File: arrays.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (1590 lines) | stat: -rw-r--r-- 46,776 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
# type: ignore
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2019 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import sys
from math import sqrt

REQUIRE_DEPENDENCIES = False
if not REQUIRE_DEPENDENCIES:
    IS_PYPY = True
else:
    try:
        # The right way imports the platform module which costs to ms to load!
        # implementation = platform.python_implementation()
        IS_PYPY = 'PyPy' in sys.version
    except AttributeError:
        IS_PYPY = False

#IS_PYPY = True # for testing

#if not IS_PYPY and not REQUIRE_DEPENDENCIES:
#    try:
#        import numpy as np
#    except ImportError:
#        np = None

__all__ = ['dot_product', 'inv', 'det', 'solve', 'norm2', 'transpose', 'shape',
           'eye', 'array_as_tridiagonals', 'solve_tridiagonal', 'subset_matrix',
           'argsort1d', 'lu', 'gelsd', 'matrix_vector_dot', 'matrix_multiply',
           'sum_matrix_rows', 'sum_matrix_cols', 'sort_paired_lists',
           'scalar_divide_matrix', 'scalar_multiply_matrix', 'scalar_subtract_matrices', 'scalar_add_matrices',
           'stack_vectors']
primitive_containers = frozenset([list, tuple])

def transpose(matrix):
    """Convert a matrix into its transpose by switching rows and columns.

    Parameters
    ----------
    matrix : list[list[float]]
        Input matrix as a list of lists where each inner list represents a row.
        All rows must have the same length.

    Returns
    -------
    list[list[float]]
        The transposed matrix where element [i][j] in the input becomes [j][i]
        in the output.

    Raises
    ------
    ValueError
        If the input matrix has inconsistent row lengths.
    TypeError
        If the input is not a list of lists.

    Examples
    --------
    >>> transpose([[1, 2, 3], [4, 5, 6]])
    [[1, 4], [2, 5], [3, 6]]

    >>> transpose([[1, 2], [3, 4]])  # Square matrix
    [[1, 3], [2, 4]]

    >>> transpose([[1, 2, 3]])  # Single row matrix
    [[1], [2], [3]]

    Notes
    -----
    - Empty matrices are preserved as empty lists
    - The function creates a new matrix rather than modifying in place
    - For an MxN matrix, the result will be an NxM matrix
    """
    # Handle empty matrix cases
    if not matrix:
        return []
    if not matrix[0]:
        return []
    
    # # Validate input
    # if not isinstance(matrix, list) or not all(isinstance(row, list) for row in matrix):
    #     raise TypeError("Input must be a list of lists")
    
    # Check for consistent row lengths
    row_length = len(matrix[0])
    if not all(len(row) == row_length for row in matrix):
        raise ValueError("All rows must have the same length")
    
    return [list(i) for i in zip(*matrix)]

def det(matrix):
    """Seems to work fine.

    >> from sympy import *
    >> from sympy.abc import *
    >> Matrix([[a, b], [c, d]]).det()
    a*d - b*c
    >> Matrix([[a, b, c], [d, e, f], [g, h, i]]).det()
    a*e*i - a*f*h - b*d*i + b*f*g + c*d*h - c*e*g

    A few terms can be slightly factored out of the 3x dim.

    >> Matrix([[a, b, c, d], [e, f, g, h], [i, j, k, l], [m, n, o, p]]).det()
    a*f*k*p - a*f*l*o - a*g*j*p + a*g*l*n + a*h*j*o - a*h*k*n - b*e*k*p + b*e*l*o + b*g*i*p - b*g*l*m - b*h*i*o + b*h*k*m + c*e*j*p - c*e*l*n - c*f*i*p + c*f*l*m + c*h*i*n - c*h*j*m - d*e*j*o + d*e*k*n + d*f*i*o - d*f*k*m - d*g*i*n + d*g*j*m

    72 mult vs ~48 in cse'd version'

    Commented out - takes a few seconds
    >> #Matrix([[a, b, c, d, e], [f, g, h, i, j], [k, l, m, n, o], [p, q, r, s, t], [u, v, w, x, y]]).det()

    260 multiplies with cse; 480 without it.
    """
    size = len(matrix)
    if size == 1:
        return matrix[0]
    elif size == 2:
        (a, b), (c, d) = matrix
        return a*d - c*b
    elif size == 3:
        (a, b, c), (d, e, f), (g, h, i) = matrix
        return a*(e*i - h*f) - d*(b*i - h*c) + g*(b*f - e*c)
    elif size == 4:
        (a, b, c, d), (e, f, g, h), (i, j, k, l), (m, n, o, p) = matrix
        return (a*f*k*p - a*f*l*o - a*g*j*p + a*g*l*n + a*h*j*o - a*h*k*n
                - b*e*k*p + b*e*l*o + b*g*i*p - b*g*l*m - b*h*i*o + b*h*k*m
                + c*e*j*p - c*e*l*n - c*f*i*p + c*f*l*m + c*h*i*n - c*h*j*m
                - d*e*j*o + d*e*k*n + d*f*i*o - d*f*k*m - d*g*i*n + d*g*j*m)
    elif size == 5:
        (a, b, c, d, e), (f, g, h, i, j), (k, l, m, n, o), (p, q, r, s, t), (u, v, w, x, y) = matrix
        x0 = s*y
        x1 = a*g*m
        x2 = t*w
        x3 = a*g*n
        x4 = r*x
        x5 = a*g*o
        x6 = t*x
        x7 = a*h*l
        x8 = q*y
        x9 = a*h*n
        x10 = s*v
        x11 = a*h*o
        x12 = r*y
        x13 = a*i*l
        x14 = t*v
        x15 = a*i*m
        x16 = q*w
        x17 = a*i*o
        x18 = s*w
        x19 = a*j*l
        x20 = q*x
        x21 = a*j*m
        x22 = r*v
        x23 = a*j*n
        x24 = b*f*m
        x25 = b*f*n
        x26 = b*f*o
        x27 = b*h*k
        x28 = t*u
        x29 = b*h*n
        x30 = p*x
        x31 = b*h*o
        x32 = b*i*k
        x33 = p*y
        x34 = b*i*m
        x35 = r*u
        x36 = b*i*o
        x37 = b*j*k
        x38 = s*u
        x39 = b*j*m
        x40 = p*w
        x41 = b*j*n
        x42 = c*f*l
        x43 = c*f*n
        x44 = c*f*o
        x45 = c*g*k
        x46 = c*g*n
        x47 = c*g*o
        x48 = c*i*k
        x49 = c*i*l
        x50 = p*v
        x51 = c*i*o
        x52 = c*j*k
        x53 = c*j*l
        x54 = q*u
        x55 = c*j*n
        x56 = d*f*l
        x57 = d*f*m
        x58 = d*f*o
        x59 = d*g*k
        x60 = d*g*m
        x61 = d*g*o
        x62 = d*h*k
        x63 = d*h*l
        x64 = d*h*o
        x65 = d*j*k
        x66 = d*j*l
        x67 = d*j*m
        x68 = e*f*l
        x69 = e*f*m
        x70 = e*f*n
        x71 = e*g*k
        x72 = e*g*m
        x73 = e*g*n
        x74 = e*h*k
        x75 = e*h*l
        x76 = e*h*n
        x77 = e*i*k
        x78 = e*i*l
        x79 = e*i*m
        return (x0*x1 - x0*x24 + x0*x27 + x0*x42 - x0*x45 - x0*x7 - x1*x6
                + x10*x11 - x10*x21 - x10*x44 + x10*x52 + x10*x69 - x10*x74
                - x11*x20 + x12*x13 + x12*x25 - x12*x3 - x12*x32 - x12*x56
                + x12*x59 - x13*x2 + x14*x15 + x14*x43 - x14*x48 - x14*x57
                + x14*x62 - x14*x9 - x15*x8 + x16*x17 - x16*x23 - x16*x58
                + x16*x65 + x16*x70 - x16*x77 - x17*x22 + x18*x19 + x18*x26
                - x18*x37 - x18*x5 - x18*x68 + x18*x71 - x19*x4 - x2*x25
                + x2*x3 + x2*x32 + x2*x56 - x2*x59 + x20*x21 + x20*x44
                - x20*x52 - x20*x69 + x20*x74 + x22*x23 + x22*x58 - x22*x65
                - x22*x70 + x22*x77 + x24*x6 - x26*x4 - x27*x6 + x28*x29
                - x28*x34 - x28*x46 + x28*x49 + x28*x60 - x28*x63 - x29*x33
                + x30*x31 - x30*x39 - x30*x47 + x30*x53 + x30*x72 - x30*x75
                - x31*x38 + x33*x34 + x33*x46 - x33*x49 - x33*x60 + x33*x63
                + x35*x36 - x35*x41 - x35*x61 + x35*x66 + x35*x73 - x35*x78
                - x36*x40 + x37*x4 + x38*x39 + x38*x47 - x38*x53 - x38*x72
                + x38*x75 + x4*x5 + x4*x68 - x4*x71 + x40*x41 + x40*x61
                - x40*x66 - x40*x73 + x40*x78 - x42*x6 - x43*x8 + x45*x6
                + x48*x8 + x50*x51 - x50*x55 - x50*x64 + x50*x67 + x50*x76
                - x50*x79 - x51*x54 + x54*x55 + x54*x64 - x54*x67 - x54*x76
                + x54*x79 + x57*x8 + x6*x7 - x62*x8 + x8*x9)
    else:
        # TODO algorithm?
        import numpy as np
        return float(np.linalg.det(matrix))

# The inverse function below is generated via the following script
'''
import sympy as sp
import re
from sympy import Matrix, Symbol, simplify, zeros, cse

def replace_power_with_multiplication(match):
    """Replace x**n with x*x*...*x n times"""
    var = match.group(1)
    power = int(match.group(2))
    if power <= 1:
        return var
    return '*'.join([var] * power)

def generate_symbolic_matrix(n):
    """Generate an nxn symbolic matrix with unique symbols"""
    syms = [[Symbol(f'm_{i}{j}') for j in range(n)] for i in range(n)]
    return Matrix(syms), syms

def analyze_matrix(n):
    """Generate symbolic expressions for determinant and inverse"""
    M, syms = generate_symbolic_matrix(n)
    det = M.det()
    inv = M.inv()
    return det, inv, syms

def post_process_code(code_str):
    """Apply optimizing transformations to the generated code"""
    # Replace x**n patterns with x*x*x... (n times)
    code_str = re.sub(r'([a-zA-Z_][a-zA-Z0-9_]*)\*\*(\d+)', replace_power_with_multiplication, code_str)
    # Replace **0.5 with sqrt()
    code_str = re.sub(r'\((.*?)\)\*\*0\.5', r'sqrt(\1)', code_str)
    return code_str

def generate_python_inv():
    """Generate a single unified matrix inversion function with optimized 1x1, 2x2, and 3x3 cases"""
    # Generate the specialized code for 2x2 and 3x3
    size_specific_code = {}
    for N in [2, 3, 4]:
        det, inv, _ = analyze_matrix(N)
        exprs = [det] + list(inv)
        replacements, reduced = cse(exprs, optimizations='basic')
        det_expr = reduced[0]
        inv_exprs = reduced[1:]
        
        # Build the size-specific code block
        code = []
        
        # Unpack matrix elements
        unpack_rows = []
        for i in range(N):
            row_vars = [f"m_{i}{j}" for j in range(N)]
            unpack_rows.append("(" + ", ".join(row_vars) + ")")
        code.append(f"        {', '.join(unpack_rows)} = matrix")
        
        # Common subexpressions
        code.append("\n        # Common subexpressions")
        for i, (temp, expr) in enumerate(replacements):
            code.append(f"        x{i} = {expr}")
        
        # Determinant check
        code.append("\n        # Calculate determinant and check if we need to use LU decomposition")
        code.append(f"        det = {det_expr}")
        code.append("        if abs(det) <= 1e-7:")
        code.append("            return inv_lu(matrix)")
        
        # Return matrix
        return_matrix = []
        for i in range(N):
            row = []
            for j in range(N):
                idx = i * N + j
                row.append(str(inv_exprs[idx]))
            return_matrix.append(f"            [{', '.join(row)}]")
        
        code.append("\n        return [")
        code.append(",\n".join(return_matrix))
        code.append("        ]")
        
        size_specific_code[N] = post_process_code("\n".join(code))
    
    # Generate the complete function
    complete_code = [
        "def inv(matrix):",
        "    size = len(matrix)",
        "    if size == 1:",
        "        return [[1.0/matrix[0][0]]]",
        "    elif size == 2:",
        size_specific_code[2],
        "    elif size == 3:",
        size_specific_code[3],
        "    elif size == 4:",
        size_specific_code[4],
        "    else:",
        "        return inv_lu(matrix)",
        ""
    ]
    
    return "\n".join(complete_code)

# Generate and print the complete function
print(generate_python_inv())
'''
def inv(matrix):
    size = len(matrix)
    if size == 1:
        return [[1.0/matrix[0][0]]]
    elif size == 2:
        (m_00, m_01), (m_10, m_11) = matrix

        # Common subexpressions
        x0 = m_00*m_11 - m_01*m_10

        # Calculate determinant and check if we need to use LU decomposition
        det = x0
        if abs(det) <= 1e-7:
            return inv_lu(matrix)

        x1 = 1.0/x0
        return [
            [m_11*x1, -m_01*x1],
            [-m_10*x1, m_00*x1]
        ]
    elif size == 3:
        (m_00, m_01, m_02), (m_10, m_11, m_12), (m_20, m_21, m_22) = matrix

        # Common subexpressions
        x0 = m_11*m_22
        x1 = m_01*m_12
        x2 = m_02*m_21
        x3 = m_12*m_21
        x4 = m_01*m_22
        x5 = m_02*m_11
        x6 = m_00*x0 - m_00*x3 + m_10*x2 - m_10*x4 + m_20*x1 - m_20*x5

        # Calculate determinant and check if we need to use LU decomposition
        det = x6
        if abs(det) <= 1e-7:
            return inv_lu(matrix)
        x7 = 1.0/x6

        return [
            [x7*(x0 - x3), -x7*(-x2 + x4), x7*(x1 - x5)],
            [-x7*(m_10*m_22 - m_12*m_20), x7*(m_00*m_22 - m_02*m_20), -x7*(m_00*m_12 - m_02*m_10)],
            [x7*(m_10*m_21 - m_11*m_20), -x7*(m_00*m_21 - m_01*m_20), x7*(m_00*m_11 - m_01*m_10)]
        ]
    else:
        return inv_lu(matrix)


def shape(value):
    '''Find and return the shape of an array, whether it is a numpy array or
    a list-of-lists or other combination of iterators.

    Parameters
    ----------
    value : various
        Input array, [-]

    Returns
    -------
    shape : tuple(int, dimension)
        Dimensions of array, [-]

    Notes
    -----
    It is assumed the shape is consistent - not something like [[1.1, 2.2], [2.4]]

    Examples
    --------
    >>> shape([])
    (0,)
    >>> shape([1.1, 2.2, 5.5])
    (3,)
    >>> shape([[1.1, 2.2, 5.5], [2.0, 1.1, 1.5]])
    (2, 3)
    >>> shape([[[1.1,], [2.0], [1.1]]])
    (1, 3, 1)
    >>> shape(['110-54-3'])
    (1,)
    '''
    try:
        return value.shape
    except:
        pass
    dims = [len(value)]
    try:
        # Except this block to handle the case of no value
        iter_value = value[0]
        for i in range(10):
            # try:
            if type(iter_value) in primitive_containers:
                dims.append(len(iter_value))
                iter_value = iter_value[0]
            else:
                break
            # except:
            #     break
    except:
        pass
    return tuple(dims)

def eye(N, dtype=float):
    """
    Return a 2-D array with ones on the diagonal and zeros elsewhere.
    
    Parameters
    ----------
    N : int
        Number of rows and columns in the output matrix.
    dtype : type, optional
        The type of the array elements. Defaults to float.
        
    Returns
    -------
    list[list]
        A N x N matrix with ones on the diagonal and zeros elsewhere.
        
    Examples
    --------
    >>> eye(3)
    [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
    
    >>> eye(2, dtype=int)
    [[1, 0], [0, 1]]
    
    Notes
    -----
    This function creates an identity matrix similar to numpy's eye function,
    but implemented in pure Python using nested lists.
    
    Raises
    ------
    ValueError
        If N is not a positive integer.
    TypeError
        If N is not an integer or dtype is not a valid type.
    """
    # Input validation
    if not isinstance(N, int):
        raise TypeError("N must be an integer")
    if N <= 0:
        raise ValueError("N must be a positive integer")
    
    # Create the matrix
    matrix = []
    zero, one = dtype(0), dtype(1)
    for i in range(N):
        row = [zero] * N  # Initialize row with zeros
        row[i] = one    # Set diagonal element to 1
        matrix.append(row)
    
    return matrix


def dot_product(a, b):
    """
    Compute the dot product (also known as scalar product or inner product) of two vectors.
    
    Calculates sum(a[i] * b[i]) for i in range(len(a)).
    
    Parameters
    ----------
    a : list[float]
        First vector
    b : list[float]
        Second vector of same length as a
        
    Returns
    -------
    float
        The dot product of vectors a and b
        
    Examples
    --------
    >>> dot_product([1, 2, 3], [4, 5, 6])
    32.0
    >>> dot_product([1, 0], [0, 1])
    0.0
    
    Notes
    -----
    
    Raises
    ------
    ValueError
        If vectors are not the same length
    TypeError 
        If inputs are not valid vector types
    """
    if len(a) != len(b):
        raise ValueError("Vectors must have same length") 
    tot = 0.0
    for i in range(len(a)):
        tot += a[i]*b[i]
    return tot

def matrix_vector_dot(matrix, vector):
    """
    Compute the product of a matrix and a vector.

    Parameters
    ----------
    matrix : list[list[float]]
        Input matrix represented as a list of lists.
    vector : list[float]
        Input vector represented as a list of floats.

    Returns
    -------
    list[float]
        The result of the matrix-vector multiplication as a vector.

    Raises
    ------
    ValueError
        If the number of columns in the matrix does not match the length of the vector.
    TypeError
        If inputs are not valid matrix and vector types.

    Examples
    --------
    >>> matrix_vector_dot([[1, 2, 3], [4, 5, 6]], [1, 0, 1])
    [4, 10]
    >>> matrix_vector_dot([[1.0, 2.0], [3.0, 4.0]], [0, 1])
    [2.0, 4.0]
    """
    # Validate matrix dimensions
    N = len(vector)
    if not all(len(row) == N for row in matrix):
        raise ValueError("Matrix columns must match vector length")

    result = [sum(row[i] * vector[i] for i in range(N)) for row in matrix]
    return result

def matrix_multiply(A, B):
    r"""Multiply two matrices using pure Python.
    
    Computes the matrix product C = A·B where A is an m×p matrix and B is a p×n matrix,
    resulting in an m×n matrix C.
    
    Parameters
    ----------
    A : list[list[float]]
        First matrix as list of lists, with shape (m, p)
    B : list[list[float]]
        Second matrix as list of lists, with shape (p, n)
        
    Returns
    -------
    list[list[float]]
        Resulting matrix C with shape (m, n)
        
    Examples
    --------
    >>> A = [[1, 2], [3, 4]]
    >>> B = [[5, 6], [7, 8]]
    >>> matrix_multiply(A, B)
    [[19.0, 22.0], [43.0, 50.0]]
    
    Notes
    -----
    Uses a straightforward three-loop implementation optimized for pure Python:
    C[i,j] = sum(A[i,k] * B[k,j] for k in range(p))
    
    The implementation avoids repeated len() calls and list accesses by caching
    frequently used values.
    
    Raises
    ------
    ValueError
        If matrices have incompatible dimensions for multiplication
        If input matrices are empty or irregular (rows of different lengths)
    TypeError
        If A or B contains non-numeric values or is not a list of lists.
    """
    # Input validation
    if not A or not A[0] or not B or not B[0]:
        raise ValueError("Empty matrices cannot be multiplied")
    
    # Get dimensions
    m = len(A)  # rows in A
    p = len(A[0]) if m else 0 # cols in A = rows in B
    n = len(B[0]) if B else 0  # cols in B
    
    # Validate dimensions
    if not all(len(row) == p for row in A):
        raise ValueError("First matrix has irregular row lengths")
    if len(B) != p:
        raise ValueError(f"Incompatible dimensions: A is {m}x{p}, B is {len(B)}x{n}")
    if not all(len(row) == n for row in B):
        raise ValueError("Second matrix has irregular row lengths")
    
    # Pre-allocate result matrix with zeros
    C = [[0.0] * n for _ in range(m)]
    
    # Compute product using simple indexed loops
    for i in range(m):
        A_i = A[i]  # Cache current row of A
        C_i = C[i]  # Cache current row of C
        for j in range(n):
            tot = 0.0
            for k in range(p):
                tot += A_i[k] * B[k][j]
            C_i[j] = tot
            
    return C

def sum_matrix_rows(matrix):
    """Sum a 2D matrix along rows, equivalent to numpy.sum(matrix, axis=1).
    
    Parameters
    ----------
    matrix : list[list[float]]
        Input matrix as a list of lists where each inner list is a row
        
    Returns
    -------
    list[float]
        List containing the sum of each row
        
    Examples
    --------
    >>> sum_matrix_rows([[1, 2, 3], [4, 5, 6]])
    [6.0, 15.0]
    >>> sum_matrix_rows([[1], [2]])
    [1.0, 2.0]
    
    Notes
    -----
    For a matrix with shape (m, n), returns a list of length m
    where each element is the sum of the corresponding row.
    
    Raises
    ------
    ValueError
        If matrix is empty or has irregular row lengths
    TypeError
        If matrix is not a list of lists of numbers
    """
    if not matrix or not matrix[0]:
        raise ValueError("Empty matrix")
        
    n = len(matrix[0])
    if not all(len(row) == n for row in matrix):
        raise ValueError("Matrix has irregular row lengths")
    
    result = []
    for row in matrix:
        tot = 0.0
        for val in row:
            tot += val
        result.append(tot)
    return result

def sum_matrix_cols(matrix):
    """Sum a 2D matrix along columns, equivalent to numpy.sum(matrix, axis=0).
    
    Parameters
    ----------
    matrix : list[list[float]]
        Input matrix as a list of lists where each inner list is a row
        
    Returns
    -------
    list[float]
        List containing the sum of each column
        
    Examples
    --------
    >>> sum_matrix_cols([[1, 2, 3], [4, 5, 6]])
    [5.0, 7.0, 9.0]
    >>> sum_matrix_cols([[1], [2]])
    [3.0]
    
    Notes
    -----
    For a matrix with shape (m, n), returns a list of length n
    where each element is the sum of the corresponding column.
    
    Raises
    ------
    ValueError
        If matrix is empty or has irregular row lengths
    TypeError
        If matrix is not a list of lists of numbers
    """
    if not matrix or not matrix[0]:
        raise ValueError("Empty matrix")
        
    n = len(matrix[0])
    if not all(len(row) == n for row in matrix):
        raise ValueError("Matrix has irregular row lengths")
    
    result = [0.0] * n
    for row in matrix:
        for j, val in enumerate(row):
            result[j] += val
    return result

def scalar_add_matrices(A, B):
    """Add two matrices element-wise.
    
    Computes the element-wise sum of two matrices of the same dimensions.
    
    Parameters
    ----------
    A : list[list[float]]
        First matrix as a list of lists.
    B : list[list[float]]
        Second matrix as a list of lists.
        
    Returns
    -------
    list[list[float]]
        Resulting matrix after element-wise addition.
        
    Examples
    --------
    >>> A = [[1.0, 2.0], [3.0, 4.0]]
    >>> B = [[5.0, 6.0], [7.0, 8.0]]
    >>> scalar_add_matrices(A, B)
    [[6.0, 8.0], [10.0, 12.0]]
    
    Raises
    ------
    ValueError
        If matrices A and B have different shapes or if they are empty.
    TypeError
        If A or B contains non-numeric values or is not a list of lists.
    """
    if not A or not B or len(A) != len(B) or len(A[0]) != len(B[0]) or not len(A[0]):
        raise ValueError("Matrices must have the same dimensions and be non-empty")
    
    result = []
    for row_A, row_B in zip(A, B):
        if len(row_A) != len(row_B):
            raise ValueError("Matrices must have the same dimensions")
        result.append([a + b for a, b in zip(row_A, row_B)])
    return result


def scalar_subtract_matrices(A, B):
    """Subtract two matrices element-wise.
    
    Computes the element-wise difference of two matrices of the same dimensions.
    
    Parameters
    ----------
    A : list[list[float]]
        First matrix as a list of lists.
    B : list[list[float]]
        Second matrix as a list of lists.
        
    Returns
    -------
    list[list[float]]
        Resulting matrix after element-wise subtraction.
        
    Examples
    --------
    >>> A = [[5.0, 6.0], [7.0, 8.0]]
    >>> B = [[1.0, 2.0], [3.0, 4.0]]
    >>> scalar_subtract_matrices(A, B)
    [[4.0, 4.0], [4.0, 4.0]]
    
    Raises
    ------
    ValueError
        If matrices A and B have different shapes or if they are empty.
    TypeError
        If A or B contains non-numeric values or is not a list of lists.
    """
    if not A or not B or len(A) != len(B) or len(A[0]) != len(B[0]) or not len(A[0]):
        raise ValueError("Matrices must have the same dimensions and be non-empty")
    
    result = []
    for row_A, row_B in zip(A, B):
        if len(row_A) != len(row_B):
            raise ValueError("Matrices must have the same dimensions")
        result.append([a - b for a, b in zip(row_A, row_B)])
    return result


def scalar_multiply_matrix(scalar, matrix):
    """Multiply a matrix by a scalar.
    
    Multiplies each element of the matrix by the specified scalar.
    
    Parameters
    ----------
    scalar : float
        Scalar value to multiply each element by.
    matrix : list[list[float]]
        Input matrix as a list of lists.
        
    Returns
    -------
    list[list[float]]
        Resulting matrix after scalar multiplication.
        
    Examples
    --------
    >>> matrix = [[1, 2], [3, 4]]
    >>> scalar_multiply_matrix(2.0, matrix)
    [[2.0, 4.0], [6.0, 8.0]]
    
    Raises
    ------
    ValueError
        If the input matrix is empty.
    TypeError
        If the matrix contains non-numeric values or is not a list of lists.
    """
    if not matrix or not matrix[0]:
        raise ValueError("Input matrix cannot be empty")
    
    result = []
    for row in matrix:
        result.append([scalar * val for val in row])
    return result


def scalar_divide_matrix(scalar, matrix):
    """Divide a matrix by a scalar.
    
    Divides each element of the matrix by the specified scalar.
    
    Parameters
    ----------
    scalar : float
        Scalar value to divide each element by (cannot be zero).
    matrix : list[list[float]]
        Input matrix as a list of lists.
        
    Returns
    -------
    list[list[float]]
        Resulting matrix after scalar division.
        
    Examples
    --------
    >>> matrix = [[2, 4], [6, 8]]
    >>> scalar_divide_matrix(2.0, matrix)
    [[1.0, 2.0], [3.0, 4.0]]
    
    Raises
    ------
    ValueError
        If the input matrix is empty or if the scalar is zero.
    TypeError
        If the matrix contains non-numeric values or is not a list of lists.
    ZeroDivisionError
        If scalar is zero.
    """
    if scalar == 0:
        raise ZeroDivisionError("Cannot divide by zero")
    if not matrix or not matrix[0]:
        raise ValueError("Input matrix cannot be empty")
    
    result = []
    for row in matrix:
        result.append([val / scalar for val in row])
    return result

def stack_vectors(vectors):
    """Stack a list of vectors into a matrix, similar to numpy.stack.
    
    Parameters
    ----------
    vectors : list[list[float]]
        List of vectors to stack into rows of a matrix
        
    Returns
    -------
    list[list[float]]
        Matrix where each row is one of the input vectors
        
    Examples
    --------
    >>> stack_vectors([[1, 2], [3, 4]])
    [[1, 2], [3, 4]]
    """
    if not vectors:
        return []
    return [list(v) for v in vectors]  # Create copies of vectors
def inplace_LU(A, ipivot):
    N = len(A)
    
    for j in range(N):
        for i in range(j):
            tot = A[i][j]
            for k in range(i):
                tot -= A[i][k] * A[k][j]
            A[i][j] = tot

        apiv = 0.0
        ipiv = j
        for i in range(j, N):
            tot = A[i][j]
            for k in range(j):
                tot -= A[i][k] * A[k][j]
            A[i][j] = tot

            if apiv < abs(A[i][j]):
                apiv = abs(A[i][j])
                ipiv = i
                
        if apiv == 0:
            raise ValueError("Singular matrix")
        ipivot[j] = ipiv

        if ipiv != j:
            for k in range(N):
                t = A[ipiv][k]
                A[ipiv][k] = A[j][k]
                A[j][k] = t

        Ajjinv = 1.0/A[j][j]
        for i in range(j + 1, N):
            A[i][j] *= Ajjinv


def solve_from_lu(A, pivots, b):
    N = len(b)
    b = b.copy()  # Create a copy to avoid modifying the input
    
    for i in range(N):
        tot = b[pivots[i]]
        b[pivots[i]] = b[i]
        for j in range(i):
            tot -= A[i][j] * b[j]
        b[i] = tot

    for i in range(N-1, -1, -1):
        tot = b[i]
        for j in range(i+1, N):
            tot -= A[i][j] * b[j]
        b[i] = tot/A[i][i]
    return b


def solve_LU_decomposition(A, b):
    N = len(b)
    A_copy = [row.copy() for row in A]  # Deep copy of A
    pivots = [0] * N
    inplace_LU(A_copy, pivots)
    return solve_from_lu(A_copy, pivots, b)


def inv_lu(a):
    N = len(a)
    A_copy = [row.copy() for row in a]  # Deep copy of a
    
    ainv = [[0.0] * N for i in range(N)]
    pivots = [0] * N
    inplace_LU(A_copy, pivots)

    for j in range(N):
        b = [0.0] * N
        b[j] = 1.0
        b = solve_from_lu(A_copy, pivots, b)
        for i in range(N):
            ainv[i][j] = b[i]

    return ainv

def lu(A):
    """
    Compute LU decomposition of a matrix with partial pivoting.
    Returns P, L, U such that PA = LU
    
    Parameters:
        A: list of lists representing square matrix
        
    Returns:
        P: permutation matrix as list of lists
        L: lower triangular matrix with unit diagonal as list of lists
        U: upper triangular matrix as list of lists
    """
    N = len(A)
    
    # Create working copy and pivots array
    A_copy = [row.copy() for row in A]
    pivots = [0] * N
    
    # Perform LU decomposition
    inplace_LU(A_copy, pivots)
    
    # Extract L (unit diagonal and below diagonal elements)
    L = [[1.0 if i == j else 0.0 for j in range(N)] for i in range(N)]
    for i in range(N):
        for j in range(i):
            L[i][j] = A_copy[i][j]
    
    # Extract U (upper triangular including diagonal)
    U = [[0.0]*N for _ in range(N)]
    for i in range(N):
        for j in range(i, N):
            U[i][j] = A_copy[i][j]
    
    # Create permutation matrix directly from pivot sequence
    P = [[1.0 if j == i else 0.0 for j in range(N)] for i in range(N)]
    for i, pivot in enumerate(pivots):
        if pivot != i:
            P[i], P[pivot] = P[pivot], P[i]
            
    return P, L, U


'''Script to generate solve function. Note that just like in inv the N = 4 case has too much numerical instability.
import sympy as sp
from sympy import Matrix, Symbol, simplify, solve_linear_system
import re

def generate_symbolic_system(n):
    """Generate an nxn symbolic matrix A and n-vector b"""
    A = Matrix([[Symbol(f'a_{i}{j}') for j in range(n)] for i in range(n)])
    b = Matrix([Symbol(f'b_{i}') for i in range(n)])
    return A, b

def generate_cramer_solution(n):
    """Generate symbolic solution using Cramer's rule for small matrices"""
    A, b = generate_symbolic_system(n)
    det_A = A.det()
    
    # Solve for each variable using Cramer's rule
    solutions = []
    for i in range(n):
        # Create matrix with i-th column replaced by b
        A_i = A.copy()
        A_i[:, i] = b
        det_i = A_i.det()
        # Store numerator only - we'll multiply by inv_det later
        solutions.append(det_i)
    
    return det_A, solutions

def generate_python_solve():
    """Generate a unified matrix solve function with optimized 1x1, 2x2, and 3x3 cases"""
    size_specific_code = {}
    
    # Special case for N=1
    size_specific_code[1] = """        # Direct solution for 1x1
        return [b[0]/matrix[0][0]]"""
    
    # Generate specialized code for sizes 2 and 3
    for N in [2, 3]:
        det, solutions = generate_cramer_solution(N)
        
        code = []
        
        # Unpack matrix elements
        unpack_rows = []
        for i in range(N):
            row_vars = [f"a_{i}{j}" for j in range(N)]
            unpack_rows.append("(" + ", ".join(row_vars) + ")")
        code.append(f"        {', '.join(unpack_rows)} = matrix")
        
        # Unpack b vector
        code.append(f"        {', '.join(f'b_{i}' for i in range(N))} = b")
        
        # Calculate determinant
        det_expr = str(det)
        code.append("\n        # Calculate determinant")
        code.append(f"        det = {det_expr}")
        
        # Check for singular matrix
        code.append("\n        # Check for singular matrix")
        code.append("        if abs(det) <= 1e-7:")
        code.append("            return solve_LU_decomposition(matrix, b)")
        
        # Calculate solution
        code.append("\n        # Calculate solution")
        code.append("        inv_det = 1.0/det")
        
        # Generate solution expressions (multiply by inv_det, don't divide by det)
        solution_lines = []
        for i, sol in enumerate(solutions):
            solution_lines.append(f"        x_{i} = ({sol}) * inv_det")
        code.append("\n".join(solution_lines))
        
        # Return solution
        code.append("\n        return [" + ", ".join(f"x_{i}" for i in range(N)) + "]")
        
        size_specific_code[N] = "\n".join(code)
    
    # Generate the complete function
    complete_code = [
        "def solve(matrix, b):",
        "    size = len(matrix)",
        "    if size == 1:",
        size_specific_code[1],
        "    elif size == 2:",
        size_specific_code[2],
        "    elif size == 3:",
        size_specific_code[3],
        "    else:",
        "        return solve_LU_decomposition(matrix, b)",
        ""
    ]
    
    return "\n".join(complete_code)

# Generate and print the optimized solve function
print(generate_python_solve())
'''

def solve(matrix, b):
    size = len(matrix)
    if size == 2:
        (a_00, a_01), (a_10, a_11) = matrix
        b_0, b_1 = b

        # Calculate determinant
        det = a_00*a_11 - a_01*a_10

        # Check for singular matrix
        if abs(det) <= 1e-7:
            return solve_LU_decomposition(matrix, b)

        # Calculate solution
        inv_det = 1.0/det
        x_0 = (a_11*b_0 - a_01*b_1) * inv_det
        x_1 = (-a_10*b_0 + a_00*b_1) * inv_det

        return [x_0, x_1]
    elif size == 3:
        (a_00, a_01, a_02), (a_10, a_11, a_12), (a_20, a_21, a_22) = matrix
        b_0, b_1, b_2 = b

        # Calculate determinant
        det = a_00*a_11*a_22 - a_00*a_12*a_21 - a_01*a_10*a_22 + a_01*a_12*a_20 + a_02*a_10*a_21 - a_02*a_11*a_20

        # Check for singular matrix
        if abs(det) <= 1e-7:
            return solve_LU_decomposition(matrix, b)

        # Calculate solution
        inv_det = 1.0/det
        x_0 = (b_0*(a_11*a_22 - a_12*a_21) + b_1*(-a_01*a_22 + a_02*a_21) + b_2*(a_01*a_12 - a_02*a_11)) * inv_det
        x_1 = (b_0*(-a_10*a_22 + a_12*a_20) + b_1*(a_00*a_22 - a_02*a_20) + b_2*(-a_00*a_12 + a_02*a_10)) * inv_det
        x_2 = (b_0*(a_10*a_21 - a_11*a_20) + b_1*(-a_00*a_21 + a_01*a_20) + b_2*(a_00*a_11 - a_01*a_10)) * inv_det

        return [x_0, x_1, x_2]
    else:
        return solve_LU_decomposition(matrix, b)



def norm2(arr):
    tot = 0.0
    for i in arr:
        tot += i*i
    return sqrt(tot)


def array_as_tridiagonals(arr):
    """Extract the three diagonals from a tridiagonal matrix.
    
    A tridiagonal matrix is a matrix that has nonzero elements only on the 
    main diagonal, the first diagonal below this (subdiagonal), and the first 
    diagonal above this (superdiagonal).
    
    Parameters
    ----------
    arr : list[list[float]]
        Square matrix in tridiagonal form, where elements not on the three
        main diagonals are zero
    
    Returns
    -------
    tuple[list[float], list[float], list[float]]
        Three lists containing:
        a: subdiagonal elements (length n-1)
        b: main diagonal elements (length n)
        c: superdiagonal elements (length n-1)
        
    Examples
    --------
    >>> arr = [[2, 1, 0], [1, 2, 1], [0, 1, 2]]
    >>> a, b, c = array_as_tridiagonals(arr)
    >>> a  # subdiagonal
    [1, 1]
    >>> b  # main diagonal
    [2, 2, 2]
    >>> c  # superdiagonal
    [1, 1]
    
    Notes
    -----
    For a matrix of size n×n, returns:
    - a[i] contains elements at position (i+1,i) for i=0..n-2
    - b[i] contains elements at position (i,i) for i=0..n-1
    - c[i] contains elements at position (i,i+1) for i=0..n-2
    
    No validation is performed to ensure the input matrix is actually tridiagonal.
    Elements outside the three diagonals are ignored.
    """
    row_last = arr[0]
    a, b, c = [], [row_last[0]], []
    for i in range(1, len(row_last)):
        row = arr[i]
        b.append(row[i])
        c.append(row_last[i])
        a.append(row[i-1])
        row_last = row
    return a, b, c


def tridiagonals_as_array(a, b, c, zero=0.0):
    r"""Construct a square matrix from three diagonals.
    
    Creates a tridiagonal matrix using the provided sub-, main, and super-diagonal 
    elements. All other elements are set to zero.
    
    Parameters
    ----------
    a : list[float]
        Subdiagonal elements (length n-1)
    b : list[float]
        Main diagonal elements (length n)
    c : list[float]
        Superdiagonal elements (length n-1)
    zero : float, optional
        Value to use for non-diagonal elements. Defaults to 0.0
    
    Returns
    -------
    list[list[float]]
        Square matrix of size n×n where n is the length of b
        
    Examples
    --------
    >>> a = [1, 1]  # subdiagonal
    >>> b = [2, 2, 2]  # main diagonal
    >>> c = [1, 1]  # superdiagonal
    >>> tridiagonals_as_array(a, b, c)
    [[2, 1, 0.0], [1, 2, 1], [0.0, 1, 2]]
    
    Notes
    -----
    For output matrix M of size n×n:
    - a[i] becomes M[i+1][i] for i=0..n-2
    - b[i] becomes M[i][i] for i=0..n-1
    - c[i] becomes M[i][i+1] for i=0..n-2
    
    No validation is performed on input lengths. For correct results:
    - len(b) should be n
    - len(a) and len(c) should be n-1
    
    The function is the inverse of array_as_tridiagonals() when zero=0.0
    """
    N = len(b)
    arr = [[zero]*N for _ in range(N)]
    row_last = arr[0]
    row_last[0] = b[0]
    for i in range(1, N):
        row = arr[i]
        row[i] = b[i] # set the middle row back
        row[i-1] = a[i-1]
        row_last[i] = c[i-1]
        row_last = row
    return arr

def solve_tridiagonal(a, b, c, d):
    """Solve a tridiagonal system of equations using the Thomas algorithm.
    
    Solves the equation system Ax = d where A is a tridiagonal matrix composed of
    diagonals a, b, and c. This is an efficient O(n) method also known as the
    tridiagonal matrix algorithm (TDMA).
    
    The system of equations has the form:
    b[0]x[0] + c[0]x[1] = d[0]
    a[i]x[i-1] + b[i]x[i] + c[i]x[i+1] = d[i], for i=1..n-2
    a[n-1]x[n-2] + b[n-1]x[n-1] = d[n-1]
    
    Parameters
    ----------
    a : list[float]
        Lower diagonal (subdiagonal) elements a[i] at (i+1,i), length n-1, [-]
    b : list[float]
        Main diagonal elements b[i] at (i,i), length n, [-]
    c : list[float]
        Upper diagonal (superdiagonal) elements c[i] at (i,i+1), length n-1, [-]
    d : list[float]
        Right-hand side vector, length n, [-]
        
    Returns
    -------
    x : list[float]
        Solution vector, length n, [-]
        
    Examples
    --------
    >>> # Solve the system:
    >>> # [9 -1  0] [x0]   [1]
    >>> # [-1 2 -1] [x1] = [0]
    >>> # [0 -1  2] [x2]   [1]
    >>> a = [-1, -1]  # lower diagonal
    >>> b = [9, 2, 2]  # main diagonal
    >>> c = [-1, -1]  # upper diagonal
    >>> d = [1, 0, 1]  # right hand side
    >>> solve_tridiagonal(a, b, c, d)
    [0.16, 0.44, 0.72]
    
    Notes
    -----
    The algorithm modifies the input arrays b and d in-place to save memory,
    but makes copies first to preserve the originals.
    
    
    The algorithm fails if any diagonal element becomes zero during elimination.
    
    This implementation uses the Thomas algorithm, which is a specialized form
    of Gaussian elimination that exploits the tridiagonal structure for O(n)
    efficiency.
    
    No validation is performed on input lengths. For correct results:
    - len(b) should be n
    - len(a), len(c) should be n-1
    - len(d) should be n
    where n is the size of the system.
    
    References
    ----------
    .. [1] "Tridiagonal matrix algorithm", Wikipedia,
           https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
    """
    # Make copies since the algorithm modifies arrays in-place
    b, d = [i for i in b], [i for i in d]
    N = len(d)
    
    # Forward elimination phase
    for i in range(N - 1):
        m = a[i]/b[i]
        b[i+1] -= m*c[i]
        d[i+1] -= m*d[i]
    
    # Back substitution phase
    b[-1] = d[-1]/b[-1]
    for i in range(N-2, -1, -1):
        b[i] = (d[i] - c[i]*b[i+1])/b[i]
        
    return b
def subset_matrix(whole, subset):
    if type(subset) is slice:
        subset = range(subset.start, subset.stop, subset.step)
#    N = len(subset)
#    new = [[None]*N for i in range(N)]
#    for ni, i in enumerate(subset):
#        for nj,j in  enumerate(subset):
#            new[ni][nj] = whole[i][j]
    new = []
    for i in subset:
        whole_i = whole[i]
#        r = [whole_i[j] for j in subset]
#        new.append(r)
        new.append([whole_i[j] for j in subset])
#        r = []
#        for j in subset:
#            r.append(whole_i[j])
    return new



def argsort1d(arr):
    """
    Returns the indices that would sort a 1D list.

    Parameters
    ----------
    arr : list
        Input array [-]

    Returns
    -------
    indices : list[int]
        List of indices that sort the input array [-]

    Notes
    -----
    This function uses the built-in sorted function with a custom key to get the indices.
    Note this does not match numpy's sorting for nan and inf values.

    Examples
    --------
    >>> arr = [3, 1, 2]
    >>> argsort1d(arr)
    [1, 2, 0]
    """
    return [i[0] for i in sorted(enumerate(arr), key=lambda x: x[1])]

def sort_paired_lists(list1, list2):
    """
    Sort two lists based on the values in the first list while maintaining 
    the relationship between corresponding elements.
    
    Parameters
    ----------
    list1 : list
        First list that determines the sorting order
    list2 : list
        Second list that will be sorted according to list1's ordering
        
    Returns
    -------
    tuple
        A tuple containing (sorted_list1, sorted_list2)
        
    Raises
    ------
    ValueError
        If the lists have different lengths
    TypeError
        If either input is not a list
        
    Examples
    --------
    >>> temps = [300, 100, 200]
    >>> props = ['hot', 'cold', 'warm']
    >>> sort_paired_lists(temps, props)
    ([100, 200, 300], ['cold', 'warm', 'hot'])
    
    Notes
    -----
    This function maintains the one-to-one relationship between elements
    in both lists while sorting them based on list1's values.
    """
    # Input validation
    if len(list1) != len(list2):
        raise ValueError("Lists must have equal length")
        
    # Handle empty lists
    if len(list1) == 0:
        return ([], [])
        
    # Get sorting indices using argsort1d
    sorted_indices = argsort1d(list1)
    
    # Apply the sorting to both lists
    sorted_list1 = [list1[i] for i in sorted_indices]
    sorted_list2 = [list2[i] for i in sorted_indices]
    
    return sorted_list1, sorted_list2

def gelsd(a, b, rcond=None):
    """Solve a linear least-squares problem using SVD (Singular Value Decomposition).
    This is a simplified implementation that uses numpy's SVD internally.
    
    The function solves the equation arg min(|b - Ax|) for x, where A is
    an M x N matrix and b is a length M vector.
    
    Parameters
    ----------
    a : list[list[float]]
        Input matrix A of shape (M, N)
    b : list[float]
        Input vector b of length M
    rcond : float, optional
        Cutoff ratio for small singular values. Singular values smaller
        than rcond * largest_singular_value are considered zero.
        Default: max(M,N) * eps where eps is the machine precision
    
    Returns
    -------
    x : list[float]
        Solution vector of length N
    residuals : float
        Sum of squared residuals of the solution. Only computed for overdetermined 
        systems (M > N)
    rank : int
        Effective rank of matrix A
    s : list[float]
        Singular values of A in descending order
    
    Notes
    -----
    The implementation uses numpy.linalg.svd for the core computation but
    maintains a pure Python interface for input and output.
    """
    import numpy as np
    
    
    # Get dimensions and handle empty cases
    m = len(a)
    n = len(a[0]) if m > 0 else 0
    
    if m == 0:
        if n == 0:
            return [], 0.0, 0, []  # Empty matrix
        return [0.0] * n, 0.0, 0, []  # Empty rows
    elif n == 0:
        return [], 0.0, 0, []  # Empty columns
    
    # Check compatibility
    if len(b) != m:
        raise ValueError(f"Incompatible dimensions: A is {m}x{n}, b has length {len(b)}")
    
    # Use numpy only for SVD computation
    U, s, Vt = np.linalg.svd(np.array(a, dtype=np.float64), full_matrices=False)
    
    # Convert numpy arrays to Python lists
    U = U.tolist()
    s = s.tolist()
    Vt = Vt.tolist()
    
    # Set default rcond
    if rcond is None:
        rcond = max(m, n) * 2.2e-16  # Approximate machine epsilon for float64
    
    # Determine rank using rcond
    tol = rcond * s[0]
    rank = sum(sv > tol for sv in s)    
    # Compute U.T @ b using pure Python
    Ut = transpose(U)
    Utb = matrix_vector_dot(Ut, b)
    
    # Apply 1/singular values with truncation
    s_inv_Utb = [0.0] * len(s)
    for i in range(rank):
        s_inv_Utb[i] = Utb[i] / s[i]
    
    # Compute final solution using V
    V = transpose(Vt)  # V is transpose of Vt
    x = matrix_vector_dot(V, s_inv_Utb)
    
    # Compute residuals for overdetermined systems
    residuals = 0.0
    if m > n and rank == n:
        # Compute Ax
        Ax = matrix_vector_dot(a, x)
        
        # Compute residuals as |b - Ax|^2
        diff = [b[i] - Ax[i] for i in range(m)]
        residuals = dot_product(diff, diff)
    return x, residuals, rank, s