1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
# type: ignore
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018, 2019, 2020, 2021, 2022, 2023 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicensse, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from cmath import sqrt as csqrt
from math import acos, cos, sin, sqrt
__all__ = ['roots_quadratic', 'roots_quartic', 'roots_cubic_a1', 'roots_cubic_a2',
'roots_cubic']
third = 1.0/3.0
sixth = 1.0/6.0
ninth = 1.0/9.0
twelfth = 1.0/12.0
two_thirds = 2.0/3.0
four_thirds = 4.0/3.0
root_three = 1.7320508075688772 # sqrt(3.0)
one_27 = 1.0/27.0
complex_factor = 0.8660254037844386j # (sqrt(3)*0.5j)
def roots_quadratic(a, b, c):
if a == 0.0:
root = -c/b
return (root, root)
D = b*b - 4.0*a*c
a_inv_2 = 0.5/a
if D < 0.0:
D = sqrt(-D)
x1 = (-b + D*1.0j)*a_inv_2
x2 = (-b - D*1.0j)*a_inv_2
else:
D = sqrt(D)
x1 = (D - b)*a_inv_2
x2 = -(b + D)*a_inv_2
return (x1, x2)
def roots_quartic(a, b, c, d, e):
# There is no divide by zero check. A should be 1 for best numerical results
# Multiple order of magnitude differences still can cause problems
# Like [1, 0.0016525874561771799, 106.8665062954208, 0.0032802613917246727, 0.16036091315844248]
x0 = 1.0/a
x1 = b*x0
x2 = -x1*0.25
x3 = c*x0
x4 = b*b*x0*x0
x5 = -two_thirds*x3 + 0.25*x4
x6 = x3 - 0.375*x4
x6_2 = x6*x6
x7 = x6_2*x6
x8 = d*x0
x9 = x1*(-0.5*x3 + 0.125*x4)
x10 = (x8 + x9)*(x8 + x9)
x11 = e*x0
x12 = x1*(x1*(-0.0625*x3 + 0.01171875*x4) + 0.25*x8) # 0.01171875 = 3/256
x13 = x6*(x11 - x12)
x14 = -.125*x10 + x13*third - x7/108.0
x15 = 2.0*(x14 + 0.0j)**(third)
x16 = csqrt(-x15 + x5)
x17 = 0.5*x16
x18 = -x17 + x2
x19 = -four_thirds*x3
x20 = 0.5*x4
x21 = x15 + x19 + x20
x22 = 2.0*x8 + 2.0*x9
x23 = x22/x16
x24 = csqrt(x21 + x23)*0.5
x25 = -x11 + x12 - twelfth*x6_2
x27 = (0.0625*x10 - x13*sixth + x7/216.0 + csqrt(0.25*x14*x14 + one_27*x25*x25*x25))**(third)
x28 = 2.0*x27
x29 = two_thirds*x25/(x27)
x30 = csqrt(x28 - x29 + x5)
x31 = 0.5*x30
x32 = x2 - x31
x33 = x19 + x20 - x28 + x29
x34 = x22/x30
x35 = csqrt(x33 + x34)*0.5
x36 = x17 + x2
x37 = csqrt(x21 - x23)*0.5
x38 = x2 + x31
x39 = csqrt(x33 - x34)*0.5
return ((x32 - x35), (x32 + x35), (x38 - x39), (x38 + x39))
def roots_cubic_a1(b, c, d):
# Output from mathematica
t1 = b*b
t2 = t1*b
t4 = c*b
t9 = c*c
t16 = d*d
t19 = csqrt(12.0*t9*c + 12.0*t2*d - 54.0*t4*d - 3.0*t1*t9 + 81.0*t16)
t22 = (-8.0*t2 + 36.0*t4 - 108.0*d + 12.0*t19)**third
root1 = t22*sixth - 6.0*(c*third - t1*ninth)/t22 - b*third
t28 = (c*third - t1*ninth)/t22
t101 = -t22*twelfth + 3.0*t28 - b*third
t102 = root_three*(t22*sixth + 6.0*t28)
root2 = t101 + 0.5j*t102
root3 = t101 - 0.5j*t102
return (root1, root2, root3)
def roots_cubic_a2(a, b, c, d):
# Output from maple
t2 = a*a
t3 = d*d
t10 = c*c
t14 = b*b
t15 = t14*b
t20 = csqrt(-18.0*a*b*c*d + 4.0*a*t10*c + 4.0*t15*d - t14*t10 + 27.0*t2*t3)
t31 = (36.0*c*b*a + 12.0*root_three*t20*a - 108.0*d*t2 - 8.0*t15)**third
t32 = 1.0/a
root1 = t31*t32*sixth - two_thirds*(3.0*a*c - t14)*t32/t31 - b*t32*third
t33 = t31*t32
t40 = (3.0*a*c - t14)*t32/t31
t50 = -t33*twelfth + t40*third - b*t32*third
t51 = 0.5j*root_three *(t33*sixth + two_thirds*t40)
root2 = t50 + t51
root3 = t50 - t51
return (root1, root2, root3)
def roots_cubic(a, b, c, d):
r'''Cubic equation solver based on a variety of sources, algorithms, and
numerical tools. It seems evident after some work that no analytical
solution using floating points will ever have high-precision results
for all cases of inputs. Some other solvers, such as NumPy's roots
which uses eigenvalues derived using some BLAS, seem to provide bang-on
answers for all values coefficients. However, they can be quite slow - and
where possible there is still a need for analytical solutions to obtain
15-35x speed, such as when using PyPy.
A particular focus of this routine is where a=1, b is a small number in the
range -10 to 10 - a common occurrence in cubic equations of state.
Parameters
----------
a : float
Coefficient of x^3, [-]
b : float
Coefficient of x^2, [-]
c : float
Coefficient of x, [-]
d : float
Added coefficient, [-]
Returns
-------
roots : tuple(float)
The evaluated roots of the polynomial, 1 value when a and b are zero,
two values when a is zero, and three otherwise, [-]
Notes
-----
For maximum speed, provide Python floats. Compare the speed with numpy via:
%timeit roots_cubic(1.0, 100.0, 1000.0, 10.0)
%timeit np.roots([1.0, 100.0, 1000.0, 10.0])
%timeit roots_cubic(1.0, 2.0, 3.0, 4.0)
%timeit np.roots([1.0, 2.0, 3.0, 4.0])
The speed is ~15-35 times faster; or using PyPy, 240-370 times faster.
Examples
--------
>>> roots_cubic(1.0, 100.0, 1000.0, 10.0)
(-0.0100100190, -88.731288, -11.25870159)
References
----------
.. [1] "Solving Cubic Equations." Accessed January 5, 2019.
http://www.1728.org/cubic2.htm.
'''
"""
Notes
-----
Known issue is inputs that look like
1, -0.999999999978168, 1.698247818501352e-11, -8.47396642608142e-17
Errors grown unbound, starting when b is -.99999 and close to 1.
"""
if a == 0.0:
if b == 0.0:
root = -d/c
return (root, root, root)
D = c*c - 4.0*b*d
b_inv_2 = 0.5/b
if D < 0.0:
D = sqrt(-D)
x1 = (-c + D*1.0j)*b_inv_2
x2 = (-c - D*1.0j)*b_inv_2
else:
D = sqrt(D)
x1 = (D - c)*b_inv_2
x2 = -(c + D)*b_inv_2
return (x1, x1, x2)
a_inv = 1.0/a
a_inv2 = a_inv*a_inv
bb = b*b
"""Herbie modifications for f:
c*a_inv - b_a*b_a*third
"""
b_a = b*a_inv
b_a2 = b_a*b_a
f = c*a_inv - b_a2*third
# f = (3.0*c*a_inv - bb*a_inv2)*third
g = ((2.0*(bb*b) * a_inv2*a_inv) - (9.0*b*c)*(a_inv2) + (27.0*d*a_inv))*one_27
# g = (((2.0/(a/b))/((a/b) * (a/b)) + d*27.0/a) - (9.0/a*b)*c/a)/27.0
h = (0.25*(g*g) + (f*f*f)*one_27)
# print(f, g, h)
"""h has no savings on precision - 0.4 error to 0.2.
"""
# print(f, g, h, 'f, g, h')
if h == 0.0 and g == 0.0 and f == 0.0:
if d/a >= 0.0:
# print('A'*50, locals())
x = -((d*a_inv)**(third))
else:
# print('B'*50, locals())
x = (-d*a_inv)**(third)
return (x, x, x)
elif h > 0.0:
# Happy with these formulas - double doubles should be fast.
# No complex numbers are needed here.
# print('basic')
# 1 real root, 2 imag
root_h = sqrt(h)
R = -0.5*g + root_h
# It is possible to save one of the power of thirds!
if R >= 0.0:
S = R**third
else:
S = -((-R)**third)
T = -(0.5*g) - root_h
if T >= 0.0:
U = (T**(third))
else:
U = -((-T)**(third))
SU = S + U
b_3a = b*(third*a_inv)
t1 = -0.5*SU - b_3a
x1 = SU - b_3a
t2 = (S - U)*complex_factor
# x1 is OK actually in some tests? the issue is x2, x3?
x2 = t1 + t2
x3 = t1 - t2
else:
# elif h <= 0.0:
t2 = a*a
t3 = d*d
t10 = c*c
t14 = b*b
t15 = t14*b
"""This method is inaccurate when choice_term is too small; but still
more accurate than the other method.
"""
choice_term = -18.0*a*b*c*d + 4.0*a*t10*c + 4.0*t15*d - t14*t10 + 27.0*t2*t3
if (abs(choice_term) > 1e-12 or abs(b + 1.0) < 1e-7):
# print('mine')
t32 = 1.0/a
t20 = csqrt(choice_term)
t31 = (36.0*c*b*a + 12.0*root_three*t20*a - 108.0*d*t2 - 8.0*t15)**third
t33 = t31*t32
t32_t31 = t32/t31
x1 = (t33*sixth - two_thirds*(3.0*a*c - t14)*t32_t31 - b*t32*third).real
t40 = (3.0*a*c - t14)*t32_t31
t50 = -t33*twelfth + t40*third - b*t32*third
t51 = 0.5j*root_three*(t33*sixth + two_thirds*t40)
x2 = (t50 + t51).real
x3 = (t50 - t51).real
else:
# 3 real roots
# example is going in here
i = sqrt(((g*g)*0.25) - h)
j = i**third # There was a saving for j but it was very weird with if statements!
"""Clamied nothing saved for k.
"""
k = acos(-0.5*g/i)
# L = -j
# N, M = sincos(k*third)
# N *= root_three
k_third = k*third
M = cos(k_third)
N = root_three*sin(k_third)
P = -b_a*third
# Direct formula for x1
x1 = 2.0*j*M + P
x2 = P - j*(M + N)
x3 = P - j*(M - N)
return (x1, x2, x3)
|