacheable(source, fake_mod.__dict__, fake_mod.__dict__)
        new_func = fake_mod.__dict__[func]
        do_cache = caching and func not in cache_blacklist
        if type(orig_func) is type:
            obj = new_func
        else:
            if vec:
                obj = conv_fun(cache=do_cache, **extra_args)(new_func)
            else:
                obj = conv_fun(cache=do_cache, parallel=parallel, **extra_args)(new_func)
#        if 'Wilke_large' in source:
#            print(id(obj), 'id')
        __funcs[func] = obj
        fake_mod.__dict__[func] = obj
        obj.__doc__ = ''


#set_signatures = {'Clamond': [numba.float64(numba.float64, numba.float64, numba.boolean),
#                              numba.float64(numba.float64, numba.float64, numba.optional(numba.boolean))
#                              ]
#                    }


set_signatures = {}

remove_comment_line = re.compile(r"""r?(['"])\1\1(.*?)\1{3}""", re.DOTALL)

def remove_for_numba(source):
    source = re.sub(r""".*# ?(numba|NUMBA) ?: *(DELETE|delete|comment|COMMENT).*""", '', source)
    source = re.sub(r"""#(.*)# ?(numba|NUMBA) ?: *(UNCOMMENT|uncomment).*""", r'\1', source)
    return source

def remove_branch(source, branch):
    source = re.sub(remove_comment_line, '', source)

    ret = re.search(rf'if +{branch} *', source)
    if ret:
        start_return, start_bracket = ret.regs[-1]
        enclosing_square = enclosing_curley = enclosing_round = 0
        required_line_start = source[0:start_return].replace('\r', '\n').replace('\n\n','\n').split('\n')[-1]
        required_spacing = 4
        search_txt = source[start_bracket:]
#         print(search_txt)
        for i, v in enumerate(search_txt):
            if v == '[':
                enclosing_square += 1
            if v == ']':
                enclosing_square -= 1
            if v == '{':
                enclosing_curley += 1
            if v == '}':
                enclosing_curley -= 1
            if v == '(':
                enclosing_round += 1
            if v == ')':
                enclosing_round -= 1

            if enclosing_round == 0 and enclosing_square == 0 and enclosing_curley == 0:
                if (search_txt[i:i+len(required_line_start)+1] == '\n' + required_line_start):
#                     print([True, search_txt[i:i+len(required_line_start)+2]])

                    if (search_txt[i+len(required_line_start)+1] in string.ascii_letters):
                        end_idx = i
                        break

        return source[:start_return] + search_txt[end_idx:]
    return source

numtypes = {float, int, complex}
settypes = {set, frozenset}

def transform_dataypes_module(SUBMOD):
    module_constants_changed_type = {}
    for arr_name in SUBMOD.__dict__:
        if arr_name in no_conv_data_names:
            continue
        obj = getattr(SUBMOD, arr_name)
        obj_type = type(obj)
        if obj_type is list and obj:
            # Assume all elements have the same general type
            r = obj[0]
            r_type = type(r)
            if r_type in numtypes:
                arr = np.array(obj)
                if arr.dtype.char != 'O':
                    module_constants_changed_type[arr_name] = arr
            elif r_type is list and r and type(r[0]) in numtypes:
                if len({len(r) for r in obj}) == 1:
                    # All same size - nice numpy array
                    arr = np.array(obj)
                    if arr.dtype.char != 'O':
                        module_constants_changed_type[arr_name] = arr
                else:
                    # Tuple of different size numpy arrays
                    module_constants_changed_type[arr_name] = tuple([np.array(v) for v in obj])
        elif obj_type in settypes:
            module_constants_changed_type[arr_name] = tuple(obj)
        # elif obj_type is dict:
        #     try:
        #         print('starting', arr_name)
        #         infer_dictionary_types(obj)
        #         module_constants_changed_type[arr_name] = numba_dict(obj)
        #     except:
        #         print(arr_name, 'failed')
        #         pass
    return module_constants_changed_type

#nopython = set(['Clamond'])
skip = set()
total_skip = set()
skip_cache = {'secant', 'brenth', 'py_solve'}
bad_names = {'__file__', '__name__', '__package__', '__cached__', 'solve'}

def create_numerics(replaced, vec=False):
    cache_unsuported = {'brenth', 'newton_system', 'quad', 'quad_adaptive', 'fixed_quad_Gauss_Kronrod', 'py_lambertw', 'secant', 'lambertw', 'ridder', 'bisect'}
#    cache_unsuported = set([])
#    if vec:
#        conv_fun = numba.vectorize
#    else:
    # Not part of the public API - do not need to worry about the stricter
    # numba.vectorize interface!
    conv_fun = numba.njit

    NUMERICS_SUBMOD_COPY = importlib.util.find_spec('fluids.numerics')
    NUMERICS_SUBMOD = importlib.util.module_from_spec(NUMERICS_SUBMOD_COPY)
    NUMERICS_SUBMOD.IS_NUMBA = True
    NUMERICS_SUBMOD.FORCE_PYPY = True
    NUMERICS_SUBMOD.numba = numba
    NUMERICS_SUBMOD.jitclass = jitclass
    NUMERICS_SUBMOD.njit = numba.njit
    NUMERICS_SUBMOD.jit = numba.njit
    NUMERICS_SUBMOD.array_if_needed = np.array
    NUMERICS_SUBMOD.sum = np.sum

    NUMERICS_SUBMOD_COPY.loader.exec_module(NUMERICS_SUBMOD)
    NUMERICS_SUBMOD.zeros = np.zeros
    NUMERICS_SUBMOD.full = np.full

    # So long as the other modules are using the system numerics and being updated with the correct numerics methods later
    # numba wants to make sure these are the same
    same_classes = ['OscillationError', 'UnconvergedError', 'SamePointError', 'NoSolutionError', 'NotBoundedError', 'DiscontinuityError']
    for s in same_classes:
        setattr(NUMERICS_SUBMOD, s, getattr(normal_fluids.numerics, s))

    names = list(NUMERICS_SUBMOD.__all__)
    try:
        names += NUMERICS_SUBMOD.__numba_additional_funcs__
    except:
        pass

    NUMERICS_SUBMOD.py_solve = np.linalg.solve

    bad_names = {'tck_interp2d_linear', 'implementation_optimize_tck', 'py_solve'}
    bad_names.update(to_set_num)

    solvers = ['secant', 'brenth', 'newton', 'halley', 'ridder', 'newton_system', 'solve_2_direct',
               'solve_3_direct', 'solve_4_direct', 'basic_damping', 'bisect', 'nelder_mead', 'quad_adaptive', 'quad', 'fixed_quad_Gauss_Kronrod']
    for s in solvers:
        source = inspect.getsource(getattr(NUMERICS_SUBMOD, s))
        source = source.replace(', kwargs={}', '').replace(', **kwargs', '').replace(', kwargs=kwargs', '')
        source = source.replace('iterations=i, point=p, err=q1', '')
        source = source.replace(', q1=q1, p1=p1, q0=q0, p0=p0', '')
        source = source.replace('%d iterations" %maxiter', '"')
        source = source.replace('ytol=None', 'ytol=1e100')
        source = source.replace(', value=%s" %(maxiter, x)', '"')
        source = re.sub(r"""UnconvergedError\(.*""", """UnconvergedError("Failed to converge")""", source) # Gotta keep errors all one one line
        source = remove_for_numba(source)
        source = re.sub(list_mult_expr, numpy_not_list_expr, source)

        # if any(i in s for i in ('quad','quad_adaptive', 'fixed_quad_Gauss_Kronrod')):
        #     print(source)
        numba_exec_cacheable(source, NUMERICS_SUBMOD.__dict__, NUMERICS_SUBMOD.__dict__)


#    numerics_forceobj = set(solvers) # Force the sovlers to compile in object mode
#    numerics_forceobj = []
    for name in names:
        if name not in bad_names:
            obj = getattr(NUMERICS_SUBMOD, name)
            if isinstance(obj, types.FunctionType):
                do_cache = caching and name not in cache_unsuported
#                forceobj = name in numerics_forceobj
#                forceobj = False
                # cache=not forceobj
                # cache=name not in skip_cache
                obj = conv_fun(cache=do_cache, **extra_args_std)(obj)
                NUMERICS_SUBMOD.__dict__[name] = obj
                replaced[name] = obj
#                globals()[name] = objs

    for name in to_set_num:
        NUMERICS_SUBMOD.__dict__[name] = globals()[name]

    replaced['bisplev'] = replaced['py_bisplev'] = NUMERICS_SUBMOD.__dict__['bisplev'] = bisplev
#    replaced['lambertw'] = NUMERICS_SUBMOD.__dict__['lambertw'] = NUMERICS_SUBMOD.__dict__['py_lambertw']
    for s in ('ellipe', 'gammaincc', 'gamma', 'i1', 'i0', 'k1', 'k0', 'iv', 'hyp2f1', 'erf', 'ellipkinc', 'ellipeinc'):
        replaced[s] = NUMERICS_SUBMOD.__dict__[s]

    module_constants_changed_type = transform_dataypes_module(NUMERICS_SUBMOD)
    NUMERICS_SUBMOD.__dict__.update(module_constants_changed_type)

    NUMERICS_SUBMOD.normalize = normalize
    replaced['normalize'] = normalize
    for k, v in NUMERICS_SUBMOD.fit_minimization_targets.items():
        NUMERICS_SUBMOD.fit_minimization_targets[k] = replaced[v.__name__]


    return replaced, NUMERICS_SUBMOD

replaced = {'sum': np.sum, 'cbrt': np.cbrt, 'combinations': combinations, 'np': np}
replaced, NUMERICS_SUBMOD = create_numerics(replaced, vec=False)
numerics_dict = replaced
numerics = NUMERICS_SUBMOD
#old_numerics = sys.modules['fluids.numerics']
#sys.modules['fluids.numerics'] = numerics
normal = normal_fluids


def transform_module(normal, __funcs, replaced, vec=False, blacklist=frozenset([]),
                     cache_blacklist=set()):
    new_mods = []
    if vec:
        conv_fun = numba.vectorize
        extra_args = extra_args_vec
    else:
        conv_fun = numba.njit
        extra_args = extra_args_std
    # Run module-by-module. Expensive, as we need to create module copies
    try:
        all_submodules = normal.all_submodules(False)
    except:
        all_submodules = normal.submodules
    for mod in all_submodules:
        #print(all_submodules, mod)
        SUBMOD_COPY = importlib.util.find_spec(mod.__name__)
        SUBMOD = importlib.util.module_from_spec(SUBMOD_COPY)
        SUBMOD.IS_NUMBA = True
        SUBMOD.numba = numba
        SUBMOD.jitclass = jitclass
        SUBMOD.njit = numba.njit
        SUBMOD.jit = numba.njit
        SUBMOD.prange = numba.prange

        if vec:
            SUBMOD.IS_NUMBA_VEC = True
        SUBMOD_COPY.loader.exec_module(SUBMOD)
        SUBMOD.np = np
        SUBMOD.sum = np.sum

        SUBMOD.__dict__.update(replaced)
        new_mods.append(SUBMOD)
        mod_split_names = mod.__name__.split('.')
        __funcs[mod_split_names[-1]] = SUBMOD # fluids.numba.optional.spa
        __funcs['.'.join(mod_split_names[:-1])] = SUBMOD # set fluids.optional.spa fluids.numba.spa
        __funcs['.'.join(mod_split_names[-2:])] = SUBMOD # set 'optional.spa' in the dict too

        try:
            names = set(SUBMOD.__all__)
        except:
            names = set()
        for mod_obj_name in dir(SUBMOD):
            obj = getattr(SUBMOD, mod_obj_name)
            if (isinstance(obj, types.FunctionType)
                and mod_obj_name != '__getattr__'
                and not mod_obj_name.startswith('_load')
                and obj.__module__ == SUBMOD.__name__):
                names.add(mod_obj_name)

        # try:
        #     names += SUBMOD.__numba_additional_funcs__
        # except:
        #     pass

        numba_funcs = []
        funcs = []
        for name in names:
            obj = getattr(SUBMOD, name)
            if isinstance(obj, types.FunctionType):
                if name not in total_skip and name not in blacklist:
                    SUBMOD.__dict__[name] = obj = conv_fun(cache=(caching and name not in cache_blacklist), **extra_args)(obj)
                    numba_funcs.append(obj)
                else:
                    funcs.append(obj)
            __funcs[name] = obj

        module_constants_changed_type = transform_dataypes_module(SUBMOD)
        SUBMOD.__dict__.update(module_constants_changed_type)
        __funcs.update(module_constants_changed_type)

        # if not vec:
            # for t in numba_funcs:
            #     #if normal.__name__ == 'chemicals':
            #     #    if 'iapws' not in all_submodules[-1].__name__:
            #     #        print(new_objs, t)
            #     #        1/0
            #     t.py_func.__globals__.update(SUBMOD.__dict__)
            # for t in funcs:
            #     t.__globals__.update(SUBMOD.__dict__)

    # Do our best to allow functions to be found
    if '__file__' in __funcs:
        del __funcs['__file__']
    if '__file__' in replaced:
        del replaced['__file__']
    for mod in new_mods:
        mod.__dict__.update(__funcs)
    return new_mods


def transform_complete(replaced, __funcs, __all__, normal, vec=False):
    cache_blacklist = {'Stichlmair_flood', 'airmass',
   'Spitzglass_high', '_to_solve_Spitzglass_high',
   '_to_solve_Spitzglass_low', 'Spitzglass_low',
   'Oliphant', '_to_solve_Oliphant',
   'P_isothermal_critical_flow', 'P_upstream_isothermal_critical_flow',
   'isothermal_gas_err_P1', 'isothermal_gas_err_P2', 'isothermal_gas_err_P2_basis', 'isothermal_gas_err_D', 'isothermal_gas',
   'v_terminal', 'differential_pressure_meter_solver', 'err_dp_meter_solver_P1', 'err_dp_meter_solver_D2',
   'err_dp_meter_solver_P2', 'err_dp_meter_solver_m', 'V_horiz_spherical', 'V_horiz_torispherical',
   'Prandtl_von_Karman_Nikuradse', 'plate_enlargement_factor', 'Stichlmair_wet', 'V_from_h',
   'SA_partial_horiz_spherical_head', '_SA_partial_horiz_spherical_head_to_int',
   '_SA_partial_horiz_ellipsoidal_head_to_int', '_SA_partial_horiz_ellipsoidal_head_limits', 'SA_partial_horiz_ellipsoidal_head',
   '_SA_partial_horiz_guppy_head_to_int', 'SA_partial_horiz_guppy_head', 'SA_partial_horiz_torispherical_head',
   'SA_from_h', 'V_tank'}
#    cache_blacklist = set([])
    if vec:
        conv_fun = numba.vectorize
        extra_args = extra_args_vec
    else:
        conv_fun = numba.njit
        extra_args = extra_args_std
    new_mods = transform_module(normal, __funcs, replaced, vec=vec, cache_blacklist=cache_blacklist)


    to_change = ['packed_tower._Stichlmair_flood_f_and_jac',
                 'packed_tower.Stichlmair_flood', 'compressible.isothermal_gas',
                 'fittings.Darby3K', 'fittings.Hooper2K', 'geometry.SA_partial_horiz_torispherical_head',
                 'optional.spa.solar_position', 'optional.spa.longitude_obliquity_nutation',
                 'optional.spa.transit_sunrise_sunset',
                 'fittings.bend_rounded_Crane', 'geometry.tank_from_two_specs_err',
                 'friction.roughness_Farshad',
                 ]
    transform_lists_to_arrays(normal_fluids, to_change, __funcs, vec=vec, cache_blacklist=cache_blacklist)


    # AvailableMethods  will be removed in the future in favor of non-numba only
    # calls to method functions

    to_change = {}
#    to_change['friction.roughness_Farshad'] = 'ID in _Farshad_roughness'

    for s, bad_branch in to_change.items():
        mod, func = s.split('.')
        source = inspect.getsource(getattr(getattr(normal_fluids, mod), func))
        fake_mod = __funcs[mod]
        source = remove_branch(source, bad_branch)
        source = remove_for_numba(source)
        numba_exec_cacheable(source, fake_mod.__dict__, fake_mod.__dict__)
        new_func = fake_mod.__dict__[func]
        obj = conv_fun(cache=caching, **extra_args)(new_func)
        __funcs[func] = obj
        obj.__doc__ = ''


    # Do some classes by hand
    PlateExchanger_spec = [(k, float64) for k in ('pitch', 'beta', 'gamma', 'a', 'amplitude', 'wavelength',
                           'b', 'chevron_angle', 'inclination_angle', 'plate_corrugation_aspect_ratio',
                           'plate_enlargement_factor', 'D_eq', 'D_hydraulic', 'width', 'length', 'thickness',
                           'd_port', 'plates', 'length_port', 'A_plate_surface', 'A_heat_transfer',
                           'A_channel_flow', 'channels', 'channels_per_fluid')]
    PlateExchanger_spec.append(('chevron_angles', numba.types.UniTuple(float64, 2)))

    HelicalCoil_spec = [(k, float64) for k in
                        ('Do', 'Dt', 'Di', 'Do_total', 'N', 'pitch', 'H', 'H_total',
                         'tube_circumference', 'tube_length', 'surface_area', 'helix_angle',
                         'curvature', 'total_inlet_area', 'total_volume', 'inner_surface_area',
                         'inlet_area', 'inner_volume', 'annulus_area', 'annulus_volume')]

    ATMOSPHERE_1976_spec = [(k, float64) for k in
                        ('Z', 'dT', 'H', 'T_layer', 'T_increase', 'P_layer', 'H_layer', 'H_above_layer',
                         'T', 'P', 'rho', 'v_sonic',
                         'mu', 'k', 'g', 'R')]

#    # No string support
#    PlateExchanger = jitclass(PlateExchanger_spec)(getattr(__funcs['geometry'], 'PlateExchanger'))
#    __funcs['PlateExchanger'] = __funcs['geometry'].PlateExchanger = PlateExchanger

    HelicalCoil = jitclass(HelicalCoil_spec)(__funcs['geometry'].HelicalCoil)
    __funcs['HelicalCoil'] = __funcs['geometry'].HelicalCoil = HelicalCoil

    ATMOSPHERE_1976 = jitclass(ATMOSPHERE_1976_spec)(__funcs['atmosphere'].ATMOSPHERE_1976)
    __funcs['ATMOSPHERE_1976'] = __funcs['atmosphere'].ATMOSPHERE_1976 = ATMOSPHERE_1976


    # Not needed
    __funcs['friction'].Colebrook = __funcs['Colebrook'] = __funcs['Clamond']

    # Works but 50% slower
    #__funcs['geometry']._V_horiz_spherical_toint = __funcs['_V_horiz_spherical_toint'] = cfunc("float64(float64, float64, float64, float64)")(normal_fluids.geometry._V_horiz_spherical_toint)

    for mod in new_mods:
        mod.__dict__.update(__funcs)
        try:
            __all__.extend(mod.__all__)
        except AttributeError:
            pass

transform_complete(replaced, __funcs, __all__, normal, vec=False)

numbafied_fluids_functions = __funcs
globals().update(__funcs)
globals().update(replaced)

#sys.modules['fluids.numerics'] = old_numerics