File: polynomial_evaluation.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (424 lines) | stat: -rw-r--r-- 14,770 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# type: ignore
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018, 2019, 2020, 2021, 2022, 2023 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicensse, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from math import exp, log

from fluids.numerics.special import trunc_exp

__all__ = ['horner', 'horner_and_der', 'horner_and_der2', 'horner_and_der3',
 'horner_and_der4', 'horner_backwards', 'exp_horner_backwards',
 'exp_horner_backwards_and_der', 'exp_horner_backwards_and_der2', 'exp_horner_backwards_and_der3',
 'horner_backwards_ln_tau', 'horner_backwards_ln_tau_and_der', 'horner_backwards_ln_tau_and_der2', 'horner_backwards_ln_tau_and_der3',
 'exp_horner_backwards_ln_tau', 'exp_horner_backwards_ln_tau_and_der', 'exp_horner_backwards_ln_tau_and_der2',
 'horner_domain', 'horner_stable', 'horner_stable_and_der', 'horner_stable_and_der2', 'horner_stable_and_der3', 'horner_stable_and_der4',
 'horner_stable_ln_tau', 'horner_stable_ln_tau_and_der',
'horner_stable_ln_tau_and_der2', 'horner_stable_ln_tau_and_der3',
'exp_horner_stable', 'exp_horner_stable_and_der', 'exp_horner_stable_and_der2', 'exp_horner_stable_and_der3',
'exp_horner_stable_ln_tau', 'exp_horner_stable_ln_tau_and_der', 'exp_horner_stable_ln_tau_and_der2', 'horner_log',
'horner_stable_log']


def horner(coeffs, x):
    r'''Evaluates a polynomial defined by coefficienfs `coeffs` at a specified
    scalar `x` value, using the horner method. This is the most efficient
    formula to evaluate a polynomial (assuming non-zero coefficients for all
    terms). This has been added to the `fluids` library because of the need to
    frequently evaluate polynomials; and `NumPy`'s polyval is actually quite
    slow for scalar values.

    Note that the coefficients are reversed compared to the common form; the
    first value is the coefficient of the highest-powered x term, and the last
    value in `coeffs` is the constant offset value.

    Parameters
    ----------
    coeffs : iterable[float]
        Coefficients of polynomial, [-]
    x : float
        Point at which to evaluate the polynomial, [-]

    Returns
    -------
    val : float
        The evaluated value of the polynomial, [-]

    Notes
    -----
    For maximum speed, provide a list of Python floats and `x` should also be
    of type `float` to avoid either `NumPy` types or slow python ints.

    Compare the speed with numpy via:

    >> coeffs = np.random.uniform(0, 1, size=15)
    >> coeffs_list = coeffs.tolist()

    %timeit np.polyval(coeffs, 10.0)

    `np.polyval` takes on the order of 15 us; `horner`, 1 us.

    Examples
    --------
    >>> horner([1.0, 3.0], 2.0)
    5.0

    >>> horner([21.24288737657324, -31.326919865992743, 23.490607246508382, -14.318875366457021, 6.993092901276407, -2.6446094897570775, 0.7629439408284319, -0.16825320656035953, 0.02866101768198035, -0.0038190069303978003, 0.0004027586707189051, -3.394447111198843e-05, 2.302586717011523e-06, -1.2627393196517083e-07, 5.607585274731649e-09, -2.013760843818914e-10, 5.819957519561292e-12, -1.3414794055766234e-13, 2.430101267966631e-15, -3.381444175898971e-17, 3.4861255675373234e-19, -2.5070616549039004e-21, 1.122234904781319e-23, -2.3532795334141448e-26], 300.0)
    1.9900667478569642e+58

    References
    ----------
    .. [1] "Horner`s Method." Wikipedia, October 6, 2018.
    https://en.wikipedia.org/w/index.php?title=Horner%27s_method&oldid=862709437.
    '''
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot


def horner_and_der(coeffs, x):
    # Coefficients in same order as for horner
    f = 0.0
    der = 0.0
    for a in coeffs:
        der = x*der + f
        f = x*f + a
    return (f, der)

def horner_and_der2(coeffs, x):
    # Coefficients in same order as for horner
    f, der, der2 = 0.0, 0.0, 0.0
    for a in coeffs:
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der, der2 + der2)

def horner_and_der3(coeffs, x):
    # Coefficients in same order as for horner
    # Tested
    f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der, der2 + der2, der3*6.0)

def horner_and_der4(coeffs, x):
    # Coefficients in same order as for horner
    # Tested
    f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der4 = x*der4 + der3
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der, der2 + der2, der3*6.0, der4*24.0)

def horner_backwards(x, coeffs):
    return horner(coeffs, x)

def exp_horner_backwards(x, coeffs):
    return exp(horner(coeffs, x))

def exp_horner_backwards_and_der(x, coeffs):
    poly_val, poly_der = horner_and_der(coeffs, x)
    val = exp(poly_val)
    der = poly_der*val
    return val, der

def exp_horner_backwards_and_der2(x, coeffs):
    poly_val, poly_der, poly_der2 = horner_and_der2(coeffs, x)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    return val, der, der2

def exp_horner_backwards_and_der3(x, coeffs):
    poly_val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, x)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
    return val, der, der2, der3


def horner_backwards_ln_tau(T, Tc, coeffs):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    return horner(coeffs, lntau)

def horner_backwards_ln_tau_and_der(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der = horner_and_der(coeffs, lntau)
    der = -poly_der/(Tc*(-T/Tc + 1))
    return val, der

def horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der, poly_der2 = horner_and_der2(coeffs, lntau)
    der = -poly_der/(Tc*(-T/Tc + 1))

    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    return val, der, der2

def horner_backwards_ln_tau_and_der3(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0, 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, lntau)
    der = -poly_der/(Tc*(-T/Tc + 1))
    der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
    der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)

    return val, der, der2, der3

def exp_horner_backwards_ln_tau(T, Tc, coeffs):
    # This formulation has the nice property of being linear-linear when plotted
    # for surface tension
    if T >= Tc:
        return 0.0
    # No matter what the polynomial term does to it, as tau goes to 1, x goes to a large negative value
    # So long as the polynomial has the right derivative at the end (and a reasonable constant) it will always converge to 0.
    lntau = log(1.0 - T/Tc)
    # Guarantee it is larger than 0 with the exp
    # This is a linear plot as well because both variables are transformed into a log basis.
    return exp(horner(coeffs, lntau))

def exp_horner_backwards_ln_tau_and_der(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_der_val = horner_and_der(coeffs, lntau)
    val = exp(poly_val)
    return val, -val*poly_der_val/(Tc*tau)

def exp_horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_val_der, poly_val_der2 = horner_and_der2(coeffs, lntau)
    val = exp(poly_val)
    temp = 1.0/(Tc*tau)
    der = -temp*val*poly_val_der
    der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val*(temp*temp)

    return val, der, der2

def horner_domain(x, coeffs, xmin, xmax):
    r'''Evaluates a polynomial defined by coefficienfs `coeffs` and domain
    (`xmin`, `xmax`) which maps the input variable into the window
    (-1, 1) where the polynomial can be evaluated most acccurately.
    The evaluation uses horner's method.

    Note that the coefficients are reversed compared to the common form; the
    first value is the coefficient of the highest-powered x term, and the last
    value in `coeffs` is the constant offset value.

    Parameters
    ----------
    x : float
        Point at which to evaluate the polynomial, [-]
    coeffs : iterable[float]
        Coefficients of polynomial, [-]
    xmin : float
        Low value, [-]
    xmax : float
        High value, [-]

    Returns
    -------
    val : float
        The evaluated value of the polynomial, [-]

    Notes
    -----

    '''
    range_inv = 1.0/(xmax - xmin)
    off = (-xmax - xmin)*range_inv
    scl = 2.0*range_inv
    x = off + scl*x
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot

def horner_stable(x, coeffs, offset, scale):
    x = offset + scale*x
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot

def horner_stable_and_der(x, coeffs, offset, scale):
    x = offset + scale*x
    f = 0.0
    der = 0.0
    for a in coeffs:
        der = x*der + f
        f = x*f + a
    return (f, der*scale)

def horner_stable_and_der2(x, coeffs, offset, scale):
    x = offset + scale*x
    f, der, der2 = 0.0, 0.0, 0.0
    for a in coeffs:
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    return (f, der*scale, scale*scale*(der2 + der2))

def horner_stable_and_der3(x, coeffs, offset, scale):
    x = offset + scale*x
    f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    scale2 = scale*scale
    return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0)

def horner_stable_and_der4(x, coeffs, offset, scale):
    x = offset + scale*x
    f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
    for a in coeffs:
        der4 = x*der4 + der3
        der3 = x*der3 + der2
        der2 = x*der2 + der
        der = x*der + f
        f = x*f + a
    scale2 = scale*scale
    return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0, scale2*scale2*der4*24.0)

def horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    return horner_stable(lntau, coeffs, offset, scale)

def horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0
    lntau = log(1.0 - T/Tc)
    val, poly_der = horner_stable_and_der(lntau, coeffs, offset, scale)
    der = -poly_der/(Tc*(-T/Tc + 1))
    return val, der

def horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    val, poly_der, poly_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
    den = 1.0/(Tc*tau)
    der = -poly_der*den

    der2 = (-poly_der + poly_der2)*den*den
    return val, der, der2

def horner_stable_ln_tau_and_der3(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0, 00
    tau = 1.0 - T/Tc
    lntau = log(tau)
    val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(lntau, coeffs, offset, scale)
    den = 1.0/(Tc*tau)
    der = -poly_der*den
    der2 = (-poly_der + poly_der2)*den*den
    der3 = -(2.0*poly_der - 3.0*poly_der2 + poly_der3)*den*den*den

    return val, der, der2, der3

def exp_horner_stable(x, coeffs, offset, scale):
    return trunc_exp(horner_stable(x, coeffs, offset, scale))

def exp_horner_stable_and_der(x, coeffs, offset, scale):
    poly_val, poly_der = horner_stable_and_der(x, coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    return val, der

def exp_horner_stable_and_der2(x, coeffs, offset, scale):
    poly_val, poly_der, poly_der2 = horner_stable_and_der2(x, coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    return val, der, der2

def exp_horner_stable_and_der3(x, coeffs, offset, scale):
    poly_val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(x, coeffs, offset, scale)
    val = exp(poly_val)
    der = poly_der*val
    der2 = (poly_der*poly_der + poly_der2)*val
    der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
    return val, der, der2, der3

def exp_horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0
    lntau = log(1.0 - T/Tc)
    return trunc_exp(horner_stable(lntau, coeffs, offset, scale))

def exp_horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_der_val = horner_stable_and_der(lntau, coeffs, offset, scale)
    val = trunc_exp(poly_val)
    return val, -val*poly_der_val/(Tc*tau)

def exp_horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
    if T >= Tc:
        return 0.0, 0.0, 0.0
    tau = 1.0 - T/Tc
    lntau = log(tau)
    poly_val, poly_val_der, poly_val_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
    val = trunc_exp(poly_val)
    der = -val*poly_val_der/(Tc*tau)
    der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))

    return val, der, der2

def horner_log(coeffs, log_coeff, x):
    """Technically possible to save one addition of the last term of coeffs is
    removed but benchmarks said nothing was saved.
    """
    tot = 0.0
    for c in coeffs:
        tot = tot*x + c
    return tot + log_coeff*log(x)


def horner_stable_log(x, coeffs, offset, scale, log_coeff):
    tot = horner_stable(x, coeffs, offset, scale)
    return tot + log_coeff*log(x)