1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
# type: ignore
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018, 2019, 2020, 2021, 2022, 2023 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicensse, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from math import exp, log
from fluids.numerics.special import trunc_exp
__all__ = ['horner', 'horner_and_der', 'horner_and_der2', 'horner_and_der3',
'horner_and_der4', 'horner_backwards', 'exp_horner_backwards',
'exp_horner_backwards_and_der', 'exp_horner_backwards_and_der2', 'exp_horner_backwards_and_der3',
'horner_backwards_ln_tau', 'horner_backwards_ln_tau_and_der', 'horner_backwards_ln_tau_and_der2', 'horner_backwards_ln_tau_and_der3',
'exp_horner_backwards_ln_tau', 'exp_horner_backwards_ln_tau_and_der', 'exp_horner_backwards_ln_tau_and_der2',
'horner_domain', 'horner_stable', 'horner_stable_and_der', 'horner_stable_and_der2', 'horner_stable_and_der3', 'horner_stable_and_der4',
'horner_stable_ln_tau', 'horner_stable_ln_tau_and_der',
'horner_stable_ln_tau_and_der2', 'horner_stable_ln_tau_and_der3',
'exp_horner_stable', 'exp_horner_stable_and_der', 'exp_horner_stable_and_der2', 'exp_horner_stable_and_der3',
'exp_horner_stable_ln_tau', 'exp_horner_stable_ln_tau_and_der', 'exp_horner_stable_ln_tau_and_der2', 'horner_log',
'horner_stable_log']
def horner(coeffs, x):
r'''Evaluates a polynomial defined by coefficienfs `coeffs` at a specified
scalar `x` value, using the horner method. This is the most efficient
formula to evaluate a polynomial (assuming non-zero coefficients for all
terms). This has been added to the `fluids` library because of the need to
frequently evaluate polynomials; and `NumPy`'s polyval is actually quite
slow for scalar values.
Note that the coefficients are reversed compared to the common form; the
first value is the coefficient of the highest-powered x term, and the last
value in `coeffs` is the constant offset value.
Parameters
----------
coeffs : iterable[float]
Coefficients of polynomial, [-]
x : float
Point at which to evaluate the polynomial, [-]
Returns
-------
val : float
The evaluated value of the polynomial, [-]
Notes
-----
For maximum speed, provide a list of Python floats and `x` should also be
of type `float` to avoid either `NumPy` types or slow python ints.
Compare the speed with numpy via:
>> coeffs = np.random.uniform(0, 1, size=15)
>> coeffs_list = coeffs.tolist()
%timeit np.polyval(coeffs, 10.0)
`np.polyval` takes on the order of 15 us; `horner`, 1 us.
Examples
--------
>>> horner([1.0, 3.0], 2.0)
5.0
>>> horner([21.24288737657324, -31.326919865992743, 23.490607246508382, -14.318875366457021, 6.993092901276407, -2.6446094897570775, 0.7629439408284319, -0.16825320656035953, 0.02866101768198035, -0.0038190069303978003, 0.0004027586707189051, -3.394447111198843e-05, 2.302586717011523e-06, -1.2627393196517083e-07, 5.607585274731649e-09, -2.013760843818914e-10, 5.819957519561292e-12, -1.3414794055766234e-13, 2.430101267966631e-15, -3.381444175898971e-17, 3.4861255675373234e-19, -2.5070616549039004e-21, 1.122234904781319e-23, -2.3532795334141448e-26], 300.0)
1.9900667478569642e+58
References
----------
.. [1] "Horner`s Method." Wikipedia, October 6, 2018.
https://en.wikipedia.org/w/index.php?title=Horner%27s_method&oldid=862709437.
'''
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot
def horner_and_der(coeffs, x):
# Coefficients in same order as for horner
f = 0.0
der = 0.0
for a in coeffs:
der = x*der + f
f = x*f + a
return (f, der)
def horner_and_der2(coeffs, x):
# Coefficients in same order as for horner
f, der, der2 = 0.0, 0.0, 0.0
for a in coeffs:
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der, der2 + der2)
def horner_and_der3(coeffs, x):
# Coefficients in same order as for horner
# Tested
f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der, der2 + der2, der3*6.0)
def horner_and_der4(coeffs, x):
# Coefficients in same order as for horner
# Tested
f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der4 = x*der4 + der3
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der, der2 + der2, der3*6.0, der4*24.0)
def horner_backwards(x, coeffs):
return horner(coeffs, x)
def exp_horner_backwards(x, coeffs):
return exp(horner(coeffs, x))
def exp_horner_backwards_and_der(x, coeffs):
poly_val, poly_der = horner_and_der(coeffs, x)
val = exp(poly_val)
der = poly_der*val
return val, der
def exp_horner_backwards_and_der2(x, coeffs):
poly_val, poly_der, poly_der2 = horner_and_der2(coeffs, x)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
return val, der, der2
def exp_horner_backwards_and_der3(x, coeffs):
poly_val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, x)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
return val, der, der2, der3
def horner_backwards_ln_tau(T, Tc, coeffs):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
return horner(coeffs, lntau)
def horner_backwards_ln_tau_and_der(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der = horner_and_der(coeffs, lntau)
der = -poly_der/(Tc*(-T/Tc + 1))
return val, der
def horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der, poly_der2 = horner_and_der2(coeffs, lntau)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
return val, der, der2
def horner_backwards_ln_tau_and_der3(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0, 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der, poly_der2, poly_der3 = horner_and_der3(coeffs, lntau)
der = -poly_der/(Tc*(-T/Tc + 1))
der2 = (-poly_der + poly_der2)/(Tc**2*(T/Tc - 1)**2)
der3 = (2.0*poly_der - 3.0*poly_der2 + poly_der3)/(Tc**3*(T/Tc - 1)**3)
return val, der, der2, der3
def exp_horner_backwards_ln_tau(T, Tc, coeffs):
# This formulation has the nice property of being linear-linear when plotted
# for surface tension
if T >= Tc:
return 0.0
# No matter what the polynomial term does to it, as tau goes to 1, x goes to a large negative value
# So long as the polynomial has the right derivative at the end (and a reasonable constant) it will always converge to 0.
lntau = log(1.0 - T/Tc)
# Guarantee it is larger than 0 with the exp
# This is a linear plot as well because both variables are transformed into a log basis.
return exp(horner(coeffs, lntau))
def exp_horner_backwards_ln_tau_and_der(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_der_val = horner_and_der(coeffs, lntau)
val = exp(poly_val)
return val, -val*poly_der_val/(Tc*tau)
def exp_horner_backwards_ln_tau_and_der2(T, Tc, coeffs):
if T >= Tc:
return 0.0, 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_val_der, poly_val_der2 = horner_and_der2(coeffs, lntau)
val = exp(poly_val)
temp = 1.0/(Tc*tau)
der = -temp*val*poly_val_der
der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val*(temp*temp)
return val, der, der2
def horner_domain(x, coeffs, xmin, xmax):
r'''Evaluates a polynomial defined by coefficienfs `coeffs` and domain
(`xmin`, `xmax`) which maps the input variable into the window
(-1, 1) where the polynomial can be evaluated most acccurately.
The evaluation uses horner's method.
Note that the coefficients are reversed compared to the common form; the
first value is the coefficient of the highest-powered x term, and the last
value in `coeffs` is the constant offset value.
Parameters
----------
x : float
Point at which to evaluate the polynomial, [-]
coeffs : iterable[float]
Coefficients of polynomial, [-]
xmin : float
Low value, [-]
xmax : float
High value, [-]
Returns
-------
val : float
The evaluated value of the polynomial, [-]
Notes
-----
'''
range_inv = 1.0/(xmax - xmin)
off = (-xmax - xmin)*range_inv
scl = 2.0*range_inv
x = off + scl*x
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot
def horner_stable(x, coeffs, offset, scale):
x = offset + scale*x
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot
def horner_stable_and_der(x, coeffs, offset, scale):
x = offset + scale*x
f = 0.0
der = 0.0
for a in coeffs:
der = x*der + f
f = x*f + a
return (f, der*scale)
def horner_stable_and_der2(x, coeffs, offset, scale):
x = offset + scale*x
f, der, der2 = 0.0, 0.0, 0.0
for a in coeffs:
der2 = x*der2 + der
der = x*der + f
f = x*f + a
return (f, der*scale, scale*scale*(der2 + der2))
def horner_stable_and_der3(x, coeffs, offset, scale):
x = offset + scale*x
f, der, der2, der3 = 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
scale2 = scale*scale
return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0)
def horner_stable_and_der4(x, coeffs, offset, scale):
x = offset + scale*x
f, der, der2, der3, der4 = 0.0, 0.0, 0.0, 0.0, 0.0
for a in coeffs:
der4 = x*der4 + der3
der3 = x*der3 + der2
der2 = x*der2 + der
der = x*der + f
f = x*f + a
scale2 = scale*scale
return (f, der*scale, scale2*(der2 + der2), scale2*scale*der3*6.0, scale2*scale2*der4*24.0)
def horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
return horner_stable(lntau, coeffs, offset, scale)
def horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0
lntau = log(1.0 - T/Tc)
val, poly_der = horner_stable_and_der(lntau, coeffs, offset, scale)
der = -poly_der/(Tc*(-T/Tc + 1))
return val, der
def horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
val, poly_der, poly_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
den = 1.0/(Tc*tau)
der = -poly_der*den
der2 = (-poly_der + poly_der2)*den*den
return val, der, der2
def horner_stable_ln_tau_and_der3(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0, 00
tau = 1.0 - T/Tc
lntau = log(tau)
val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(lntau, coeffs, offset, scale)
den = 1.0/(Tc*tau)
der = -poly_der*den
der2 = (-poly_der + poly_der2)*den*den
der3 = -(2.0*poly_der - 3.0*poly_der2 + poly_der3)*den*den*den
return val, der, der2, der3
def exp_horner_stable(x, coeffs, offset, scale):
return trunc_exp(horner_stable(x, coeffs, offset, scale))
def exp_horner_stable_and_der(x, coeffs, offset, scale):
poly_val, poly_der = horner_stable_and_der(x, coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
return val, der
def exp_horner_stable_and_der2(x, coeffs, offset, scale):
poly_val, poly_der, poly_der2 = horner_stable_and_der2(x, coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
return val, der, der2
def exp_horner_stable_and_der3(x, coeffs, offset, scale):
poly_val, poly_der, poly_der2, poly_der3 = horner_stable_and_der3(x, coeffs, offset, scale)
val = exp(poly_val)
der = poly_der*val
der2 = (poly_der*poly_der + poly_der2)*val
der3 = (poly_der*poly_der*poly_der + 3.0*poly_der*poly_der2 + poly_der3)*val
return val, der, der2, der3
def exp_horner_stable_ln_tau(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0
lntau = log(1.0 - T/Tc)
return trunc_exp(horner_stable(lntau, coeffs, offset, scale))
def exp_horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_der_val = horner_stable_and_der(lntau, coeffs, offset, scale)
val = trunc_exp(poly_val)
return val, -val*poly_der_val/(Tc*tau)
def exp_horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale):
if T >= Tc:
return 0.0, 0.0, 0.0
tau = 1.0 - T/Tc
lntau = log(tau)
poly_val, poly_val_der, poly_val_der2 = horner_stable_and_der2(lntau, coeffs, offset, scale)
val = trunc_exp(poly_val)
der = -val*poly_val_der/(Tc*tau)
der2 = (poly_val_der*poly_val_der - poly_val_der + poly_val_der2)*val/(Tc*Tc*(tau*tau))
return val, der, der2
def horner_log(coeffs, log_coeff, x):
"""Technically possible to save one addition of the last term of coeffs is
removed but benchmarks said nothing was saved.
"""
tot = 0.0
for c in coeffs:
tot = tot*x + c
return tot + log_coeff*log(x)
def horner_stable_log(x, coeffs, offset, scale, log_coeff):
tot = horner_stable(x, coeffs, offset, scale)
return tot + log_coeff*log(x)
|