1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2021 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicensse, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from math import log as mlog
from math import sqrt as msqrt
__all__ = ['add_dd', 'mul_noerrors_dd', 'mul_dd', 'div_dd', 'sqrt_dd',
'square_dd', 'mul_imag_dd', 'mul_imag_noerrors_dd', 'sqrt_imag_dd',
'add_imag_dd', 'imag_inv_dd', 'div_imag_dd', 'cbrt_imag_dd',
'cbrt_dd', 'cube_dd', 'cbrt_explicit_dd', 'eq_dd', 'neq_dd',
'lt_dd', 'gt_dd', 'le_dd', 'ge_dd', 'intpow_dd', 'exp_dd',
'log_dd', 'pow_dd']
third = 1/3.0
def eq_dd(r0, e0, r1, e1):
'''Return True if two numbers are equal, False otherwise.
'''
return r0 == r1 and e0 == e1
def neq_dd(r0, e0, r1, e1):
'''Return False if two numbers are equal, True otherwise.
'''
return r0 != r1 or e0 != e1
def lt_dd(r0, e0, r1, e1):
'''Return True if first number is less than second number, otherwise False.
'''
return r0 < r1 or (r0 == r1 and e0 < e1)
def le_dd(r0, e0, r1, e1):
'''Return True if first number is less than or equal to second number, otherwise False.
'''
return r0 < r1 or (r0 == r1 and e0 <= e1)
def gt_dd(r0, e0, r1, e1):
'''Return True if first number is larger than second number, otherwise False.
'''
return r0 > r1 or (r0 == r1 and e0 > e1)
def ge_dd(r0, e0, r1, e1):
'''Return True if first number is larger or equal to the second number, otherwise False.
'''
return r0 > r1 or (r0 == r1 and e0 >= e1)
def add_dd(x0, y0, x1, y1):
'''Add two floating point doule doubles.
args: first number main, first number small...
'''
r = x0 + x1
t = r - x0
e = (x0 - (r - t)) + (x1 - t)
e += y0 + y1
r2 = r + e
e = e - (r2 - r)
return r2, e
def mul_noerrors_dd(x0, x1):
'''Multiply two floating point numbers which were previously only
doubles, and return ther
'''
u = x0*134217729.0
v = x1*134217729.0
s = u - (u - x0)
t = v - (v - x1)
f = x0 - s
g = x1 - t
r = x0*x1
e = ((s*t - r) + s*g + f*t) + f*g
return r, e
def mul_dd(x0, y0, x1, y1):
u = x0*134217729.0
v = x1*134217729.0
s = u - (u - x0)
t = v - (v - x1)
f = x0 - s
g = x1 - t
r = x0*x1
e = ((s*t - r) + s*g + f*t) + f*g
e += x0*y1 + y0*x1
r0 = r + e
e = e - (r0 - r)
return r0, e
def div_dd(x0, y0, x1, y1):
# Creating a 1/x operation would save 1 add, one multiply only!
r = x0/x1
u = r*134217729.0
v = x1*134217729.0
s2 = u - (u - r)
t = v - (v - x1)
f = r - s2
g = x1 - t
s = r*x1
f = ((s2*t - s) + s2*g + f*t) + f*g
e = (x0 - s - f + y0 - r*y1)/x1
r0 = r + e
e = e - (r0 - r)
return r0, e
def sqrt_dd(x, y):
if x == 0.0:
return (0.0, 0.0)
r = msqrt(x)
u = r*134217729.0
s2 = u - (u - r)
f2 = r - s2
s = r*r
f = ((s2*s2 - s) + 2.0*s2*f2) + f2*f2
e = (x - s - f + y)*0.5/r
r0 = r + e
e = e - (r0 - r)
return r0, e
def square_dd(x0, y0):
# main part, second part - as fast as possible
u = x0*134217729.0
s = u - (u - x0)
f = x0 - s
r = x0*x0
e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*x0*y0
r0 = r + e
e = e - (r0 - r)
return r0, e
def intpow_dd(r, e, n):
'''Compute and return the integer power of
a double-double number `r` and `e` to the
`n`. (r+e)^n.
'''
br, be = r, e
i = abs(n)
rr, re = 1.0, 0.0
while True:
if i & 1 == 1:
rr, re = mul_dd(rr, re, br, be)
if i <= 1:
break
i >>= 1
br, be = mul_dd(br, be, br, be)
if n < 0:
return div_dd(1.0, 0.0, rr, re)
return rr, re
dd_exp_coeffs = (156, 12012, 600600, 21621600, 588107520, 12350257920, 201132771840,
2514159648000, 23465490048000, 154872234316800, 647647525324800, 1295295050649600)
def exp_dd(r, e):
n = int(round(r))
xr, xe = add_dd(r, e, -n, 0)
ur, ue = add_dd(xr, xe, dd_exp_coeffs[0], 0)
for i in range(1, 12):
ur, ue = mul_dd(xr, xe, ur, ue)
ur, ue = add_dd(ur, ue, dd_exp_coeffs[i], 0)
vr, ve = add_dd(xr, xe, -dd_exp_coeffs[0], 0)
f = 1.0
for i in range(1, 12):
vr, ve = mul_dd(xr, xe, vr, ve)
vr, ve = add_dd(vr, ve, f*dd_exp_coeffs[i], 0)
f *= -1.0
outr, oute = intpow_dd(2.718281828459045, 1.4456468917292502e-16, n)
outr, oute = mul_dd(outr, oute, ur, ue)
outr, oute = div_dd(outr, oute, vr, ve)
return outr, oute
def log_dd(r, e):
'''Compute the log.
'''
rr, re = mlog(r), 0.0
ur, ue = exp_dd(rr, re)
tmpr, tmpe = add_dd(ur, ue, -r, -e)
denr, dene = add_dd(ur, ue, r, e)
tmpr, tmpe = div_dd(tmpr, tmpe, denr, dene)
tmpr, tmpe = mul_dd(2.0, 0.0, tmpr, tmpe)
return add_dd(rr, re, -tmpr, -tmpe)
def pow_dd(r, e, nr, ne):
'''Compute the power'''
if ne == 0.0 and (nr %1) == 0:
return intpow_dd(r, e, nr)
tmpr, tmpe = log_dd(r, e)
tmpr, tmpe = mul_dd(tmpr, tmpe, nr, ne)
return exp_dd(tmpr, tmpe)
def mul_imag_dd(xrr, xre, xcr, xce, yrr, yre, ycr, yce):
# TODO Make one for one number having zero complex number
zrr, zre = mul_dd(xrr, xre, yrr, yre)
wrr, wre = mul_dd(xcr, xce, ycr, yce)
zrr, zre = add_dd(zrr, zre, -wrr, -wre)
zcr, zce = mul_dd(xrr, xre, ycr, yce)
wrr, wre = mul_dd(xcr, xce, yrr, yre)
zcr, zce = add_dd(zcr, zce, wrr, wre)
return zrr, zre, zcr, zce
def mul_imag_noerrors_dd(xrr, xcr, yrr, ycr):
zrr, zre = mul_noerrors_dd(xrr, yrr)
wrr, wre = mul_noerrors_dd(xcr, -ycr)
zrr, zre = add_dd(zrr, zre, wrr, wre)
zcr, zce = mul_noerrors_dd(xrr, ycr)
wrr, wre = mul_noerrors_dd(xcr, yrr)
zcr, zce = add_dd(zcr, zce, wrr, wre)
return zrr, zre, zcr, zce
def sqrt_imag_dd(xrr, xre, xcr, xce):
if xcr == 0.0:
if xrr > 0.0:
zrr, zre = sqrt_dd(xrr, xre)
return zrr, zre, 0.0, 0.0
zrr, zre = sqrt_dd(-xrr, -xre)
return 0.0, 0.0, zrr, zre
# 2 square, 3 add, 3 sqrt
xrr2, xre2 = square_dd(xrr, xre)
xcr2, xce2 = square_dd(xcr, xce)
wr, we = add_dd(xrr2, xre2, xcr2, xce2)
wr, we = sqrt_dd(wr, we)
zrr, zre = add_dd(wr, we, xrr, xre)
zrr *= 0.5
zre *= 0.5 # checks out
zrr, zre = sqrt_dd(zrr, zre) # real part of answer
zcr, zce = add_dd(wr, we, -xrr, -xre)
zcr *= 0.5
zce *= 0.5 # checks out
zcr, zce = sqrt_dd(zcr, zce) # real part of answer
return (zrr, zre, zcr, zce)
def add_imag_dd(xrr, xre, xcr, xce, yrr, yre, ycr, yce):
zrr, zre = add_dd(xrr, xre, yrr, yre)
zcr, zce = add_dd(xcr, xce, ycr, yce)
return zrr, zre, zcr, zce
def imag_inv_dd(xrr, xre, xcr, xce):
cr2, ce2 = square_dd(xrr, xre)
wr, we = square_dd(xcr, xce)
wr, we = add_dd(cr2, ce2, wr, we)
xrr, xre = div_dd(xrr, xre, wr, we)
xcr, xce = div_dd(xcr, xce, wr, we)
return xrr, xre, -xcr, -xce
def div_imag_dd(xrr, xre, xcr, xce, yrr, yre, ycr, yce):
# TODO try to make one for the case the numerator has no complex number
# as that is used.
cr2, ce2 = square_dd(yrr, yre)
wr, we = square_dd(ycr, yce)
wr, we = add_dd(cr2, ce2, wr, we)
nlr, nle = mul_dd(xrr, xre, yrr, yre)
cr2, ce2 = mul_dd(xcr, xce, ycr, yce)
nlr, nle = add_dd(nlr, nle, cr2, ce2)
nrr, nre = mul_dd(xcr, xce, yrr, yre)
cr2, ce2 = mul_dd(xrr, xre, ycr, yce)
nrr, nre = add_dd(nrr, nre, -cr2, -ce2)
xrr, xre = div_dd(nlr, nle, wr, we)
xcr, xce = div_dd(nrr, nre, wr, we)
return xrr, xre, xcr, xce
def cbrt_imag_dd(xrr, xre, xcr, xce):
# start off at the double precision solution
y_guess = (xrr + xcr*1.0j)**(-1.0/3.)
yr, yc = y_guess.real, y_guess.imag
# one newton iteration
t0rr, t0re, t0cr, t0ce = mul_imag_noerrors_dd(yr, yc, yr, yc) # have y*y
t0rr, t0re, t0cr, t0ce = mul_imag_dd(t0rr, t0re, t0cr, t0ce, yr, 0.0, yc, 0.0) # have y*y*y
t0rr, t0re, t0cr, t0ce = mul_imag_dd(t0rr, t0re, t0cr, t0ce, xrr, xre, xcr, xce) # have x*y*y*y
# here, we flip the signs on the complex bits
# add do an add to the real bits
t0rr, t0re = add_dd(1.0, 0.0, -t0rr, -t0re)
# t0rr, t0re, t0cr, t0ce = add_imag_dd(1.0, 0.0, 0.0, 0.0, -t0rr, -t0re, -t0cr, -t0ce) # have 1-x*y*y*y ; should be able to optimize this
t0rr, t0re, t0cr, t0ce = mul_imag_dd(yr, 0.0, yc, 0.0, t0rr, t0re, -t0cr, -t0ce) # have y*(1-x*y*y*y)
t0rr, t0re, t0cr, t0ce = mul_imag_dd(t0rr, t0re, t0cr, t0ce, 0.3333333333333333, 1.850371707708594e-17, 0.0, 0.0) # have third_dd*y*(1-x*y*y*y); should be able to optimize this
t0rr, t0re, t0cr, t0ce = add_imag_dd(yr, 0.0, yc, 0.0, t0rr, t0re, t0cr, t0ce) # have y
return imag_inv_dd(t0rr, t0re, t0cr, t0ce)
def cbrt_dd(xr, xe):
# http://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf
yr = (xr**(-1.0/3.))
ye = 0.0
w0r, w0e = cube_dd(yr, ye)
# w0r, w0e = mul_dd(w0r, w0e, yr, ye)
w0r, w0e = mul_dd(w0r, w0e, xr, xe)
w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
w0r, w0e = mul_dd(w0r, w0e, yr, ye)
yr, ye = add_dd(yr, ye, w0r, w0e)
# Do it again, most of the time probably don't need this? Turn it off on EOS?
w0r, w0e = cube_dd(yr, ye)
w0r, w0e = mul_dd(w0r, w0e, xr, xe)
w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
w0r, w0e = mul_dd(w0r, w0e, yr, ye)
yr, ye = add_dd(yr, ye, third*w0r, third*w0e)
return div_dd(1.0, 0.0, yr, ye)
def cube_dd(x0, y0):
# main part, second part - as fast as possible
u = x0*134217729.0
s = u - (u - x0)
f = x0 - s
r = x0*x0
e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*x0*y0
r0 = r + e
e0 = e - (r0 - r)
v = r0*134217729.0
t = v - (v - r0)
g = r0 - t
r = x0*r0
e = ((s*t - r) + s*g + f*t) + f*g + x0*e0 + y0*r0
r0 = r + e
e = e - (r0 - r)
return r0, e
def cbrt_explicit_dd(xr, xe):
# http://web.mit.edu/tabbott/Public/quaddouble-debian/qd-2.3.4-old/docs/qd.pdf
yr = (xr**(-1.0/3.))
ye = 0.0
# w0r, w0e = cube_dd(yr, ye)
# Couple of things commented out at the start since ye is zero
# Cannot seem to make ot work good.
u = yr*134217729.0
s = u - (u - yr)
f = yr - s
r = yr*yr
w0e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*yr*ye
w0r = r + w0e
e0 = w0e - (w0r - r)
v = w0r*134217729.0
t = v - (v - w0r)
g = w0r - t
r = yr*w0r
w0e = ((s*t - r) + s*g + f*t) + f*g + yr*e0 + ye*w0r
w0r = r + w0e
w0e = w0e - (w0r - r)
w0r, w0e = mul_dd(w0r, w0e, xr, xe)
w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
w0r, w0e = mul_dd(w0r, w0e, yr, ye)
yr, ye = add_dd(yr, ye, w0r, w0e)
# Do it again, most of the time probably don't need this? Turn it off on EOS?
u = yr*134217729.0
s = u - (u - yr)
f = yr - s
r = yr*yr
w0e = ((s*s - r) + 2.0*s*f) + f*f + 2.0*yr*ye
w0r = r + w0e
e0 = w0e - (w0r - r)
v = w0r*134217729.0
t = v - (v - w0r)
g = w0r - t
r = yr*w0r
w0e = ((s*t - r) + s*g + f*t) + f*g + yr*e0 + ye*w0r
w0r = r + w0e
w0e = w0e - (w0r - r)
w0r, w0e = mul_dd(w0r, w0e, xr, xe)
w0r, w0e = add_dd(1.0, 0.0, -w0r, -w0e)
w0r, w0e = mul_dd(w0r, w0e, yr, ye)
yr, ye = add_dd(yr, ye, third*w0r, third*w0e)
return div_dd(1.0, 0.0, yr, ye)
|