File: doubledouble.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (395 lines) | stat: -rw-r--r-- 12,395 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2021 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicensse, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

from math import log as mlog
from math import sqrt as msqrt

__all__ = ['add_dd', 'mul_noerrors_dd', 'mul_dd', 'div_dd', 'sqrt_dd',
           'square_dd', 'mul_imag_dd', 'mul_imag_noerrors_dd', 'sqrt_imag_dd',
           'add_imag_dd', 'imag_inv_dd', 'div_imag_dd', 'cbrt_imag_dd',
           'cbrt_dd', 'cube_dd', 'cbrt_explicit_dd', 'eq_dd', 'neq_dd',
           'lt_dd', 'gt_dd', 'le_dd', 'ge_dd', 'intpow_dd', 'exp_dd',
           'log_dd', 'pow_dd']

third = 1/3.0

def eq_dd(r0, e0, r1, e1):
    '''Return True if two numbers are equal, False otherwise.
    '''
    return r0 == r1 and e0 == e1

def neq_dd(r0, e0, r1, e1):
    '''Return False if two numbers are equal, True otherwise.
    '''
    return r0 != r1 or e0 != e1

def lt_dd(r0, e0, r1, e1):
    '''Return True if first number is less than second number, otherwise False.
    '''
    return r0 < r1 or (r0 == r1 and e0 < e1)

def le_dd(r0, e0, r1, e1):
    '''Return True if first number is less than or equal to second number, otherwise False.
    '''
    return r0 < r1 or (r0 == r1 and e0 <= e1)

def gt_dd(r0, e0, r1, e1):
    '''Return True if first number is larger than second number, otherwise False.
    '''
    return r0 > r1 or (r0 == r1 and e0 > e1)

def ge_dd(r0, e0, r1, e1):
    '''Return True if first number is larger or equal to the second number, otherwise False.
    '''
    return r0 > r1 or (r0 == r1 and e0 >= e1)

def add_dd(x0, y0, x1, y1):
    '''Add two floating point doule doubles.
    args: first number main, first number small...
    '''
    r = x0 + x1
    t = r - x0
    e = (x0 - (r - t)) + (x1 - t)
    e += y0 + y1
    r2 = r + e
    e = e - (r2 - r)
    return r2, e

def mul_noerrors_dd(x0, x1):
    '''Multiply two floating point numbers which were previously only
    doubles, and return ther
    '''
    u = x0*134217729.0
    v = x1*134217729.0
    s = u - (u - x0)
    t = v - (v - x1)
    f = x0 - s
    g = x1 - t
    r = x0*x1
    e = ((s*t - r) + s*g + f*t) + f*g
    return r, e

def mul_dd(x0, y0, x1, y1):
    u = x0*134217729.0
    v = x1*134217729.0
    s = u - (u - x0)
    t = v - (v - x1)
    f = x0 - s
    g = x1 - t
    r = x0*x1
    e = ((s*t - r) + s*g + f*t) + f*g
    e += x0*y1 + y0*x1
    r0 = r + e
    e = e - (r0 - r)
    return r0, e

def div_dd(x0, y0, x1, y1):
    # Creating a 1/x operation would save 1 add, one multiply only!
    r = x0/x1
    u = r*134217729.0
    v = x1*134217729.0
    s2 = u - (u - r)
    t = v - (v - x1)
    f = r - s2
    g = x1 - t
    s = r*x1
    f = ((s2*t - s) + s2*g + f*t) + f*g
    e = (x0 - s - f + y0 - r*y1)/x1
    r0 = r + e
    e = e - (r0 - r)
    return r0, e

def sqrt_dd(x, y):
    if x == 0.0:
        return (0.0, 0.0)
    r = msqrt(x)
    u = r*134217729.0
    s2 = u - (u - r)
    f2 = r - s2
    s = r*r
    f = ((s2*s2 - s) + 2.0*s2*f2) + f2*f2
    e = (x - s - f + y)*0.5/r
    r0 = r + e
    e = e - (r0 - r)
    return r0, e

def square_dd(x0, y0):
    # main part, second part - as fast as possible
    u = x0*134217729.0
    s = u - (u - x0)
    f = x0 - s
    r = x0*x0
    e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*x0*y0
    r0 = r + e
    e = e - (r0 - r)
    return r0, e

def intpow_dd(r, e, n):
    '''Compute and return the integer power of
    a double-double number `r` and `e` to the
    `n`. (r+e)^n.
    '''
    br, be = r, e
    i = abs(n)
    rr, re = 1.0, 0.0
    while True:
        if i & 1 == 1:
            rr, re = mul_dd(rr, re, br, be)
        if i <= 1:
            break
        i >>= 1
        br, be = mul_dd(br, be, br, be)
    if n < 0:
        return div_dd(1.0, 0.0, rr, re)
    return rr, re

dd_exp_coeffs = (156, 12012, 600600, 21621600, 588107520, 12350257920, 201132771840,
                 2514159648000, 23465490048000, 154872234316800, 647647525324800, 1295295050649600)

def exp_dd(r, e):
    n = int(round(r))
    xr, xe = add_dd(r, e, -n, 0)
    ur, ue = add_dd(xr, xe, dd_exp_coeffs[0], 0)

    for i in range(1, 12):
        ur, ue = mul_dd(xr, xe, ur, ue)
        ur, ue = add_dd(ur, ue, dd_exp_coeffs[i], 0)

    vr, ve = add_dd(xr, xe, -dd_exp_coeffs[0], 0)
    f = 1.0
    for i in range(1, 12):
        vr, ve = mul_dd(xr, xe, vr, ve)
        vr, ve = add_dd(vr, ve, f*dd_exp_coeffs[i], 0)
        f *= -1.0

    outr, oute = intpow_dd(2.718281828459045, 1.4456468917292502e-16, n)
    outr, oute = mul_dd(outr, oute, ur, ue)
    outr, oute = div_dd(outr, oute, vr, ve)
    return outr, oute


def log_dd(r, e):
    '''Compute the log.
    '''
    rr, re = mlog(r), 0.0
    ur, ue = exp_dd(rr, re)
    tmpr, tmpe = add_dd(ur, ue, -r, -e)
    denr, dene = add_dd(ur, ue, r, e)
    tmpr, tmpe = div_dd(tmpr, tmpe, denr, dene)
    tmpr, tmpe = mul_dd(2.0, 0.0, tmpr, tmpe)
    return add_dd(rr, re, -tmpr, -tmpe)

def pow_dd(r, e, nr, ne):
    '''Compute the power'''
    if ne == 0.0 and (nr %1) == 0:
        return intpow_dd(r, e, nr)
    tmpr, tmpe = log_dd(r, e)
    tmpr, tmpe = mul_dd(tmpr, tmpe, nr, ne)
    return exp_dd(tmpr, tmpe)


def mul_imag_dd(xrr, xre, xcr, xce, yrr, yre, ycr, yce):
    # TODO Make one for one number having zero complex number
    zrr, zre = mul_dd(xrr, xre, yrr, yre)
    wrr, wre = mul_dd(xcr, xce, ycr, yce)
    zrr, zre = add_dd(zrr, zre, -wrr, -wre)

    zcr, zce = mul_dd(xrr, xre, ycr, yce)
    wrr, wre = mul_dd(xcr, xce, yrr, yre)
    zcr, zce = add_dd(zcr, zce, wrr, wre)
    return zrr, zre, zcr, zce

def mul_imag_noerrors_dd(xrr, xcr, yrr, ycr):
    zrr, zre = mul_noerrors_dd(xrr, yrr)
    wrr, wre = mul_noerrors_dd(xcr, -ycr)
    zrr, zre = add_dd(zrr, zre, wrr, wre)

    zcr, zce = mul_noerrors_dd(xrr, ycr)
    wrr, wre = mul_noerrors_dd(xcr, yrr)
    zcr, zce = add_dd(zcr, zce, wrr, wre)
    return zrr, zre, zcr, zce

def sqrt_imag_dd(xrr, xre, xcr, xce):
    if xcr == 0.0:
        if xrr > 0.0:
            zrr, zre = sqrt_dd(xrr, xre)
            return zrr, zre, 0.0, 0.0
        zrr, zre = sqrt_dd(-xrr, -xre)
        return 0.0, 0.0, zrr, zre
    # 2 square, 3 add, 3 sqrt
    xrr2, xre2 = square_dd(xrr, xre)
    xcr2, xce2 = square_dd(xcr, xce)
    wr, we = add_dd(xrr2, xre2, xcr2, xce2)
    wr, we = sqrt_dd(wr, we)

    zrr, zre = add_dd(wr, we, xrr, xre)
    zrr *= 0.5
    zre *= 0.5 # checks out
    zrr, zre = sqrt_dd(zrr, zre) # real part of answer

    zcr, zce = add_dd(wr, we, -xrr, -xre)
    zcr *= 0.5
    zce *= 0.5 # checks out
    zcr, zce = sqrt_dd(zcr, zce) # real part of answer
    return (zrr, zre, zcr, zce)

def add_imag_dd(xrr, xre, xcr, xce, yrr, yre, ycr, yce):
    zrr, zre = add_dd(xrr, xre, yrr, yre)
    zcr, zce = add_dd(xcr, xce, ycr, yce)
    return zrr, zre, zcr, zce

def imag_inv_dd(xrr, xre, xcr, xce):
    cr2, ce2 = square_dd(xrr, xre)
    wr, we = square_dd(xcr, xce)
    wr, we = add_dd(cr2, ce2, wr, we)
    xrr, xre = div_dd(xrr, xre, wr, we)
    xcr, xce = div_dd(xcr, xce, wr, we)
    return xrr, xre, -xcr, -xce

def div_imag_dd(xrr, xre, xcr, xce, yrr, yre, ycr, yce):
    # TODO try to make one for the case the numerator has no complex number
    # as that is used.
    cr2, ce2 = square_dd(yrr, yre)
    wr, we = square_dd(ycr, yce)
    wr, we = add_dd(cr2, ce2, wr, we)

    nlr, nle = mul_dd(xrr, xre, yrr, yre)
    cr2, ce2 = mul_dd(xcr, xce, ycr, yce)
    nlr, nle = add_dd(nlr, nle, cr2, ce2)

    nrr, nre = mul_dd(xcr, xce, yrr, yre)
    cr2, ce2 = mul_dd(xrr, xre, ycr, yce)
    nrr, nre = add_dd(nrr, nre, -cr2, -ce2)

    xrr, xre = div_dd(nlr, nle, wr, we)
    xcr, xce = div_dd(nrr, nre, wr, we)
    return xrr, xre, xcr, xce

def cbrt_imag_dd(xrr, xre, xcr, xce):
    # start off at the double precision solution
    y_guess = (xrr + xcr*1.0j)**(-1.0/3.)
    yr, yc = y_guess.real, y_guess.imag
    # one newton iteration
    t0rr, t0re, t0cr, t0ce = mul_imag_noerrors_dd(yr, yc, yr, yc)  # have y*y
    t0rr, t0re, t0cr, t0ce = mul_imag_dd(t0rr, t0re, t0cr, t0ce, yr, 0.0, yc, 0.0)  # have y*y*y
    t0rr, t0re, t0cr, t0ce = mul_imag_dd(t0rr, t0re, t0cr, t0ce, xrr, xre, xcr, xce)   # have x*y*y*y

    # here, we flip the signs on the complex bits
    # add do an add to the real bits
    t0rr, t0re = add_dd(1.0, 0.0, -t0rr, -t0re)
#     t0rr, t0re, t0cr, t0ce = add_imag_dd(1.0, 0.0, 0.0, 0.0, -t0rr, -t0re, -t0cr, -t0ce) # have 1-x*y*y*y ; should be able to optimize this
    t0rr, t0re, t0cr, t0ce = mul_imag_dd(yr, 0.0, yc, 0.0, t0rr, t0re, -t0cr, -t0ce) # have y*(1-x*y*y*y)

    t0rr, t0re, t0cr, t0ce = mul_imag_dd(t0rr, t0re, t0cr, t0ce, 0.3333333333333333, 1.850371707708594e-17, 0.0, 0.0) # have third_dd*y*(1-x*y*y*y); should be able to optimize this
    t0rr, t0re, t0cr, t0ce = add_imag_dd(yr, 0.0, yc, 0.0, t0rr, t0re, t0cr, t0ce)  # have y
    return imag_inv_dd(t0rr, t0re, t0cr, t0ce)

def cbrt_dd(xr, xe):
    # http://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf
    yr = (xr**(-1.0/3.))
    ye = 0.0

    w0r, w0e = cube_dd(yr, ye)
#     w0r, w0e = mul_dd(w0r, w0e, yr, ye)
    w0r, w0e = mul_dd(w0r, w0e, xr, xe)
    w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
    w0r, w0e = mul_dd(w0r, w0e, yr, ye)
    yr, ye = add_dd(yr, ye, w0r, w0e)

    # Do it again, most of the time probably don't need this? Turn it off on EOS?
    w0r, w0e = cube_dd(yr, ye)
    w0r, w0e = mul_dd(w0r, w0e, xr, xe)
    w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
    w0r, w0e = mul_dd(w0r, w0e, yr, ye)
    yr, ye = add_dd(yr, ye, third*w0r, third*w0e)
    return div_dd(1.0, 0.0, yr, ye)

def cube_dd(x0, y0):
    # main part, second part - as fast as possible
    u = x0*134217729.0
    s = u - (u - x0)
    f = x0 - s
    r = x0*x0
    e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*x0*y0
    r0 = r + e
    e0 = e - (r0 - r)

    v = r0*134217729.0
    t = v - (v - r0)
    g = r0 - t
    r = x0*r0
    e = ((s*t - r) + s*g + f*t) + f*g + x0*e0 + y0*r0
    r0 = r + e
    e = e - (r0 - r)
    return r0, e

def cbrt_explicit_dd(xr, xe):
    # http://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf
    yr = (xr**(-1.0/3.))
    ye = 0.0

#     w0r, w0e = cube_dd(yr, ye)
    # Couple of things commented out at the start since ye is zero
    # Cannot seem to make ot work good.
    u = yr*134217729.0
    s = u - (u - yr)
    f = yr - s
    r = yr*yr
    w0e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*yr*ye
    w0r = r + w0e
    e0 = w0e - (w0r - r)

    v = w0r*134217729.0
    t = v - (v - w0r)
    g = w0r - t
    r = yr*w0r
    w0e = ((s*t - r) + s*g + f*t) + f*g + yr*e0 + ye*w0r
    w0r = r + w0e
    w0e = w0e - (w0r - r)


    w0r, w0e = mul_dd(w0r, w0e, xr, xe)
    w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
    w0r, w0e = mul_dd(w0r, w0e, yr, ye)
    yr, ye = add_dd(yr, ye, w0r, w0e)

    # Do it again, most of the time probably don't need this? Turn it off on EOS?
    u = yr*134217729.0
    s = u - (u - yr)
    f = yr - s
    r = yr*yr
    w0e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*yr*ye
    w0r = r + w0e
    e0 = w0e - (w0r - r)

    v = w0r*134217729.0
    t = v - (v - w0r)
    g = w0r - t
    r = yr*w0r
    w0e = ((s*t - r) + s*g + f*t) + f*g + yr*e0 + ye*w0r
    w0r = r + w0e
    w0e = w0e - (w0r - r)
    w0r, w0e = mul_dd(w0r, w0e, xr, xe)
    w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
    w0r, w0e = mul_dd(w0r, w0e, yr, ye)
    yr, ye = add_dd(yr, ye, third*w0r, third*w0e)
    return div_dd(1.0, 0.0, yr, ye)