File: hwm14.f90

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (1474 lines) | stat: -rw-r--r-- 45,278 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
!!!
!!!  Horizontal Wind Model 14
!!!
!!!  AUTHORS
!!!    Douglas Drob  (0 to ~450+ km, quite-time)
!!!    John Emmert   (disturbance winds, DWM Emmert et al., (2008))
!!!    Geospace Science and Technology Branch
!!!    Space Science Division
!!!    Naval Research Laboratory
!!!    4555 Overlook Ave.
!!!    Washington, DC 20375
!!!
!!!  Point of Contact
!!!   douglas.drob@nrl.navy.mil
!!!
!!!   DATE
!!!    July 8, 2014
!!!
!!!
!!!
!!!================================================================================
!!! Input arguments:
!!!        iyd - year and day as yyddd
!!!        sec - ut(sec)
!!!        alt - altitude(km)
!!!        glat - geodetic latitude(deg)
!!!        glon - geodetic longitude(deg)
!!!        stl - not used
!!!        f107a - not used
!!!        f107 - not used
!!!        ap - two element array with
!!!             ap(1) = not used
!!!             ap(2) = current 3hr ap index
!!!
!!! Output argument:
!!!        w(1) = meridional wind (m/sec + northward)
!!!        w(2) = zonal wind (m/sec + eastward)
!!!
!!!================================================================================


module hwm

    integer(4)           :: nmaxhwm = 0        ! maximum degree hwmqt
    integer(4)           :: omaxhwm = 0        ! maximum order hwmqt
    integer(4)           :: nmaxdwm = 0        ! maximum degree hwmqt
    integer(4)           :: mmaxdwm = 0        ! maximum order hwmqt
    integer(4)           :: nmaxqdc = 0        ! maximum degree of coordinate coversion
    integer(4)           :: mmaxqdc = 0        ! maximum order of coordinate coversion
    integer(4)           :: nmaxgeo = 0        ! maximum of nmaxhwm, nmaxqd
    integer(4)           :: mmaxgeo = 0        ! maximum of omaxhwm, nmaxqd

    real(8),allocatable  :: gpbar(:,:),gvbar(:,:),gwbar(:,:) ! alfs for geo coordinates
    real(8),allocatable  :: spbar(:,:),svbar(:,:),swbar(:,:) ! alfs MLT calculation

    real(8)              :: glatalf = -1.d32

    logical              :: hwminit = .true.

end module hwm

subroutine hwm14(iyd,sec,alt,glat,glon,stl,f107a,f107,ap,w)

    use hwm
    implicit none
    integer(4),intent(in)   :: iyd
    real(4),intent(in)      :: sec,alt,glat,glon,stl,f107a,f107
    real(4),intent(in)      :: ap(2)
    real(4),intent(out)     :: w(2)
    real(4)                 :: dw(2)

    if (hwminit) call inithwm()

    call hwmqt(iyd,sec,alt,glat,glon,stl,f107a,f107,ap,w)

    if (ap(2) .ge. 0.0) then
        call dwm07(iyd,sec,alt,glat,glon,ap,dw)
        w = w + dw
    endif

    return

end subroutine hwm14

! ################################################################################
! Portable utility to compute vector spherical harmonical harmonic basis functions
! ################################################################################

module alf

    implicit none

    integer(4)              :: nmax0,mmax0

    ! static normalizational coeffiecents

    real(8), allocatable    :: anm(:,:),bnm(:,:),dnm(:,:)
    real(8), allocatable    :: cm(:),en(:)
    real(8), allocatable    :: marr(:),narr(:)

contains

    ! -------------------------------------------------------------
    ! routine to compute vector spherical harmonic basis functions
    ! -------------------------------------------------------------

    subroutine alfbasis(nmax,mmax,theta,P,V,W)

        implicit none

        integer(4), intent(in)  :: nmax, mmax
        real(8), intent(in)     :: theta
        real(8), intent(out)    :: P(0:nmax,0:mmax)
        real(8), intent(out)    :: V(0:nmax,0:mmax)
        real(8), intent(out)    :: W(0:nmax,0:mmax)

        integer(8)              :: n, m
        real(8)                 :: x, y
        real(8), parameter      :: p00 = 0.70710678118654746d0

        P(0,0) = p00
        x = dcos(theta)
        y = dsin(theta)
        do m = 1, mmax
            W(m,m) = cm(m) * P(m-1,m-1)
            P(m,m) = y * en(m) * W(m,m)
            do n = m+1, nmax
                W(n,m) = anm(n,m) * x * W(n-1,m) - bnm(n,m) * W(n-2,m)
                P(n,m) = y * en(n) * W(n,m)
                V(n,m) = narr(n) * x * W(n,m) - dnm(n,m) * W(n-1,m)
                W(n-2,m) = marr(m) * W(n-2,m)
            enddo
            W(nmax-1,m) = marr(m) * W(nmax-1,m)
            W(nmax,m) = marr(m) * W(nmax,m)
            V(m,m) = x * W(m,m)
        enddo
        P(1,0) = anm(1,0) * x * P(0,0)
        V(1,0) = -P(1,1)
        do n = 2, nmax
            P(n,0) = anm(n,0) * x * P(n-1,0) - bnm(n,0) * P(n-2,0)
            V(n,0) = -P(n,1)
        enddo

        return

    end subroutine alfbasis

    ! -----------------------------------------------------
    ! routine to compute static normalization coeffiecents
    ! -----------------------------------------------------

    subroutine initalf(nmaxin,mmaxin)

        implicit none

        integer(4), intent(in) :: nmaxin, mmaxin
        integer(8)             :: n, m   ! 64 bits to avoid overflow for (m,n) > 60

        nmax0 = nmaxin
        mmax0 = mmaxin

        if (allocated(anm)) deallocate(anm, bnm, cm, dnm, en, marr, narr)
        allocate( anm(0:nmax0, 0:mmax0) )
        allocate( bnm(0:nmax0, 0:mmax0) )
        allocate( cm(0:mmax0) )
        allocate( dnm(0:nmax0, 0:mmax0) )
        allocate( en(0:nmax0) )
        allocate( marr(0:mmax0) )
        allocate( narr(0:nmax0) )

        do n = 1, nmax0
            narr(n) = dble(n)
            en(n)    = dsqrt(dble(n*(n+1)))
            anm(n,0) = dsqrt( dble((2*n-1)*(2*n+1)) ) / narr(n)
            bnm(n,0) = dsqrt( dble((2*n+1)*(n-1)*(n-1)) / dble(2*n-3) ) / narr(n)
        end do
        do m = 1, mmax0
            marr(m) = dble(m)
            cm(m)    = dsqrt(dble(2*m+1)/dble(2*m*m*(m+1)))
            do n = m+1, nmax0
                anm(n,m) = dsqrt( dble((2*n-1)*(2*n+1)*(n-1)) / dble((n-m)*(n+m)*(n+1)) )
                bnm(n,m) = dsqrt( dble((2*n+1)*(n+m-1)*(n-m-1)*(n-2)*(n-1)) &
                    / dble((n-m)*(n+m)*(2*n-3)*n*(n+1)) )
                dnm(n,m) = dsqrt( dble((n-m)*(n+m)*(2*n+1)*(n-1)) / dble((2*n-1)*(n+1)) )
            end do
        enddo

        return

    end subroutine initalf

end module alf

!####################################################################################
! Model Modules
!####################################################################################

module qwm

    implicit none

    integer(4)                 :: nbf              ! Count of basis terms per model level
    integer(4)                 :: maxn             ! latitude
    integer(4)                 :: maxs,maxm,maxl   ! seasonal,stationary,migrating
    integer(4)                 :: maxo

    integer(4)                 :: p                ! B-splines order, p=4 cubic, p=3 quadratic
    integer(4)                 :: nlev             ! e.g. Number of B-spline nodes
    integer(4)                 :: nnode            ! nlev + p

    real(8)                    :: alttns           ! Transition 1
    real(8)                    :: altsym           ! Transition 2
    real(8)                    :: altiso           ! Constant Limit
    real(8)                    :: e1(0:4)
    real(8)                    :: e2(0:4)
    real(8),parameter          :: H = 60.0d0

    integer(4),allocatable     :: nb(:)            ! total number of basis functions @ level
    integer(4),allocatable     :: order(:,:)       ! spectral content @ level
    real(8),allocatable        :: vnode(:)         ! Vertical Altitude Nodes
    real(8),allocatable        :: mparm(:,:)       ! Model Parameters
    real(8),allocatable        :: tparm(:,:)       ! Model Parameters

    real(8)                    :: previous(1:5) = -1.0d32
    integer(4)                 :: priornb = 0

    real(8),allocatable        :: fs(:,:),fm(:,:),fl(:,:)
    real(8),allocatable        :: bz(:),bm(:)

    real(8),allocatable        :: zwght(:)
    integer(4)                 :: lev

    integer(4)                 :: cseason = 0
    integer(4)                 :: cwave = 0
    integer(4)                 :: ctide = 0

    logical                    :: content(5) = .true.          ! Season/Waves/Tides
    logical                    :: component(0:1) = .true.      ! Compute zonal/meridional

    character(128)             :: qwmdefault = 'hwm123114.bin'
    logical                    :: qwminit = .true.

    real(8)                    :: wavefactor(4) = 1.0
    real(8)                    :: tidefactor(4) = 1.0

end module qwm

module dwm

    implicit none

    integer(4)                 :: nterm             ! Number of terms in the model
    integer(4)                 :: nmax,mmax         ! Max latitudinal degree
    integer(4)                 :: nvshterm          ! # of VSH basis functions

    integer(4),allocatable     :: termarr(:,:)      ! 3 x nterm index of coupled terms
    real(4),allocatable        :: coeff(:)          ! Model coefficients
    real(4),allocatable        :: vshterms(:,:)     ! VSH basis values
    real(4),allocatable        :: termval(:,:)      ! Term values to which coefficients are applied
    real(8),allocatable        :: dpbar(:,:)        ! Associated lengendre fns
    real(8),allocatable        :: dvbar(:,:)
    real(8),allocatable        :: dwbar(:,:)
    real(8),allocatable        :: mltterms(:,:)     ! MLT Fourier terms
    real(4)                    :: twidth            ! Transition width of high-lat mask

    real(8), parameter         :: pi=3.1415926535897932
    real(8), parameter         :: dtor=pi/180.d0

    logical                    :: dwminit = .true.
    character(128), parameter  :: dwmdefault = 'dwm07b104i.dat'

end module dwm

subroutine inithwm()

    use hwm
    use qwm
    use dwm
    use alf,only:initalf
    implicit none

    integer(4)           :: nmax0, mmax0

    call initqwm(qwmdefault)
    call initdwm(nmaxdwm, mmaxdwm)

    nmaxgeo = max(nmaxhwm, nmaxqdc)
    mmaxgeo = max(omaxhwm, mmaxqdc)

    nmax0 = max(nmaxgeo, nmaxdwm)
    mmax0 = max(mmaxgeo, mmaxdwm)

    call initalf(nmax0,mmax0)

    ! shared for QWM and DWM, no need to compute twice

    if (allocated(gpbar)) deallocate(gpbar,gvbar,gwbar)
    allocate(gpbar(0:nmaxgeo,0:mmaxgeo))
    allocate(gvbar(0:nmaxgeo,0:mmaxgeo))
    allocate(gwbar(0:nmaxgeo,0:mmaxgeo))
    gpbar = 0
    gvbar = 0
    gwbar = 0

    if (allocated(spbar)) deallocate(spbar,svbar,swbar)
    allocate(spbar(0:nmaxgeo,0:mmaxgeo))
    allocate(svbar(0:nmaxgeo,0:mmaxgeo))
    allocate(swbar(0:nmaxgeo,0:mmaxgeo))
    spbar = 0
    svbar = 0
    swbar = 0

    hwminit = .false.

    return

end subroutine inithwm

! ########################################################################################
!                               The quiet time model functions
! ########################################################################################

!============================================================================
! A routine to load the quiet time HWM coeffiecents into memory
!============================================================================

subroutine initqwm(filename)

    use qwm
    use hwm,only:omaxhwm,nmaxhwm
    implicit none

    character(128),intent(in)      :: filename
    integer(4)                     :: i,j
    integer(4)                     :: ncomp

    if (allocated(vnode)) then
        deallocate(order,nb,vnode,mparm,tparm)
        deallocate(fs,fm,fl,zwght,bz,bm)
    endif

    call findandopen(filename,23)
    read(23) nbf,maxs,maxm,maxl,maxn,ncomp
    read(23) nlev,p
    nnode = nlev + p
    allocate(nb(0:nnode),order(ncomp,0:nnode),vnode(0:nnode))
    read(23) vnode
    vnode(3) = 0.0
    allocate(mparm(nbf,0:nlev))
    mparm = 0.0d0
    do i = 0,nlev-p+1-2
        read(23) order(1:ncomp,i)
        read(23) nb(i)
        read(23) mparm(1:nbf,i)
    enddo
    read(23) e1,e2
    close(23)

    ! Calculate the parity relationship permutations

    allocate(tparm(nbf,0:nlev))
    do i = 0,nlev-p+1-2
        call parity(order(:,i),nb(i),mparm(:,i),tparm(:,i))
    enddo

    ! Set transition levels

    alttns = vnode(nlev-2)
    altsym = vnode(nlev-1)
    altiso = vnode(nlev)

    ! Allocate the global store of quasi-static parameters

    maxo = max(maxs,maxm,maxl)
    omaxhwm = maxo
    nmaxhwm = maxn

    allocate(fs(0:maxs,2),fm(0:maxm,2),fl(0:maxl,2))
    allocate(bz(nbf),bm(nbf))
    allocate(zwght(0:p))

    bz = 0.0d0
    bm = 0.0d0

    ! change the initialization flag and reset some other things

    previous(1:5) = -1.0d32
    qwminit = .false.
    qwmdefault = filename

    return

contains

    subroutine parity(order,nb,mparm,tparm)

        implicit none

        integer(4),intent(in)     :: order(8)
        integer(4),intent(in)     :: nb
        real(8),intent(inout)     :: mparm(nb)
        real(8),intent(out)       :: tparm(nb)

        integer(4)                :: c,m,n,s,l

        integer(4)                :: amaxs,amaxn
        integer(4)                :: pmaxm,pmaxs,pmaxn
        integer(4)                :: tmaxl,tmaxs,tmaxn

        amaxs = order(1)
        amaxn = order(2)
        pmaxm = order(3)
        pmaxs = order(4)
        pmaxn = order(5)
        tmaxl = order(6)
        tmaxs = order(7)
        tmaxn = order(8)

        c = 1

        do n = 1,amaxn
            tparm(c) = 0.0
            tparm(c+1) = -mparm(c+1)
            mparm(c+1) = 0.0
            c = c + 2
        enddo
        do s = 1,amaxs
            do n = 1,amaxn
                tparm(c) = 0.0
                tparm(c+1) = 0.0
                tparm(c+2) = -mparm(c+2)
                tparm(c+3) = -mparm(c+3)
                mparm(c+2) = 0.0
                mparm(c+3) = 0.0
                c = c + 4
            enddo
        enddo

        do m = 1,pmaxm
            do n = m,pmaxn
                tparm(c) = mparm(c+2)
                tparm(c+1) = mparm(c+3)
                tparm(c+2) = -mparm(c)
                tparm(c+3) = -mparm(c+1)
                c = c + 4
            enddo
            do s = 1,pmaxs
                do n = m,pmaxn
                    tparm(c) = mparm(c+2)
                    tparm(c+1) = mparm(c+3)
                    tparm(c+2) = -mparm(c)
                    tparm(c+3) = -mparm(c+1)
                    tparm(c+4) = mparm(c+6)
                    tparm(c+5) = mparm(c+7)
                    tparm(c+6) = -mparm(c+4)
                    tparm(c+7) = -mparm(c+5)
                    c = c + 8
                enddo
            enddo

        enddo

        do l = 1,tmaxl
            do n = l,tmaxn
                tparm(c) = mparm(c+2)
                tparm(c+1) = mparm(c+3)
                tparm(c+2) = -mparm(c)
                tparm(c+3) = -mparm(c+1)
                c = c + 4
            enddo
            do s = 1,tmaxs
                do n = l,tmaxn
                    tparm(c) = mparm(c+2)
                    tparm(c+1) = mparm(c+3)
                    tparm(c+2) = -mparm(c)
                    tparm(c+3) = -mparm(c+1)
                    tparm(c+4) = mparm(c+6)
                    tparm(c+5) = mparm(c+7)
                    tparm(c+6) = -mparm(c+4)
                    tparm(c+7) = -mparm(c+5)
                    c = c + 8
                enddo
            enddo
        enddo

        return

    end subroutine parity

end subroutine initqwm

! ------------------------------------------------------------
! The quiet time only HWM function call
! ------------------------------------------------------------

subroutine hwmqt(IYD,SEC,ALT,GLAT,GLON,STL,F107A,F107,AP,W)

    use hwm
    use qwm
    use alf,only:alfbasis
    implicit none

    integer,intent(in)      :: IYD
    real(4),intent(in)      :: SEC,ALT,GLAT,GLON,STL,F107A,F107
    real(4),intent(in)      :: AP(2)
    real(4),intent(out)     :: W(2)

    ! Local variables

    real(8)                 :: input(5)
    real(8)                 :: u,v

    real(8)                 :: cs,ss,cm,sm,cl,sl
    real(8)                 :: cmcs,smcs,cmss,smss
    real(8)                 :: clcs,slcs,clss,slss
    real(8)                 :: AA,BB,CC,DD
    real(8)                 :: vb,wb
    real(8)                 :: theta,sc

    integer(4)              :: b,c,d,m,n,s,l

    integer(4)              :: amaxs,amaxn
    integer(4)              :: pmaxm,pmaxs,pmaxn
    integer(4)              :: tmaxl,tmaxs,tmaxn

    logical                 :: refresh(5)

    real(8),parameter       :: twoPi = 2.0d0*3.1415926535897932384626433832795d0
    real(8),parameter       :: deg2rad = twoPi/360.0d0

    ! ====================================================================
    ! Update VSH model terms based on any change in the input parameters
    ! ====================================================================

    if (qwminit) call initqwm(qwmdefault)

    input(1) = dble(mod(IYD,1000))
    input(2) = dble(sec)
    input(3) = dble(glon)
    input(4) = dble(glat)
    input(5) = dble(alt)

    refresh(1:5) = .false.

    ! Seasonal variations
    if (input(1) .ne. previous(1)) then
        AA = input(1)*twoPi/365.25d0
        do s = 0,MAXS
            BB = dble(s)*AA
            fs(s,1) = dcos(BB)
            fs(s,2) = dsin(BB)
        enddo
        refresh(1:5) = .true.
        previous(1) = input(1)
    endif

    ! Hourly time changes, tidal variations

    if (input(2) .ne. previous(2) .or. input(3) .ne. previous(3)) then
        AA = mod(input(2)/3600.d0 + input(3)/15.d0 + 48.d0,24.d0)
        BB = AA*twoPi/24.d0
        do l = 0,MAXL
            CC = dble(l)*BB
            fl(l,1) = dcos(CC)
            fl(l,2) = dsin(CC)
        enddo
        refresh(3) = .true.   ! tides
        previous(2) = input(2)
    endif

    ! Longitudinal variations, stationary planetary waves

    if (input(3) .ne. previous(3)) then
        AA = input(3)*deg2rad
        do m = 0,MAXM
            BB = dble(m)*AA
            fm(m,1) = dcos(BB)
            fm(m,2) = dsin(BB)
        enddo
        refresh(2) = .true.   ! stationary planetary waves
        previous(3) = input(3)
    endif

    ! Latitude

    theta = (90.0d0 - input(4))*deg2rad
    if (input(4) .ne. glatalf) then
        AA = (90.0d0 - input(4))*deg2rad        ! theta = colatitude in radians
        call alfbasis(maxn,maxm,AA,gpbar,gvbar,gwbar)
        refresh(1:4) = .true.
        glatalf = input(4)
        previous(4) = input(4)
    endif

    ! Altitude

    if (input(5) .ne. previous(5)) then
        call vertwght(input(5),zwght,lev)
        previous(5) = input(5)
    endif

    ! ====================================================================
    ! Calculate the VSH functions
    ! ====================================================================

    u = 0.0d0
    v = 0.0d0

    do b = 0,p

        if (zwght(b) .eq. 0.d0) cycle

        d = b + lev

        if (priornb .ne. nb(d)) refresh(1:5) = .true. ! recalculate basis functions
        priornb = nb(d)

        if (.not. any(refresh)) then
            c = nb(d)
            if (component(0)) u = u + zwght(b)*dot_product(bz(1:c),mparm(1:c,d))
            if (component(1)) v = v + zwght(b)*dot_product(bz(1:c),tparm(1:c,d))
            cycle
        endif

        amaxs = order(1,d)
        amaxn = order(2,d)
        pmaxm = order(3,d)
        pmaxs = order(4,d)
        pmaxn = order(5,d)
        tmaxl = order(6,d)
        tmaxs = order(7,d)
        tmaxn = order(8,d)

        c = 1

        ! ------------- Seasonal - Zonal average (m = 0) ----------------

        if (refresh(1) .and. content(1)) then
            do n = 1,amaxn               ! s = 0
                bz(c) = -dsin(n*theta)   !
                bz(c+1) = dsin(n*theta)
                c = c + 2
            enddo
            do s = 1,amaxs                   ! Seasonal variations
                cs = fs(s,1)
                ss = fs(s,2)
                do n = 1,amaxn
                    sc = dsin(n*theta)
                    bz(c) = -sc*cs   ! Cr     A
                    bz(c+1) = sc*ss  ! Ci     B
                    bz(c+2) = sc*cs
                    bz(c+3) = -sc*ss
                    c = c + 4
                enddo
            enddo
            cseason = c
        else
            c = cseason
        endif

        ! ---------------- Stationary planetary waves --------------------

        if (refresh(2) .and. content(2)) then
            do m = 1,pmaxm
                cm = fm(m,1)*wavefactor(m)
                sm = fm(m,2)*wavefactor(m)
                do n = m,pmaxn           ! s = 0
                    vb = gvbar(n,m)
                    wb = gwbar(n,m)
                    bz(c) =   -vb*cm    ! Cr * (cm) * -vb   A
                    bz(c+1) =  vb*sm    ! Ci * (sm) *  vb   B
                    bz(c+2) = -wb*sm	! Br * (sm) * -wb   C
                    bz(c+3) = -wb*cm	! Bi * (cm) * -wb   D
                    c = c + 4
                enddo
                do s = 1,pmaxs
                    cs = fs(s,1)
                    ss = fs(s,2)
                    do n = m,pmaxn
                        vb = gvbar(n,m)
                        wb = gwbar(n,m)
                        bz(c) =   -vb*cm*cs	! Crc * (cmcs) * -vb   A
                        bz(c+1) =  vb*sm*cs ! Cic * (smcs) *  vb   B
                        bz(c+2) = -wb*sm*cs	! Brc * (smcs) * -wb   C
                        bz(c+3) = -wb*cm*cs	! Bic * (cmcs) * -wb   D
                        bz(c+4) = -vb*cm*ss	! Crs * (cmss) * -vb   E
                        bz(c+5) =  vb*sm*ss ! Cis * (smss) *  vb   F
                        bz(c+6) = -wb*sm*ss	! Brs * (smss) * -wb   G
                        bz(c+7) = -wb*cm*ss	! Bis * (cmss) * -wb   H
                        c = c + 8
                    enddo
                enddo
                cwave = c
            enddo
        else
            c = cwave
        endif

        ! ---------------- Migrating Solar Tides ---------------------

        if (refresh(3) .and. content(3)) then
            do l = 1,tmaxl
                cl = fl(l,1)*tidefactor(l)
                sl = fl(l,2)*tidefactor(l)
                do n = l,tmaxn           ! s = 0
                    vb = gvbar(n,l)
                    wb = gwbar(n,l)
                    bz(c) =   -vb*cl    ! Cr * (cl) * -vb
                    bz(c+1) =  vb*sl    ! Ci * (sl) *  vb
                    bz(c+2) = -wb*sl	! Br * (sl) * -wb
                    bz(c+3) = -wb*cl	! Bi * (cl) * -wb
                    c = c + 4
                enddo
                do s = 1,tmaxs
                    cs = fs(s,1)
                    ss = fs(s,2)
                    do n = l,tmaxn
                        vb = gvbar(n,l)
                        wb = gwbar(n,l)
                        bz(c) =   -vb*cl*cs	! Crc * (clcs) * -vb
                        bz(c+1) =  vb*sl*cs ! Cic * (slcs) *  vb
                        bz(c+2) = -wb*sl*cs	! Brc * (slcs) * -wb
                        bz(c+3) = -wb*cl*cs	! Bic * (clcs) * -wb
                        bz(c+4) = -vb*cl*ss	! Crs * (clss) * -vb
                        bz(c+5) =  vb*sl*ss ! Cis * (slss) *  vb
                        bz(c+6) = -wb*sl*ss	! Brs * (slss) * -wb
                        bz(c+7) = -wb*cl*ss	! Bis * (clss) * -wb
                        c = c + 8
                    enddo
                enddo
                ctide = c
            enddo
        else
            c = ctide
        endif

        ! ---------------- Non-Migrating Solar Tides ------------------

        ! TBD

        c = c - 1

        ! ====================================================================
        ! Calculate the wind components
        ! ====================================================================

        if (component(0)) u = u + zwght(b)*dot_product(bz(1:c),mparm(1:c,d))
        if (component(1)) v = v + zwght(b)*dot_product(bz(1:c),tparm(1:c,d))

    enddo

    w(1) = sngl(v)
    w(2) = sngl(u)

    return

end subroutine hwmqt


subroutine vertwght(alt,wght,iz)

    use qwm
    implicit none

    real(8),intent(in)      :: alt
    real(8),intent(out)     :: wght(4)
    integer(4),intent(out)  :: iz

    real(8)             :: we(0:4)

    iz = findspan(nnode-p-1_4,p,alt,vnode) - p

    iz = min(iz,26)

    wght(1) = bspline(p,nnode,vnode,iz,alt)
    wght(2) = bspline(p,nnode,vnode,iz+1_4,alt)
    if (iz .le. 25) then
        wght(3) = bspline(p,nnode,vnode,iz+2_4,alt)
        wght(4) = bspline(p,nnode,vnode,iz+3_4,alt)
        return
    endif
    if (alt .gt. alttns) then
        we(0) = 0.0d0
        we(1) = 0.0d0
        we(2) = 0.0d0
        we(3) = exp(-(alt - alttns)/H)
        we(4) = 1.0d0
    else
        we(0) = bspline(p,nnode,vnode,iz+2_4,alt)
        we(1) = bspline(p,nnode,vnode,iz+3_4,alt)
        we(2) = bspline(p,nnode,vnode,iz+4_4,alt)
        we(3) = 0.0d0
        we(4) = 0.0d0
    endif
    wght(3) = dot_product(we,e1)
    wght(4) = dot_product(we,e2)

    return

contains

    function bspline(p,m,V,i,u)

        implicit none

        real(8)     :: bspline
        integer(4)  :: p,m
        real(8)     :: V(0:m)
        integer(4)  :: i
        real(8)     :: u

        real(8)     :: N(0:p+1)
        real(8)     :: Vleft,Vright
        real(8)     :: saved,temp
        integer(4)  :: j,k

        if ((i .eq. 0) .and. (u .eq. V(0))) then
            bspline = 1.d0
            return
        endif

        if ((i .eq. (m-p-1)) .and. (u .eq. V(m))) then
            bspline = 1.d0
            return
        endif

        if (u .lt. V(i) .or. u .ge. V(i+p+1)) then
            bspline = 0.d0
            return
        endif

        N = 0.0d0
        do j = 0,p
            if (u .ge. V(i+j) .and. u .lt. V(i+j+1)) then
                N(j) = 1.0d0
            else
                N(j) = 0.0d0
            endif
        enddo

        do k = 1,p
            if (N(0) .eq. 0.d0) then
                saved = 0.d0
            else
                saved = ((u - V(i))*N(0))/(V(i+k) - V(i))
            endif
            do j = 0,p-k
                Vleft = V(i+j+1)
                Vright = V(i+j+k+1)
                if (N(j+1) .eq. 0.d0) then
                    N(j) = saved
                    saved = 0.d0
                else
                    temp = N(j+1)/(Vright - Vleft)
                    N(j) = saved + (Vright - u)*temp
                    saved = (u - Vleft)*temp
                endif
            enddo
        enddo

        bspline = N(0)

        return

    end function bspline

    ! =====================================================
    ! Function to locate the knot span
    ! =====================================================

    integer(4) function findspan(n,p,u,V)

        implicit none

        integer(4),intent(in)   :: n,p
        real(8),intent(in)      :: u
        real(8),intent(in)      :: V(0:n+1)
        integer(4)              :: low,mid,high

        if (u .ge. V(n+1)) then
            findspan = n
            return
        endif

        low = p
        high = n+1
        mid = (low + high)/2

        do while (u .lt. V(mid) .or. u .ge. V(mid + 1))
            if (u .lt. V(mid)) then
                high = mid
            else
                low = mid
            endif
            mid = (low + high)/2
        end do

        findspan = mid
        return

    end function findspan

end subroutine vertwght

! #################################################################################
!                         Disturbance Wind Model Functions
! #################################################################################

subroutine initdwm(nmaxout,mmaxout)

    use hwm
    use dwm
    implicit none

    integer(4),intent(out)     :: nmaxout, mmaxout

    call findandopen(dwmdefault,23)
    if (allocated(termarr)) deallocate(termarr,coeff)
    read(23) nterm, mmax, nmax
    allocate(termarr(0:2, 0:nterm-1))
    read(23) termarr
    allocate(coeff(0:nterm-1))
    read(23) coeff
    read(23) twidth
    close(23)

    if (allocated(termval)) deallocate(termval,dpbar,dvbar,dwbar,mltterms,vshterms)
    nvshterm = ( ((nmax+1)*(nmax+2) - (nmax-mmax)*(nmax-mmax+1))/2 - 1 ) * 4 - 2*nmax
    allocate(termval(0:1, 0:nterm-1))
    allocate(dpbar(0:nmax,0:mmax),dvbar(0:nmax,0:mmax),dwbar(0:nmax,0:mmax))
    allocate(mltterms(0:mmax,0:1))
    allocate(vshterms(0:1, 0:nvshterm-1))
    dpbar = 0
    dvbar = 0
    dwbar = 0

    nmaxout = nmax
    mmaxout = mmax

    dwminit = .false.

    return

end subroutine initdwm

subroutine dwm07(IYD,SEC,ALT,GLAT,GLON,AP,DW)

    use hwm
    use dwm
    implicit none

    INTEGER,intent(in)      :: IYD
    REAL(4),intent(in)      :: SEC,ALT,GLAT,GLON
    REAL(4),intent(in)      :: AP(2)
    REAL(4),intent(out)     :: DW(2)

    real(4), save           :: day, ut, mlat, mlon, mlt, kp
    real(4)                 :: mmpwind, mzpwind
    real(4), save           :: f1e, f1n, f2e, f2n
    real(4), save           :: glatlast=1.0e16, glonlast=1.0e16
    real(4), save           :: daylast=1.0e16, utlast=1.0e16, aplast=1.0e16
    real(4), parameter      :: talt=125.0 !, twidth=5.0

    real(4), external       :: ap2kp, mltcalc

    !CONVERT AP TO KP
    if (ap(2) .ne. aplast) then
      kp = ap2kp(ap(2))
    endif

    !CONVERT GEO LAT/LON TO QD LAT/LON
    if ((glat .ne. glatlast) .or. (glon .ne. glonlast)) then
      call gd2qd(glat,glon,mlat,mlon,f1e,f1n,f2e,f2n)
    endif

    !COMPUTE QD MAGNETIC LOCAL TIME (LOW-PRECISION)
    day = real(mod(iyd,1000))
    ut = sec / 3600.0
    if ((day .ne. daylast) .or. (ut .ne. utlast) .or. &
        (glat .ne. glatlast) .or. (glon .ne. glonlast)) then
      mlt = mltcalc(mlat,mlon,day,ut)
    endif

    !RETRIEVE DWM WINDS
    call dwm07b(mlt, mlat, kp, mmpwind, mzpwind)

    !CONVERT TO GEOGRAPHIC COORDINATES
    dw(1) = f2n*mmpwind + f1n*mzpwind
    dw(2) = f2e*mmpwind + f1e*mzpwind

    !APPLY HEIGHT PROFILE
    dw = dw / (1 + exp(-(alt - talt)/twidth))

    glatlast = glat
    glonlast = glon
    daylast = day
    utlast = ut
    aplast = ap(2)

    return

end subroutine dwm07

subroutine dwm07b(mlt, mlat, kp, mmpwind, mzpwind)

    use hwm
    use dwm
    use alf,only:alfbasis
    implicit none

    real(4),intent(in)        :: mlt       !Magnetic local time (hours)
    real(4),intent(in)        :: mlat      !Magnetic latitude (degrees)
    real(4),intent(in)        :: kp        !3-hour Kp

    real(4),intent(out)       :: mmpwind   !Mer. disturbance wind (+north, QD coordinates)
    real(4),intent(out)       :: mzpwind   !Zon. disturbance wind (+east, QD coordinates)

    ! Local variables
    integer(4)                :: iterm, ivshterm, n, m
    real(4)                   :: termvaltemp(0:1)
    real(4),save              :: kpterms(0:2)
    real(4)                   :: latwgtterm
    real(4),save              :: mltlast=1.e16, mlatlast=1.e16, kplast=1.e16
    real(8)                   :: theta, phi, mphi

    real(4),external          :: latwgt2

    !LOAD MODEL PARAMETERS IF NECESSARY
    if (dwminit) call initdwm(nmaxdwm, mmaxdwm)

    !COMPUTE LATITUDE PART OF VSH TERMS
    if (mlat .ne. mlatlast) then
        theta = (90.d0 - dble(mlat))*dtor
        call alfbasis(nmax,mmax,theta,dpbar,dvbar,dwbar)
    endif

    !COMPUTE MLT PART OF VSH TERMS
    if (mlt .ne. mltlast) then
        phi = dble(mlt)*dtor*15.d0
        do m = 0, mmax
            mphi = dble(m)*phi
            mltterms(m,0) = dcos(mphi)
            mltterms(m,1) = dsin(mphi)
        enddo
    endif

    !COMPUTE VSH TERMS
    if ((mlat .ne. mlatlast) .or. (mlt .ne. mltlast)) then
        ivshterm = 0
        do n = 1, nmax
            vshterms(0,ivshterm)   = -sngl(dvbar(n,0)*mltterms(0,0))
            vshterms(0,ivshterm+1) =  sngl(dwbar(n,0)*mltterms(0,0))
            vshterms(1,ivshterm)   = -vshterms(0,ivshterm+1)
            vshterms(1,ivshterm+1) =  vshterms(0,ivshterm)
            ivshterm = ivshterm + 2
            do m = 1, mmax
                if (m .gt. n) cycle
                vshterms(0,ivshterm)   = -sngl(dvbar(n,m)*mltterms(m,0))
                vshterms(0,ivshterm+1) =  sngl(dvbar(n,m)*mltterms(m,1))
                vshterms(0,ivshterm+2) =  sngl(dwbar(n,m)*mltterms(m,1))
                vshterms(0,ivshterm+3) =  sngl(dwbar(n,m)*mltterms(m,0))
                vshterms(1,ivshterm)   = -vshterms(0,ivshterm+2)
                vshterms(1,ivshterm+1) = -vshterms(0,ivshterm+3)
                vshterms(1,ivshterm+2) =  vshterms(0,ivshterm)
                vshterms(1,ivshterm+3) =  vshterms(0,ivshterm+1)
                ivshterm = ivshterm + 4
            enddo
        enddo
    endif

    !COMPUTE KP TERMS
    if (kp .ne. kplast) then
        call kpspl3(kp, kpterms)
    endif

    !COMPUTE LATITUDINAL WEIGHTING TERM
    latwgtterm = latwgt2(mlat, mlt, kp, twidth)

    !GENERATE COUPLED TERMS
    do iterm = 0, nterm-1
        termvaltemp = (/1.0, 1.0/)
        if (termarr(0,iterm) .ne. 999) termvaltemp = termvaltemp * vshterms(0:1,termarr(0,iterm))
        if (termarr(1,iterm) .ne. 999) termvaltemp = termvaltemp * kpterms(termarr(1,iterm))
        if (termarr(2,iterm) .ne. 999) termvaltemp = termvaltemp * latwgtterm
        termval(0:1,iterm) = termvaltemp(0:1)
    enddo

    !APPLY COEFFICIENTS
    mmpwind = dot_product(coeff, termval(0,0:nterm-1))
    mzpwind = dot_product(coeff, termval(1,0:nterm-1))

    mlatlast = mlat
    mltlast = mlt
    kplast = kp

    return

end subroutine dwm07b

!=================================================================================
!                           Convert Ap to Kp
!=================================================================================

function ap2kp(ap0)

  real(4), parameter :: apgrid(0:27) = (/0.,2.,3.,4.,5.,6.,7.,9.,12.,15.,18., &
                                         22.,27.,32.,39.,48.,56.,67.,80.,94., &
                                       111.,132.,154.,179.,207.,236.,300.,400./)
  real(4), parameter :: kpgrid(0:27) = (/0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11., &
                                         12.,13.,14.,15.,16.,17.,18.,19.,20.,21., &
                                         22.,23.,24.,25.,26.,27./) / 3.0
  real(4)            :: ap0, ap, ap2kp
  integer(4)         :: i


  ap = ap0
  if (ap .lt. 0) ap = 0
  if (ap .gt. 400) ap = 400

  i = 1
  do while (ap .gt. apgrid(i))
    i = i + 1
  end do
  if (ap .eq. apgrid(i)) then
    ap2kp = kpgrid(i)
  else
    ap2kp = kpgrid(i-1) + (ap - apgrid(i-1)) / (3.0 * (apgrid(i) - apgrid(i-1)))
  end if

  return

end function ap2kp

! ########################################################################
!     Geographic <=> Geomagnetic Coordinate Transformations
!
!  Converts geodetic coordinates to Quasi-Dipole coordinates (Richmond, J. Geomag.
!  Geoelec., 1995, p. 191), using a spherical harmonic representation.
!
! ########################################################################

module gd2qdc

    implicit none

    integer(4)               :: nterm, nmax, mmax  !Spherical harmonic expansion parameters

    real(8), allocatable     :: coeff(:,:)         !Coefficients for spherical harmonic expansion
    real(8), allocatable     :: xcoeff(:)          !Coefficients for x coordinate
    real(8), allocatable     :: ycoeff(:)          !Coefficients for y coordinate
    real(8), allocatable     :: zcoeff(:)          !Coefficients for z coordinate
    real(8), allocatable     :: sh(:)              !Array to hold spherical harmonic functions
    real(8), allocatable     :: shgradtheta(:)     !Array to hold spherical harmonic gradients
    real(8), allocatable     :: shgradphi(:)       !Array to hold spherical harmonic gradients
    real(8), allocatable     :: normadj(:)         !Adjustment to VSH normalization factor
    real(4)                  :: epoch, alt

    real(8), parameter       :: pi = 3.1415926535897932d0
    real(8), parameter       :: dtor = pi/180.0d0
    real(8), parameter       :: sineps = 0.39781868d0

    logical                  :: gd2qdinit = .true.

contains

    subroutine initgd2qd()

        use hwm
        implicit none

        character(128), parameter   :: datafile='gd2qd.dat'
        integer(4)                  :: iterm, n
        integer(4)                  :: j

        call findandopen(datafile,23)
        read(23) nmax, mmax, nterm, epoch, alt
        if (allocated(coeff)) then
            deallocate(coeff,xcoeff,ycoeff,zcoeff,sh,shgradtheta,shgradphi,normadj)
        endif
        allocate( coeff(0:nterm-1, 0:2) )
        read(23) coeff
        close(23)

        allocate( xcoeff(0:nterm-1) )
        allocate( ycoeff(0:nterm-1) )
        allocate( zcoeff(0:nterm-1) )
        allocate( sh(0:nterm-1) )
        allocate( shgradtheta(0:nterm-1) )
        allocate( shgradphi(0:nterm-1) )
        allocate( normadj(0:nmax) )

        do iterm = 0, nterm-1
            xcoeff(iterm) = coeff(iterm,0)
            ycoeff(iterm) = coeff(iterm,1)
            zcoeff(iterm) = coeff(iterm,2)
        enddo

        do n = 0, nmax
            normadj(n) = dsqrt(dble(n*(n+1)))
        end do

        nmaxqdc = nmax
        mmaxqdc = mmax

        gd2qdinit = .false.

        return

    end subroutine initgd2qd

end module gd2qdc

subroutine gd2qd(glatin,glon,qlat,qlon,f1e,f1n,f2e,f2n)

    use hwm
    use gd2qdc
    use alf

    implicit none

    real(4), intent(in)         :: glatin, glon
    real(4), intent(out)        :: qlat, qlon
    real(4), intent(out)        :: f1e, f1n, f2e, f2n

    integer(4)               :: n, m, i
    real(8)                  :: glat, theta, phi
    real(8)                  :: mphi, cosmphi, sinmphi
    real(8)                  :: x, y, z
    real(8)                  :: cosqlat, cosqlon, sinqlon
    real(8)                  :: xgradtheta, ygradtheta, zgradtheta
    real(8)                  :: xgradphi, ygradphi, zgradphi
    real(8)                  :: qlonrad

   if (gd2qdinit) call initgd2qd()

    glat = dble(glatin)
    if (glat .ne. glatalf) then
      theta = (90.d0 - glat) * dtor
      call alfbasis(nmax,mmax,theta,gpbar,gvbar,gwbar)
      glatalf = glat
    endif
    phi = dble(glon) * dtor

    i = 0
    do n = 0, nmax
      sh(i) = gpbar(n,0)
      shgradtheta(i) =  gvbar(n,0) * normadj(n)
      shgradphi(i) = 0
      i = i + 1
    enddo
    do m = 1, mmax
      mphi = dble(m) * phi
      cosmphi = dcos(mphi)
      sinmphi = dsin(mphi)
      do n = m, nmax
        sh(i)   = gpbar(n,m) * cosmphi
        sh(i+1) = gpbar(n,m) * sinmphi
        shgradtheta(i)   =  gvbar(n,m) * normadj(n) * cosmphi
        shgradtheta(i+1) =  gvbar(n,m) * normadj(n) * sinmphi
        shgradphi(i)     = -gwbar(n,m) * normadj(n) * sinmphi
        shgradphi(i+1)   =  gwbar(n,m) * normadj(n) * cosmphi
        i = i + 2
      enddo
    enddo

    x = dot_product(sh, xcoeff)
    y = dot_product(sh, ycoeff)
    z = dot_product(sh, zcoeff)

    qlonrad = datan2(y,x)
    cosqlon = dcos(qlonrad)
    sinqlon = dsin(qlonrad)
    cosqlat = x*cosqlon + y*sinqlon

    qlat = sngl(datan2(z,cosqlat) / dtor)
    qlon = sngl(qlonrad / dtor)

    xgradtheta = dot_product(shgradtheta, xcoeff)
    ygradtheta = dot_product(shgradtheta, ycoeff)
    zgradtheta = dot_product(shgradtheta, zcoeff)

    xgradphi = dot_product(shgradphi, xcoeff)
    ygradphi = dot_product(shgradphi, ycoeff)
    zgradphi = dot_product(shgradphi, zcoeff)

    f1e = sngl(-zgradtheta*cosqlat + (xgradtheta*cosqlon + ygradtheta*sinqlon)*z )
    f1n = sngl(-zgradphi*cosqlat   + (xgradphi*cosqlon   + ygradphi*sinqlon)*z )
    f2e = sngl( ygradtheta*cosqlon - xgradtheta*sinqlon )
    f2n = sngl( ygradphi*cosqlon   - xgradphi*sinqlon )

    return

end subroutine gd2qd

!==================================================================================
!                  (Function) Calculate Magnetic Local Time
!==================================================================================

function mltcalc(qlat,qlon,day,ut)

    use hwm
    use gd2qdc
    use alf

    implicit none

    real(4), intent(in)      :: qlat, qlon, day, ut
    real(4)                  :: mltcalc

    integer(4)               :: n, m, i
    real(8)                  :: asunglat, asunglon, asunqlon
    real(8)                  :: glat, theta, phi
    real(8)                  :: mphi, cosmphi, sinmphi
    real(8)                  :: x, y
    real(8)                  :: cosqlat, cosqlon, sinqlon
    real(8)                  :: qlonrad

    if (gd2qdinit) call initgd2qd()

    !COMPUTE GEOGRAPHIC COORDINATES OF ANTI-SUNWARD DIRECTION (LOW PRECISION)
    asunglat = -asin(sin((dble(day)+dble(ut)/24.0d0-80.0d0)*dtor) * sineps) / dtor
    asunglon = -ut * 15.d0

    !COMPUTE MAGNETIC COORDINATES OF ANTI-SUNWARD DIRECTION
    theta = (90.d0 - asunglat) * dtor
    call alfbasis(nmax,mmax,theta,spbar,svbar,swbar)
    phi = asunglon * dtor
    i = 0
    do n = 0, nmax
      sh(i) = spbar(n,0)
      i = i + 1
    enddo
    do m = 1, mmax
      mphi = dble(m) * phi
      cosmphi = dcos(mphi)
      sinmphi = dsin(mphi)
      do n = m, nmax
        sh(i)   = spbar(n,m) * cosmphi
        sh(i+1) = spbar(n,m) * sinmphi
        i = i + 2
      enddo
    enddo
    x = dot_product(sh, xcoeff)
    y = dot_product(sh, ycoeff)
    asunqlon = sngl(datan2(y,x) / dtor)

    !COMPUTE MLT
    mltcalc = (qlon - asunqlon) / 15.0

    return

end function mltcalc

!================================================================================
!                           Cubic Spline interpolation of Kp
!================================================================================

subroutine kpspl3(kp, kpterms)

    implicit none

    real(4), intent(in)       :: kp
    real(4), intent(out)      :: kpterms(0:2)

    integer(4)                :: i, j
    real(4)                   :: x, kpspl(0:6)
    real(4), parameter        :: node(0:7)=(/-10., -8., 0., 2., 5., 8., 18., 20./)

    x = max(kp, 0.0)
    x = min(x,  8.0)

    kpterms(0:2) = 0.0
    do i = 0, 6
      kpspl(i) = 0.0
      if ((x .ge. node(i)) .and. (x .lt. node(i+1))) kpspl(i) = 1.0
    enddo
    do j = 2,3
      do i = 0, 8-j-1
        kpspl(i) = kpspl(i)   * (x - node(i))   / (node(i+j-1) - node(i)) &
                 + kpspl(i+1) * (node(i+j) - x) / (node(i+j)   - node(i+1))
      enddo
    enddo
    kpterms(0) = kpspl(0) + kpspl(1)
    kpterms(1) = kpspl(2)
    kpterms(2) = kpspl(3) + kpspl(4)

    return

end subroutine kpspl3

!================================================================================
!                           (Function) Latitude weighting factors
!================================================================================

function latwgt2(mlat, mlt, kp0, twidth)

    implicit none

    real(4)                   :: latwgt2
    real(4)                   :: mlat, mlt, kp0, kp, twidth
    real(4)                   :: mltrad, sinmlt, cosmlt, tlat

    real(4), parameter :: coeff(0:5) = (/ 65.7633,  -4.60256,  -3.53915,  &
                                         -1.99971,  -0.752193,  0.972388 /)

    real(4), parameter :: pi=3.141592653590
    real(4), parameter :: dtor=pi/180.d0

    mltrad = mlt * 15.0 * dtor
    sinmlt = sin(mltrad)
    cosmlt = cos(mltrad)
    kp = max(kp0, 0.0)
    kp = min(kp,  8.0)
    tlat = coeff(0) + coeff(1)*cosmlt + coeff(2)*sinmlt +   &
           kp*(coeff(3) + coeff(4)*cosmlt + coeff(5)*sinmlt)
    latwgt2 = 1.0 / ( 1 + exp(-(abs(mlat)-tlat)/twidth) )

    return

end function latwgt2

! ========================================================================
! Utility to find and open the supporting data files
! ========================================================================

subroutine findandopen(datafile,unitid)

    implicit none

    character(128)      :: datafile
    integer             :: unitid
    character(128)      :: hwmpath
    logical             :: havefile
    integer             :: i

    i = index(datafile,'bin')
    if (i .eq. 0) then
        inquire(file=trim(datafile),exist=havefile)
        if (havefile) open(unit=unitid,file=trim(datafile),status='old',form='unformatted')
        if (.not. havefile) then
            call get_environment_variable('HWMPATH',hwmpath)
            inquire(file=trim(hwmpath)//'/'//trim(datafile),exist=havefile)
            if (havefile) open(unit=unitid, &
                file=trim(hwmpath)//'/'//trim(datafile),status='old',form='unformatted')
        endif
        if (.not. havefile) then
            inquire(file='../Meta/'//trim(datafile),exist=havefile)
            if (havefile) open(unit=unitid, &
                file='../Meta/'//trim(datafile),status='old',form='unformatted')
        endif
    else
        inquire(file=trim(datafile),exist=havefile)
        if (havefile) open(unit=unitid,file=trim(datafile),status='old',access='stream')
        if (.not. havefile) then
            call get_environment_variable('HWMPATH',hwmpath)
            inquire(file=trim(hwmpath)//'/'//trim(datafile),exist=havefile)
            if (havefile) open(unit=unitid, &
                file=trim(hwmpath)//'/'//trim(datafile),status='old',access='stream')
        endif
        if (.not. havefile) then
            inquire(file='../Meta/'//trim(datafile),exist=havefile)
            if (havefile) open(unit=unitid, &
                file='../Meta/'//trim(datafile),status='old',access='stream')
        endif
    endif

    if (havefile) then
        return
    else
        print *,"Can not find file ",trim(datafile)
        stop
    endif

end subroutine findandopen