1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
|
"""
irradiance.py from pvlib
========================
Stripped down, vendorized version from:
https://github.com/pvlib/pvlib-python/
Calculate the solar position using the NREL SPA algorithm either using
numpy arrays or compiling the code to machine language with numba.
The rational for not including this library as a strict dependency is to avoid
including a dependency on pandas, keeping load time low, and PyPy compatibility
Created by Tony Lorenzo (@alorenzo175), Univ. of Arizona, 2015
For a full list of contributors to this file, see the `pvlib` repository.
The copyright notice (BSD-3 clause) is as follows:
BSD 3-Clause License
Copyright (c) 2013-2018, Sandia National Laboratories and pvlib python
Development Team
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
Neither the name of the {organization} nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from math import acos, asin, atan, atan2, cos, degrees, radians, sin, tan
from fluids.constants import deg2rad, rad2deg
from fluids.numerics import sincos
__all__ = ['julian_day_dt', 'julian_day', 'julian_ephemeris_day', 'julian_century',
'julian_ephemeris_century', 'julian_ephemeris_millennium', 'heliocentric_longitude',
'heliocentric_latitude', 'heliocentric_radius_vector', 'geocentric_longitude',
'geocentric_latitude', 'mean_elongation', 'mean_anomaly_sun', 'mean_anomaly_moon',
'moon_argument_latitude', 'moon_ascending_longitude', 'longitude_nutation',
'obliquity_nutation', 'mean_ecliptic_obliquity', 'true_ecliptic_obliquity',
'aberration_correction', 'apparent_sun_longitude', 'mean_sidereal_time',
'apparent_sidereal_time', 'geocentric_sun_right_ascension', 'geocentric_sun_declination',
'local_hour_angle', 'equatorial_horizontal_parallax', 'uterm', 'xterm', 'yterm',
'parallax_sun_right_ascension', 'topocentric_sun_right_ascension', 'topocentric_sun_declination',
'topocentric_local_hour_angle', 'topocentric_elevation_angle_without_atmosphere',
'atmospheric_refraction_correction', 'topocentric_elevation_angle', 'topocentric_zenith_angle',
'topocentric_astronomers_azimuth', 'topocentric_azimuth_angle', 'sun_mean_longitude',
'equation_of_time', 'calculate_deltat', 'longitude_obliquity_nutation',
'transit_sunrise_sunset',
]
nan = float("nan")
HELIO_RADIUS_TABLE_LIST_0 = [[100013989.0, 0.0, 0.0],
[1670700.0, 3.0984635, 6283.07585],
[13956.0, 3.05525, 12566.1517],
[3084.0, 5.1985, 77713.7715],
[1628.0, 1.1739, 5753.3849],
[1576.0, 2.8469, 7860.4194],
[925.0, 5.453, 11506.77],
[542.0, 4.564, 3930.21],
[472.0, 3.661, 5884.927],
[346.0, 0.964, 5507.553],
[329.0, 5.9, 5223.694],
[307.0, 0.299, 5573.143],
[243.0, 4.273, 11790.629],
[212.0, 5.847, 1577.344],
[186.0, 5.022, 10977.079],
[175.0, 3.012, 18849.228],
[110.0, 5.055, 5486.778],
[98.0, 0.89, 6069.78],
[86.0, 5.69, 15720.84],
[86.0, 1.27, 161000.69],
[65.0, 0.27, 17260.15],
[63.0, 0.92, 529.69],
[57.0, 2.01, 83996.85],
[56.0, 5.24, 71430.7],
[49.0, 3.25, 2544.31],
[47.0, 2.58, 775.52],
[45.0, 5.54, 9437.76],
[43.0, 6.01, 6275.96],
[39.0, 5.36, 4694.0],
[38.0, 2.39, 8827.39],
[37.0, 0.83, 19651.05],
[37.0, 4.9, 12139.55],
[36.0, 1.67, 12036.46],
[35.0, 1.84, 2942.46],
[33.0, 0.24, 7084.9],
[32.0, 0.18, 5088.63],
[32.0, 1.78, 398.15],
[28.0, 1.21, 6286.6],
[28.0, 1.9, 6279.55],
[26.0, 4.59, 10447.39]]
HELIO_RADIUS_TABLE_LIST_1 = [[103019.0, 1.10749, 6283.07585],
[1721.0, 1.0644, 12566.1517],
[702.0, 3.142, 0.0],
[32.0, 1.02, 18849.23],
[31.0, 2.84, 5507.55],
[25.0, 1.32, 5223.69],
[18.0, 1.42, 1577.34],
[10.0, 5.91, 10977.08],
[9.0, 1.42, 6275.96],
[9.0, 0.27, 5486.78],
]
HELIO_RADIUS_TABLE_LIST_2 = [[4359.0, 5.7846, 6283.0758],
[124.0, 5.579, 12566.152],
[12.0, 3.14, 0.0],
[9.0, 3.63, 77713.77],
[6.0, 1.87, 5573.14],
[3.0, 5.47, 18849.23]]
HELIO_RADIUS_TABLE_LIST_3 = [[145.0, 4.273, 6283.076],
[7.0, 3.92, 12566.15]]
HELIO_RADIUS_TABLE_LIST_4 = [[4.0, 2.56, 6283.08]]
NUTATION_YTERM_LIST_0 = [0.0, -2.0, 0.0, 0.0, 0.0, 0.0, -2.0, 0.0, 0.0, -2.0, -2.0, -2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 0.0, -2.0, 0.0, 2.0, 0.0, 0.0, -2.0, 0.0, -2.0, 0.0, 0.0, 2.0, -2.0, 0.0, -2.0, 0.0, 0.0, 2.0, 2.0, 0.0, -2.0, 0.0, 2.0, 2.0, -2.0, -2.0, 2.0, 2.0, 0.0, -2.0, -2.0, 0.0, -2.0, -2.0, 0.0, -1.0, -2.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 2.0, 0.0, 2.0]
NUTATION_YTERM_LIST_1 = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 2.0, 1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 1.0, -1.0, -1.0, 0.0, -1.0]
NUTATION_YTERM_LIST_2 = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 1.0, -1.0, -1.0, 1.0, 2.0, -2.0, 0.0, 2.0, 2.0, 1.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 2.0, -1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 2.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, 2.0, 2.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, 1.0, 1.0, 1.0, -1.0, 3.0, 0.0]
NUTATION_YTERM_LIST_3 = [0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, -2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, -2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0]
NUTATION_YTERM_LIST_4 = [1.0, 2.0, 2.0, 2.0, 0.0, 0.0, 2.0, 1.0, 2.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 1.0, 1.0, 0.0, 1.0, 2.0, 2.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0, 1.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 2.0, 2.0, 0.0, 2.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0]
NUTATION_ABCD_LIST = [[-171996.0, -174.2, 92025.0, 8.9],
[-13187.0, -1.6, 5736.0, -3.1],
[-2274.0, -0.2, 977.0, -0.5],
[2062.0, 0.2, -895.0, 0.5],
[1426.0, -3.4, 54.0, -0.1],
[712.0, 0.1, -7.0, 0.0],
[-517.0, 1.2, 224.0, -0.6],
[-386.0, -0.4, 200.0, 0.0],
[-301.0, 0.0, 129.0, -0.1],
[217.0, -0.5, -95.0, 0.3],
[-158.0, 0.0, 0.0, 0.0],
[129.0, 0.1, -70.0, 0.0],
[123.0, 0.0, -53.0, 0.0],
[63.0, 0.0, 0.0, 0.0],
[63.0, 0.1, -33.0, 0.0],
[-59.0, 0.0, 26.0, 0.0],
[-58.0, -0.1, 32.0, 0.0],
[-51.0, 0.0, 27.0, 0.0],
[48.0, 0.0, 0.0, 0.0],
[46.0, 0.0, -24.0, 0.0],
[-38.0, 0.0, 16.0, 0.0],
[-31.0, 0.0, 13.0, 0.0],
[29.0, 0.0, 0.0, 0.0],
[29.0, 0.0, -12.0, 0.0],
[26.0, 0.0, 0.0, 0.0],
[-22.0, 0.0, 0.0, 0.0],
[21.0, 0.0, -10.0, 0.0],
[17.0, -0.1, 0.0, 0.0],
[16.0, 0.0, -8.0, 0.0],
[-16.0, 0.1, 7.0, 0.0],
[-15.0, 0.0, 9.0, 0.0],
[-13.0, 0.0, 7.0, 0.0],
[-12.0, 0.0, 6.0, 0.0],
[11.0, 0.0, 0.0, 0.0],
[-10.0, 0.0, 5.0, 0.0],
[-8.0, 0.0, 3.0, 0.0],
[7.0, 0.0, -3.0, 0.0],
[-7.0, 0.0, 0.0, 0.0],
[-7.0, 0.0, 3.0, 0.0],
[-7.0, 0.0, 3.0, 0.0],
[6.0, 0.0, 0.0, 0.0],
[6.0, 0.0, -3.0, 0.0],
[6.0, 0.0, -3.0, 0.0],
[-6.0, 0.0, 3.0, 0.0],
[-6.0, 0.0, 3.0, 0.0],
[5.0, 0.0, 0.0, 0.0],
[-5.0, 0.0, 3.0, 0.0],
[-5.0, 0.0, 3.0, 0.0],
[-5.0, 0.0, 3.0, 0.0],
[4.0, 0.0, 0.0, 0.0],
[4.0, 0.0, 0.0, 0.0],
[4.0, 0.0, 0.0, 0.0],
[-4.0, 0.0, 0.0, 0.0],
[-4.0, 0.0, 0.0, 0.0],
[-4.0, 0.0, 0.0, 0.0],
[3.0, 0.0, 0.0, 0.0],
[-3.0, 0.0, 0.0, 0.0],
[-3.0, 0.0, 0.0, 0.0],
[-3.0, 0.0, 0.0, 0.0],
[-3.0, 0.0, 0.0, 0.0],
[-3.0, 0.0, 0.0, 0.0],
[-3.0, 0.0, 0.0, 0.0],
[-3.0, 0.0, 0.0, 0.0]]
HELIO_LAT_TABLE_LIST_0 = [[280.0, 3.199, 84334.662],
[102.0, 5.422, 5507.553],
[80.0, 3.88, 5223.69],
[44.0, 3.7, 2352.87],
[32.0, 4.0, 1577.34]]
HELIO_LAT_TABLE_LIST_1 = [[9.0, 3.9, 5507.55],
[6.0, 1.73, 5223.69]]
#HELIO_LONG_TABLE_LIST = HELIO_LONG_TABLE.tolist()
HELIO_LONG_TABLE_LIST_0 = [[175347046.0, 0.0, 0.0],
[3341656.0, 4.6692568, 6283.07585],
[34894.0, 4.6261, 12566.1517],
[3497.0, 2.7441, 5753.3849],
[3418.0, 2.8289, 3.5231],
[3136.0, 3.6277, 77713.7715],
[2676.0, 4.4181, 7860.4194],
[2343.0, 6.1352, 3930.2097],
[1324.0, 0.7425, 11506.7698],
[1273.0, 2.0371, 529.691],
[1199.0, 1.1096, 1577.3435],
[990.0, 5.233, 5884.927],
[902.0, 2.045, 26.298],
[857.0, 3.508, 398.149],
[780.0, 1.179, 5223.694],
[753.0, 2.533, 5507.553],
[505.0, 4.583, 18849.228],
[492.0, 4.205, 775.523],
[357.0, 2.92, 0.067],
[317.0, 5.849, 11790.629],
[284.0, 1.899, 796.298],
[271.0, 0.315, 10977.079],
[243.0, 0.345, 5486.778],
[206.0, 4.806, 2544.314],
[205.0, 1.869, 5573.143],
[202.0, 2.458, 6069.777],
[156.0, 0.833, 213.299],
[132.0, 3.411, 2942.463],
[126.0, 1.083, 20.775],
[115.0, 0.645, 0.98],
[103.0, 0.636, 4694.003],
[102.0, 0.976, 15720.839],
[102.0, 4.267, 7.114],
[99.0, 6.21, 2146.17],
[98.0, 0.68, 155.42],
[86.0, 5.98, 161000.69],
[85.0, 1.3, 6275.96],
[85.0, 3.67, 71430.7],
[80.0, 1.81, 17260.15],
[79.0, 3.04, 12036.46],
[75.0, 1.76, 5088.63],
[74.0, 3.5, 3154.69],
[74.0, 4.68, 801.82],
[70.0, 0.83, 9437.76],
[62.0, 3.98, 8827.39],
[61.0, 1.82, 7084.9],
[57.0, 2.78, 6286.6],
[56.0, 4.39, 14143.5],
[56.0, 3.47, 6279.55],
[52.0, 0.19, 12139.55],
[52.0, 1.33, 1748.02],
[51.0, 0.28, 5856.48],
[49.0, 0.49, 1194.45],
[41.0, 5.37, 8429.24],
[41.0, 2.4, 19651.05],
[39.0, 6.17, 10447.39],
[37.0, 6.04, 10213.29],
[37.0, 2.57, 1059.38],
[36.0, 1.71, 2352.87],
[36.0, 1.78, 6812.77],
[33.0, 0.59, 17789.85],
[30.0, 0.44, 83996.85],
[30.0, 2.74, 1349.87],
[25.0, 3.16, 4690.48]]
HELIO_LONG_TABLE_LIST_1 = [[628331966747.0, 0.0, 0.0],
[206059.0, 2.678235, 6283.07585],
[4303.0, 2.6351, 12566.1517],
[425.0, 1.59, 3.523],
[119.0, 5.796, 26.298],
[109.0, 2.966, 1577.344],
[93.0, 2.59, 18849.23],
[72.0, 1.14, 529.69],
[68.0, 1.87, 398.15],
[67.0, 4.41, 5507.55],
[59.0, 2.89, 5223.69],
[56.0, 2.17, 155.42],
[45.0, 0.4, 796.3],
[36.0, 0.47, 775.52],
[29.0, 2.65, 7.11],
[21.0, 5.34, 0.98],
[19.0, 1.85, 5486.78],
[19.0, 4.97, 213.3],
[17.0, 2.99, 6275.96],
[16.0, 0.03, 2544.31],
[16.0, 1.43, 2146.17],
[15.0, 1.21, 10977.08],
[12.0, 2.83, 1748.02],
[12.0, 3.26, 5088.63],
[12.0, 5.27, 1194.45],
[12.0, 2.08, 4694.0],
[11.0, 0.77, 553.57],
[10.0, 1.3, 6286.6],
[10.0, 4.24, 1349.87],
[9.0, 2.7, 242.73],
[9.0, 5.64, 951.72],
[8.0, 5.3, 2352.87],
[6.0, 2.65, 9437.76],
[6.0, 4.67, 4690.48],
]
HELIO_LONG_TABLE_LIST_2 = [[52919.0, 0.0, 0.0],
[8720.0, 1.0721, 6283.0758],
[309.0, 0.867, 12566.152],
[27.0, 0.05, 3.52],
[16.0, 5.19, 26.3],
[16.0, 3.68, 155.42],
[10.0, 0.76, 18849.23],
[9.0, 2.06, 77713.77],
[7.0, 0.83, 775.52],
[5.0, 4.66, 1577.34],
[4.0, 1.03, 7.11],
[4.0, 3.44, 5573.14],
[3.0, 5.14, 796.3],
[3.0, 6.05, 5507.55],
[3.0, 1.19, 242.73],
[3.0, 6.12, 529.69],
[3.0, 0.31, 398.15],
[3.0, 2.28, 553.57],
[2.0, 4.38, 5223.69],
[2.0, 3.75, 0.98]]
HELIO_LONG_TABLE_LIST_3 = [[289.0, 5.844, 6283.076],
[35.0, 0.0, 0.0],
[17.0, 5.49, 12566.15],
[3.0, 5.2, 155.42],
[1.0, 4.72, 3.52],
[1.0, 5.3, 18849.23],
[1.0, 5.97, 242.73]
]
HELIO_LONG_TABLE_LIST_4 = [[114.0, 3.142, 0.0],
[8.0, 4.13, 6283.08],
[1.0, 3.84, 12566.15]]
def julian_day_dt(year, month, day, hour, minute, second, microsecond):
"""This is the original way to calculate the julian day from the NREL paper.
However, it is much faster to convert to unix/epoch time and then convert to
julian day. Note that the date must be UTC.
"""
# Not used anywhere!
if month <= 2:
year = year-1
month = month+12
a = int(year/100)
b = 2 - a + int(a * 0.25)
frac_of_day = (microsecond + (second + minute * 60 + hour * 3600)
) * 1.0 / (3600*24)
d = day + frac_of_day
jd = (int(365.25 * (year + 4716)) + int(30.6001 * (month + 1)) + d +
b - 1524.5)
return jd
def julian_day(unixtime):
jd = unixtime*1.1574074074074073e-05 + 2440587.5
# jd = unixtime/86400.0 + 2440587.5
return jd
def julian_ephemeris_day(julian_day, delta_t):
jde = julian_day + delta_t*1.1574074074074073e-05
# jde = julian_day + delta_t * 1.0 / 86400.0
return jde
def julian_century(julian_day):
jc = (julian_day - 2451545.0)*2.7378507871321012e-05# * 1.0 / 36525
return jc
def julian_ephemeris_century(julian_ephemeris_day):
# 1/36525.0 = 2.7378507871321012e-05
jce = (julian_ephemeris_day - 2451545.0)*2.7378507871321012e-05
return jce
def julian_ephemeris_millennium(julian_ephemeris_century):
jme = julian_ephemeris_century*0.1
return jme
def heliocentric_longitude(jme):
# Might be able to replace this with a pade approximation?
# Looping over rows is probably still faster than (a, b, c)
# Maximum optimization
l0 = 0.0
l1 = 0.0
l2 = 0.0
l3 = 0.0
l4 = 0.0
l5 = 0.0
for row in range(64):
HELIO_LONG_TABLE_LIST_0_ROW = HELIO_LONG_TABLE_LIST_0[row]
l0 += (HELIO_LONG_TABLE_LIST_0_ROW[0]
* cos(HELIO_LONG_TABLE_LIST_0_ROW[1]
+ HELIO_LONG_TABLE_LIST_0_ROW[2] * jme)
)
for row in range(34):
HELIO_LONG_TABLE_LIST_1_ROW = HELIO_LONG_TABLE_LIST_1[row]
l1 += (HELIO_LONG_TABLE_LIST_1_ROW[0]
* cos(HELIO_LONG_TABLE_LIST_1_ROW[1]
+ HELIO_LONG_TABLE_LIST_1_ROW[2] * jme)
)
for row in range(20):
HELIO_LONG_TABLE_LIST_2_ROW = HELIO_LONG_TABLE_LIST_2[row]
l2 += (HELIO_LONG_TABLE_LIST_2_ROW[0]
* cos(HELIO_LONG_TABLE_LIST_2_ROW[1]
+ HELIO_LONG_TABLE_LIST_2_ROW[2] * jme)
)
for row in range(7):
HELIO_LONG_TABLE_LIST_3_ROW = HELIO_LONG_TABLE_LIST_3[row]
l3 += (HELIO_LONG_TABLE_LIST_3_ROW[0]
* cos(HELIO_LONG_TABLE_LIST_3_ROW[1]
+ HELIO_LONG_TABLE_LIST_3_ROW[2] * jme)
)
for row in range(3):
HELIO_LONG_TABLE_LIST_4_ROW = HELIO_LONG_TABLE_LIST_4[row]
l4 += (HELIO_LONG_TABLE_LIST_4_ROW[0]
* cos(HELIO_LONG_TABLE_LIST_4_ROW[1]
+ HELIO_LONG_TABLE_LIST_4_ROW[2] * jme)
)
# l5 = (HELIO_LONG_TABLE_LIST_5[0][0]*cos(HELIO_LONG_TABLE_LIST_5[0][1]))
l5 = -0.9999987317275395
l_rad = (jme*(jme*(jme*(jme*(jme*l5 + l4) + l3) + l2) + l1) + l0)*1E-8
l = rad2deg*l_rad
return l % 360
def heliocentric_latitude(jme):
b0 = 0.0
b1 = 0.0
for row in range(5):
HELIO_LAT_TABLE_LIST_0_ROW = HELIO_LAT_TABLE_LIST_0[row]
b0 += (HELIO_LAT_TABLE_LIST_0_ROW[0]
* cos(HELIO_LAT_TABLE_LIST_0_ROW[1]
+ HELIO_LAT_TABLE_LIST_0_ROW[2] * jme)
)
HELIO_LAT_TABLE_LIST_1_ROW = HELIO_LAT_TABLE_LIST_1[0]
b1 += (HELIO_LAT_TABLE_LIST_1_ROW[0]
* cos(HELIO_LAT_TABLE_LIST_1_ROW[1]
+ HELIO_LAT_TABLE_LIST_1_ROW[2] * jme))
HELIO_LAT_TABLE_LIST_1_ROW = HELIO_LAT_TABLE_LIST_1[1]
b1 += (HELIO_LAT_TABLE_LIST_1_ROW[0]
* cos(HELIO_LAT_TABLE_LIST_1_ROW[1]
+ HELIO_LAT_TABLE_LIST_1_ROW[2] * jme))
b_rad = (b0 + b1 * jme)*1E-8
b = rad2deg*b_rad
return b
def heliocentric_radius_vector(jme):
# no optimizations can be thought of
r0 = 0.0
r1 = 0.0
r2 = 0.0
r3 = 0.0
r4 = 0.0
# Would be possible to save a few multiplies of table1row[2]*jme, table1row[1]*jme as they are dups
for row in range(40):
table0row = HELIO_RADIUS_TABLE_LIST_0[row]
r0 += (table0row[0]*cos(table0row[1] + table0row[2]*jme))
for row in range(10):
table1row = HELIO_RADIUS_TABLE_LIST_1[row]
r1 += (table1row[0]*cos(table1row[1] + table1row[2]*jme))
for row in range(6):
table2row = HELIO_RADIUS_TABLE_LIST_2[row]
r2 += (table2row[0]*cos(table2row[1] + table2row[2]*jme))
table3row = HELIO_RADIUS_TABLE_LIST_3[0]
r3 += (table3row[0]*cos(table3row[1] + table3row[2]*jme))
table3row = HELIO_RADIUS_TABLE_LIST_3[1]
r3 += (table3row[0]*cos(table3row[1] + table3row[2]*jme))
# table4row = HELIO_RADIUS_TABLE_LIST_4[0]
# r4 = (table4row[0]*cos(table4row[1] + table4row[2]*jme))
r4 = (4.0*cos(2.56 + 6283.08*jme))
return (jme*(jme*(jme*(jme*r4 + r3) + r2) + r1) + r0)*1E-8
def geocentric_longitude(heliocentric_longitude):
theta = heliocentric_longitude + 180.0
return theta % 360
def geocentric_latitude(heliocentric_latitude):
beta = -heliocentric_latitude
return beta
def mean_elongation(julian_ephemeris_century):
return (julian_ephemeris_century*(julian_ephemeris_century
*(5.27776898149614e-6*julian_ephemeris_century - 0.0019142)
+ 445267.11148) + 297.85036)
# x0 = (297.85036
# + 445267.111480 * julian_ephemeris_century
# - 0.0019142 * julian_ephemeris_century**2
# + julian_ephemeris_century**3 / 189474.0)
# return x0
def mean_anomaly_sun(julian_ephemeris_century):
return (julian_ephemeris_century*(julian_ephemeris_century*(
-3.33333333333333e-6*julian_ephemeris_century - 0.0001603)
+ 35999.05034) + 357.52772)
# x1 = (357.52772
# + 35999.050340 * julian_ephemeris_century
# - 0.0001603 * julian_ephemeris_century**2
# - julian_ephemeris_century**3 / 300000.0)
# return x1
def mean_anomaly_moon(julian_ephemeris_century):
return (julian_ephemeris_century*(julian_ephemeris_century*(
1.77777777777778e-5*julian_ephemeris_century + 0.0086972)
+ 477198.867398) + 134.96298)
# x2 = (134.96298
# + 477198.867398 * julian_ephemeris_century
# + 0.0086972 * julian_ephemeris_century**2
# + julian_ephemeris_century**3 / 56250)
# return x2
def moon_argument_latitude(julian_ephemeris_century):
return julian_ephemeris_century*(julian_ephemeris_century*(
3.05558101873071e-6*julian_ephemeris_century - 0.0036825)
+ 483202.017538) + 93.27191
# x3 = (93.27191
# + 483202.017538 * julian_ephemeris_century
# - 0.0036825 * julian_ephemeris_century**2
# + julian_ephemeris_century**3 / 327270)
# return x3
def moon_ascending_longitude(julian_ephemeris_century):
return (julian_ephemeris_century*(julian_ephemeris_century*(
2.22222222222222e-6*julian_ephemeris_century + 0.0020708)
- 1934.136261) + 125.04452)
# x4 = (125.04452
# - 1934.136261 * julian_ephemeris_century
# + 0.0020708 * julian_ephemeris_century**2
# + julian_ephemeris_century**3 / 450000)
# return x4
def longitude_obliquity_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4):
x0, x1, x2, x3, x4 = deg2rad*x0, deg2rad*x1, deg2rad*x2, deg2rad*x3, deg2rad*x4
delta_psi_sum = 0.0
delta_eps_sum = 0.0
# If the sincos formulation is used, the speed up is ~8% with numba.
for row in range(63):
arg = (NUTATION_YTERM_LIST_0[row]*x0 +
NUTATION_YTERM_LIST_1[row]*x1 +
NUTATION_YTERM_LIST_2[row]*x2 +
NUTATION_YTERM_LIST_3[row]*x3 +
NUTATION_YTERM_LIST_4[row]*x4)
arr = NUTATION_ABCD_LIST[row]
sinarg, cosarg = sincos(arg)
# sinarg = sin(arg)
# cosarg = sqrt(1.0 - sinarg*sinarg)
t0 = (arr[0] + julian_ephemeris_century*arr[1])
delta_psi_sum += t0*sinarg
# delta_psi_sum += t0*sin(arg)
t0 = (arr[2] + julian_ephemeris_century*arr[3])
delta_eps_sum += t0*cosarg
# delta_eps_sum += t0*cos(arg)
delta_psi = delta_psi_sum/36000000.0
delta_eps = delta_eps_sum/36000000.0
res = [0.0]*2
res[0] = delta_psi
res[1] = delta_eps
return res
def longitude_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4):
x0, x1, x2, x3, x4 = deg2rad*x0, deg2rad*x1, deg2rad*x2, deg2rad*x3, deg2rad*x4
delta_psi_sum = 0.0
for row in range(63):
# # None can be skipped but the multiplies can be with effort -2 to 2 with dict - just might be slower
argsin = (NUTATION_YTERM_LIST_0[row]*x0 +
NUTATION_YTERM_LIST_1[row]*x1 +
NUTATION_YTERM_LIST_2[row]*x2 +
NUTATION_YTERM_LIST_3[row]*x3 +
NUTATION_YTERM_LIST_4[row]*x4)
term = (NUTATION_ABCD_LIST[row][0] + NUTATION_ABCD_LIST[row][1]
* julian_ephemeris_century)*sin(argsin)
delta_psi_sum += term
delta_psi = delta_psi_sum/36000000.0
return delta_psi
def obliquity_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4):
delta_eps_sum = 0.0
x0, x1, x2, x3, x4 = deg2rad*x0, deg2rad*x1, deg2rad*x2, deg2rad*x3, deg2rad*x4
for row in range(63):
argcos = (NUTATION_YTERM_LIST_0[row]*x0 +
NUTATION_YTERM_LIST_1[row]*x1 +
NUTATION_YTERM_LIST_2[row]*x2 +
NUTATION_YTERM_LIST_3[row]*x3 +
NUTATION_YTERM_LIST_4[row]*x4)
term = (NUTATION_ABCD_LIST[row][2]
+ NUTATION_ABCD_LIST[row][3]*julian_ephemeris_century)*cos(argcos)
delta_eps_sum += term
delta_eps = delta_eps_sum/36000000.0
return delta_eps
def mean_ecliptic_obliquity(julian_ephemeris_millennium):
U = 0.1*julian_ephemeris_millennium
e0 = (U*(U*(U*(U*(U*(U*(U*(U*(U*(2.45*U + 5.79) + 27.87) + 7.12) - 39.05)
- 249.67) - 51.38) + 1999.25) - 1.55) - 4680.93) + 84381.448)
return e0
def true_ecliptic_obliquity(mean_ecliptic_obliquity, obliquity_nutation):
# e0 = mean_ecliptic_obliquity
# deleps = obliquity_nutation
return mean_ecliptic_obliquity*0.0002777777777777778 + obliquity_nutation
# e = e0/3600.0 + deleps
# return e
def aberration_correction(earth_radius_vector):
# -20.4898 / (3600)
deltau = -0.005691611111111111/earth_radius_vector
return deltau
def apparent_sun_longitude(geocentric_longitude, longitude_nutation,
aberration_correction):
lamd = geocentric_longitude + longitude_nutation + aberration_correction
return lamd
def mean_sidereal_time(julian_day, julian_century):
julian_century2 = julian_century*julian_century
v0 = (280.46061837 + 360.98564736629*(julian_day - 2451545.0)
+ 0.000387933*julian_century2
- julian_century2*julian_century/38710000.0)
return v0 % 360.0
def apparent_sidereal_time(mean_sidereal_time, longitude_nutation,
true_ecliptic_obliquity):
v = mean_sidereal_time + longitude_nutation*cos(deg2rad*true_ecliptic_obliquity)
return v
def geocentric_sun_right_ascension(apparent_sun_longitude,
true_ecliptic_obliquity,
geocentric_latitude):
num = (sin(deg2rad*apparent_sun_longitude)
* cos(deg2rad*true_ecliptic_obliquity)
- tan(deg2rad*geocentric_latitude)
* sin(deg2rad*true_ecliptic_obliquity))
alpha = degrees(atan2(num, cos(
deg2rad*apparent_sun_longitude)))
return alpha % 360
def geocentric_sun_declination(apparent_sun_longitude, true_ecliptic_obliquity,
geocentric_latitude):
delta = degrees(asin(sin(deg2rad*geocentric_latitude) *
cos(deg2rad*true_ecliptic_obliquity) +
cos(deg2rad*geocentric_latitude) *
sin(deg2rad*true_ecliptic_obliquity) *
sin(deg2rad*apparent_sun_longitude)))
return delta
def local_hour_angle(apparent_sidereal_time, observer_longitude,
sun_right_ascension):
"""Measured westward from south."""
H = apparent_sidereal_time + observer_longitude - sun_right_ascension
return H % 360
def equatorial_horizontal_parallax(earth_radius_vector):
return 8.794 / (3600.0 * earth_radius_vector)
def uterm(observer_latitude):
u = atan(0.99664719*tan(deg2rad*observer_latitude))
return u
def xterm(u, observer_latitude, observer_elevation):
# 1/6378140.0 = const
x = (cos(u) + observer_elevation*1.5678552054360676e-07*cos(deg2rad*observer_latitude))
return x
def yterm(u, observer_latitude, observer_elevation):
# 1/6378140.0 = const
y = (0.99664719 * sin(u) + observer_elevation*1.5678552054360676e-07
* sin(deg2rad*observer_latitude))
return y
def parallax_sun_right_ascension(xterm, equatorial_horizontal_parallax,
local_hour_angle, geocentric_sun_declination):
x0 = sin(deg2rad*equatorial_horizontal_parallax)
x1 = deg2rad*local_hour_angle
num = -xterm*x0*sin(x1)
denom = (cos(deg2rad*geocentric_sun_declination) - xterm*x0 * cos(x1))
delta_alpha = degrees(atan2(num, denom))
return delta_alpha
def topocentric_sun_right_ascension(geocentric_sun_right_ascension,
parallax_sun_right_ascension):
alpha_prime = geocentric_sun_right_ascension + parallax_sun_right_ascension
return alpha_prime
def topocentric_sun_declination(geocentric_sun_declination, xterm, yterm,
equatorial_horizontal_parallax,
parallax_sun_right_ascension,
local_hour_angle):
x0 = sin(deg2rad*equatorial_horizontal_parallax)
num = ((sin(deg2rad*geocentric_sun_declination) - yterm
* x0)
* cos(deg2rad*parallax_sun_right_ascension))
denom = (cos(deg2rad*geocentric_sun_declination) - xterm
* x0
* cos(deg2rad*local_hour_angle))
delta = degrees(atan2(num, denom))
return delta
def topocentric_local_hour_angle(local_hour_angle,
parallax_sun_right_ascension):
H_prime = local_hour_angle - parallax_sun_right_ascension
return H_prime
def topocentric_elevation_angle_without_atmosphere(observer_latitude,
topocentric_sun_declination,
topocentric_local_hour_angle
):
r_observer_latitude = deg2rad*observer_latitude
r_topocentric_sun_declination = deg2rad*topocentric_sun_declination
e0 = degrees(asin(
sin(r_observer_latitude)
* sin(r_topocentric_sun_declination)
+ cos(r_observer_latitude)
* cos(r_topocentric_sun_declination)
* cos(deg2rad*topocentric_local_hour_angle)))
return e0
def atmospheric_refraction_correction(local_pressure, local_temp,
topocentric_elevation_angle_wo_atmosphere,
atmos_refract):
# switch sets delta_e when the sun is below the horizon
switch = topocentric_elevation_angle_wo_atmosphere >= -1.0 * (
0.26667 + atmos_refract)
delta_e = ((local_pressure / 1010.0) * (283.0 / (273.0 + local_temp))
* 1.02 / (60.0 * tan(deg2rad*(
topocentric_elevation_angle_wo_atmosphere
+ 10.3 / (topocentric_elevation_angle_wo_atmosphere
+ 5.11))))) * switch
return delta_e
def topocentric_elevation_angle(topocentric_elevation_angle_without_atmosphere,
atmospheric_refraction_correction):
e = (topocentric_elevation_angle_without_atmosphere
+ atmospheric_refraction_correction)
return e
def topocentric_zenith_angle(topocentric_elevation_angle):
theta = 90.0 - topocentric_elevation_angle
return theta
def topocentric_astronomers_azimuth(topocentric_local_hour_angle,
topocentric_sun_declination,
observer_latitude):
num = sin(deg2rad*topocentric_local_hour_angle)
denom = (cos(deg2rad*topocentric_local_hour_angle)
* sin(deg2rad*observer_latitude)
- tan(deg2rad*topocentric_sun_declination)
* cos(deg2rad*observer_latitude))
gamma = degrees(atan2(num, denom))
return gamma % 360.0
def topocentric_azimuth_angle(topocentric_astronomers_azimuth):
phi = topocentric_astronomers_azimuth + 180.0
return phi % 360.0
def sun_mean_longitude(julian_ephemeris_millennium):
M = julian_ephemeris_millennium*(julian_ephemeris_millennium*(
julian_ephemeris_millennium*(julian_ephemeris_millennium*(
-5.0e-7*julian_ephemeris_millennium - 6.5359477124183e-5)
+ 2.00276381406341e-5) + 0.03032028) + 360007.6982779) + 280.4664567
return M
#@jcompile('float64(float64, float64, float64, float64)', nopython=True)
def equation_of_time(sun_mean_longitude, geocentric_sun_right_ascension,
longitude_nutation, true_ecliptic_obliquity):
term = cos(deg2rad*true_ecliptic_obliquity)
E = (sun_mean_longitude - 0.0057183 - geocentric_sun_right_ascension +
longitude_nutation * term)
# limit between 0 and 360
E = E % 360
# convert to minutes
E *= 4.0
greater = E > 20.0
less = E < -20.0
other = (E <= 20.0) & (E >= -20.0)
E = greater * (E - 1440.0) + less * (E + 1440.0) + other * E
return E
def earthsun_distance(unixtime, delta_t):
"""Calculates the distance from the earth to the sun using the NREL SPA
algorithm described in [1].
Parameters
----------
unixtime : numpy array
Array of unix/epoch timestamps to calculate solar position for.
Unixtime is the number of seconds since Jan. 1, 1970 00:00:00 UTC.
A pandas.DatetimeIndex is easily converted using .astype(np.int64)/10**9
delta_t : float
Difference between terrestrial time and UT. USNO has tables.
Returns
-------
R : array
Earth-Sun distance in AU.
References
----------
[1] Reda, I., Andreas, A., 2003. Solar position algorithm for solar
radiation applications. Technical report: NREL/TP-560- 34302. Golden,
USA, http://www.nrel.gov.
"""
jd = julian_day(unixtime)
jde = julian_ephemeris_day(jd, delta_t)
jce = julian_ephemeris_century(jde)
jme = julian_ephemeris_millennium(jce)
R = heliocentric_radius_vector(jme)
return R
def solar_position(unixtime, lat, lon, elev, pressure, temp, delta_t,
atmos_refract, sst=False):
"""Calculate the solar position using the NREL SPA algorithm described in
[1].
If numba is installed, the functions can be compiled
and the code runs quickly. If not, the functions
still evaluate but use numpy instead.
Parameters
----------
unixtime : numpy array
Array of unix/epoch timestamps to calculate solar position for.
Unixtime is the number of seconds since Jan. 1, 1970 00:00:00 UTC.
A pandas.DatetimeIndex is easily converted using .astype(np.int64)/10**9
lat : float
Latitude to calculate solar position for
lon : float
Longitude to calculate solar position for
elev : float
Elevation of location in meters
pressure : int or float
avg. yearly pressure at location in millibars;
used for atmospheric correction
temp : int or float
avg. yearly temperature at location in
degrees C; used for atmospheric correction
delta_t : float, optional
If delta_t is None, uses spa.calculate_deltat
using time.year and time.month from pandas.DatetimeIndex.
For most simulations specifying delta_t is sufficient.
Difference between terrestrial time and UT1.
*Note: delta_t = None will break code using nrel_numba,
this will be fixed in a future version.
By default, use USNO historical data and predictions
atmos_refrac : float, optional
The approximate atmospheric refraction (in degrees)
at sunrise and sunset.
numthreads: int, optional, default None
Number of threads to use for computation if numba>=0.17
is installed.
sst : bool, default False
If True, return only data needed for sunrise, sunset, and transit
calculations.
Returns
-------
list with elements:
apparent zenith,
zenith,
elevation,
apparent_elevation,
azimuth,
equation_of_time
References
----------
.. [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation
applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004.
.. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for
solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007.
"""
jd = julian_day(unixtime)
jde = julian_ephemeris_day(jd, delta_t)
jc = julian_century(jd)
jce = julian_ephemeris_century(jde)
jme = julian_ephemeris_millennium(jce)
R = heliocentric_radius_vector(jme)
L = heliocentric_longitude(jme)
B = heliocentric_latitude(jme)
Theta = geocentric_longitude(L)
beta = geocentric_latitude(B)
x0 = mean_elongation(jce)
x1 = mean_anomaly_sun(jce)
x2 = mean_anomaly_moon(jce)
x3 = moon_argument_latitude(jce)
x4 = moon_ascending_longitude(jce)
delta_psi, delta_epsilon = longitude_obliquity_nutation(jce, x0, x1, x2, x3, x4)
epsilon0 = mean_ecliptic_obliquity(jme)
epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon)
delta_tau = aberration_correction(R)
lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau)
v0 = mean_sidereal_time(jd, jc)
v = apparent_sidereal_time(v0, delta_psi, epsilon)
alpha = geocentric_sun_right_ascension(lamd, epsilon, beta)
delta = geocentric_sun_declination(lamd, epsilon, beta)
if sst: # numba: delete
return v, alpha, delta # numba: delete
m = sun_mean_longitude(jme)
eot = equation_of_time(m, alpha, delta_psi, epsilon)
H = local_hour_angle(v, lon, alpha)
xi = equatorial_horizontal_parallax(R)
u = uterm(lat)
x = xterm(u, lat, elev)
y = yterm(u, lat, elev)
delta_alpha = parallax_sun_right_ascension(x, xi, H, delta)
delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha, H)
H_prime = topocentric_local_hour_angle(H, delta_alpha)
e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime,
H_prime)
delta_e = atmospheric_refraction_correction(pressure, temp, e0,
atmos_refract)
e = topocentric_elevation_angle(e0, delta_e)
theta = topocentric_zenith_angle(e)
theta0 = topocentric_zenith_angle(e0)
gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat)
phi = topocentric_azimuth_angle(gamma)
return [theta, theta0, e, e0, phi, eot]
try:
if IS_NUMBA: # type: ignore # noqa: F821
import threading
import numba
import numpy as np
# This is 3x slower without nogil
@numba.njit(nogil=True)
def solar_position_loop(unixtime, loc_args, out):
"""Loop through the time array and calculate the solar position."""
lat = loc_args[0]
lon = loc_args[1]
elev = loc_args[2]
pressure = loc_args[3]
temp = loc_args[4]
delta_t = loc_args[5]
atmos_refract = loc_args[6]
sst = loc_args[7]
esd = loc_args[8]
for i in range(len(unixtime)):
utime = unixtime[i]
jd = julian_day(utime)
jde = julian_ephemeris_day(jd, delta_t)
jc = julian_century(jd)
jce = julian_ephemeris_century(jde)
jme = julian_ephemeris_millennium(jce)
R = heliocentric_radius_vector(jme)
L = heliocentric_longitude(jme)
B = heliocentric_latitude(jme)
Theta = geocentric_longitude(L)
beta = geocentric_latitude(B)
x0 = mean_elongation(jce)
x1 = mean_anomaly_sun(jce)
x2 = mean_anomaly_moon(jce)
x3 = moon_argument_latitude(jce)
x4 = moon_ascending_longitude(jce)
# delta_psi = longitude_nutation(jce, x0, x1, x2, x3, x4)
# delta_epsilon = obliquity_nutation(jce, x0, x1, x2, x3, x4)
delta_psi, delta_epsilon = longitude_obliquity_nutation(jce, x0, x1, x2, x3, x4)
epsilon0 = mean_ecliptic_obliquity(jme)
epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon)
delta_tau = aberration_correction(R)
lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau)
v0 = mean_sidereal_time(jd, jc)
v = apparent_sidereal_time(v0, delta_psi, epsilon)
alpha = geocentric_sun_right_ascension(lamd, epsilon, beta)
delta = geocentric_sun_declination(lamd, epsilon, beta)
# if sst:
# out[0, i] = v
# out[1, i] = alpha
# out[2, i] = delta
# continue
m = sun_mean_longitude(jme)
eot = equation_of_time(m, alpha, delta_psi, epsilon)
H = local_hour_angle(v, lon, alpha)
xi = equatorial_horizontal_parallax(R)
u = uterm(lat)
x = xterm(u, lat, elev)
y = yterm(u, lat, elev)
delta_alpha = parallax_sun_right_ascension(x, xi, H, delta)
delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha,
H)
H_prime = topocentric_local_hour_angle(H, delta_alpha)
e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime,
H_prime)
delta_e = atmospheric_refraction_correction(pressure, temp, e0,
atmos_refract)
e = topocentric_elevation_angle(e0, delta_e)
theta = topocentric_zenith_angle(e)
theta0 = topocentric_zenith_angle(e0)
gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat)
phi = topocentric_azimuth_angle(gamma)
out[0, i] = theta
out[1, i] = theta0
out[2, i] = e
out[3, i] = e0
out[4, i] = phi
out[5, i] = eot
def solar_position_numba(unixtime, lat, lon, elev, pressure, temp, delta_t,
atmos_refract, numthreads, sst=False, esd=False):
"""Calculate the solar position using the numba compiled functions
and multiple threads.
Very slow if functions are not numba compiled.
"""
# these args are the same for each thread
loc_args = np.array([lat, lon, elev, pressure, temp, delta_t,
atmos_refract, sst, esd])
# construct dims x ulength array to put the results in
ulength = unixtime.shape[0]
if sst:
dims = 3
elif esd:
dims = 1
else:
dims = 6
result = np.empty((dims, ulength), dtype=np.float64)
if unixtime.dtype != np.float64:
unixtime = unixtime.astype(np.float64)
if ulength < numthreads:
numthreads = ulength
if numthreads <= 1:
solar_position_loop(unixtime, loc_args, result)
return result
# split the input and output arrays into numthreads chunks
split0 = np.array_split(unixtime, numthreads)
split2 = np.array_split(result, numthreads, axis=1)
chunks = [[a0, loc_args, split2[i]] for i, a0 in enumerate(split0)]
# Spawn one thread per chunk
threads = [threading.Thread(target=solar_position_loop, args=chunk)
for chunk in chunks]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return result
except:
pass
def transit_sunrise_sunset(dates, lat, lon, delta_t):
"""Calculate the sun transit, sunrise, and sunset for a set of dates at a
given location.
Parameters
----------
dates : array
Numpy array of ints/floats corresponding to the Unix time
for the dates of interest, must be midnight UTC (00:00+00:00)
on the day of interest.
lat : float
Latitude of location to perform calculation for
lon : float
Longitude of location
delta_t : float
Difference between terrestrial time and UT. USNO has tables.
Returns
-------
tuple : (transit, sunrise, sunset) localized to UTC
>>> transit_sunrise_sunset(1523836800, 51.0486, -114.07, 70.68302220312503)
(1523907360.3863413, 1523882341.570479, 1523932345.7781625)
"""
condition = (dates % 86400) != 0.0
if condition:
raise ValueError('Input dates must be at 00:00 UTC')
utday = (dates // 86400) * 86400
ttday0 = utday - delta_t
ttdayn1 = ttday0 - 86400.0
ttdayp1 = ttday0 + 86400.0
# index 0 is v, 1 is alpha, 2 is delta
utday_res = solar_position(utday, 0, 0, 0, 0, 0, delta_t,
0, sst=True)
v = utday_res[0]
ttday0_res = solar_position(ttday0, 0, 0, 0, 0, 0, delta_t,
0, sst=True)
ttdayn1_res = solar_position(ttdayn1, 0, 0, 0, 0, 0, delta_t,
0, sst=True)
ttdayp1_res = solar_position(ttdayp1, 0, 0, 0, 0, 0, delta_t,
0, sst=True)
m0 = (ttday0_res[1] - lon - v) / 360
cos_arg = ((-0.014543315936696236 - sin(radians(lat)) # sin(radians(-0.8333)) = -0.0145...
* sin(radians(ttday0_res[2]))) /
(cos(radians(lat)) * cos(radians(ttday0_res[2]))))
if abs(cos_arg) > 1:
cos_arg = nan
H0 = degrees(acos(cos_arg)) % 180
m = [0.0]*3
m[0] = m0 % 1
m[1] = (m[0] - H0 / 360.0)
m[2] = (m[0] + H0 / 360.0)
# need to account for fractions of day that may be the next or previous
# day in UTC
add_a_day = m[2] >= 1
sub_a_day = m[1] < 0
m[1] = m[1] % 1
m[2] = m[2] % 1
vs = [0.0]*3
for i in range(3):
vs[i] = v + 360.985647*m[i]
n = [0.0]*3
for i in range(3):
n[i] = m[i] + delta_t / 86400.0
a = ttday0_res[1] - ttdayn1_res[1]
if abs(a) > 2:
a = a %1
ap = ttday0_res[2] - ttdayn1_res[2]
if (abs(ap) > 2):
ap = ap % 1
b = ttdayp1_res[1] - ttday0_res[1]
if (abs(b) > 2):
b = b % 1
bp = ttdayp1_res[2] - ttday0_res[2]
if abs(bp) > 2:
bp = bp % 1
c = b - a
cp = bp - ap
alpha_prime = [0.0]*3
delta_prime = [0.0]*3
Hp = [0.0]*3
for i in range(3):
alpha_prime[i] = ttday0_res[1] + (n[i] * (a + b + c * n[i]))*0.5
delta_prime[i] = ttday0_res[2] + (n[i] * (ap + bp + cp * n[i]))*0.5
Hp[i] = (vs[i] + lon - alpha_prime[i]) % 360
if Hp[i] >= 180.0:
Hp[i] = Hp[i] - 360.0
#alpha_prime = ttday0_res[1] + (n * (a + b + c * n)) / 2 # this is vect
#delta_prime = ttday0_res[2] + (n * (ap + bp + cp * n)) / 2 # this is vect
#Hp = (vs + lon - alpha_prime) % 360
#Hp[Hp >= 180] = Hp[Hp >= 180] - 360
x1 = sin(radians(lat))
x2 = cos(radians(lat))
h = [0.0]*3
for i in range(3):
h[i] = degrees(asin(x1*sin(radians(delta_prime[i])) + x2 * cos(radians(delta_prime[i])) * cos(radians(Hp[i]))))
T = float((m[0] - Hp[0] / 360.0) * 86400.0)
R = float((m[1] + (h[1] + 0.8333) / (360.0 * cos(radians(delta_prime[1])) *
cos(radians(lat)) *
sin(radians(Hp[1])))) * 86400.0)
S = float((m[2] + (h[2] + 0.8333) / (360.0 * cos(radians(delta_prime[2])) *
cos(radians(lat)) *
sin(radians(Hp[2])))) * 86400.0)
if add_a_day:
S += 86400.0
if sub_a_day:
R -= 86400.0
transit = T + utday
sunrise = R + utday
sunset = S + utday
return transit, sunrise, sunset
def calculate_deltat(year, month):
y = year + (month - 0.5)/12
if (2005 <= year) & (year < 2050):
t1 = (y-2000.0)
deltat = (62.92+0.32217*t1 + 0.005589*t1*t1)
elif (1986 <= year) & (year < 2005):
t1 = y - 2000.0
deltat = (63.86+0.3345*t1
- 0.060374*t1**2
+ 0.0017275*t1**3
+ 0.000651814*t1**4
+ 0.00002373599*t1**5)
elif (2050 <= year) & (year < 2150):
deltat = (-20+32*((y-1820)/100)**2
- 0.5628*(2150-y))
elif year < -500.0:
deltat = -20.0 + 32*(0.01*(y-1820.0))**2
elif (-500 <= year) & (year < 500):
t1 = y/100
deltat = (10583.6-1014.41*(y/100)
+ 33.78311*(y/100)**2
- 5.952053*(y/100)**3
- 0.1798452*(y/100)**4
+ 0.022174192*(y/100)**5
+ 0.0090316521*(y/100)**6)
elif (500 <= year) & (year < 1600):
t1 = (y-1000)/100
deltat = (1574.2-556.01*((y-1000)/100)
+ 71.23472*((y-1000)/100)**2
+ 0.319781*((y-1000)/100)**3
- 0.8503463*((y-1000)/100)**4
- 0.005050998*((y-1000)/100)**5
+ 0.0083572073*((y-1000)/100)**6)
elif (1600 <= year) & (year < 1700):
t1 = (y-1600.0)
deltat = (120-0.9808*(y-1600)
- 0.01532*(y-1600)**2
+ (y-1600)**3/7129)
elif (1700 <= year) & (year < 1800):
t1 = (y - 1700.0)
deltat = (8.83+0.1603*(y-1700)
- 0.0059285*(y-1700)**2
+ 0.00013336*(y-1700)**3
- (y-1700)**4/1174000)
elif (1800 <= year) & (year < 1860):
t1 = y - 1800.0
deltat = (13.72-0.332447*(y-1800)
+ 0.0068612*(y-1800)**2
+ 0.0041116*(y-1800)**3
- 0.00037436*(y-1800)**4
+ 0.0000121272*(y-1800)**5
- 0.0000001699*(y-1800)**6
+ 0.000000000875*(y-1800)**7)
elif (1860 <= year) & (year < 1900):
t1 = y-1860.0
deltat = (7.62+0.5737*(y-1860)
- 0.251754*(y-1860)**2
+ 0.01680668*(y-1860)**3
- 0.0004473624*(y-1860)**4
+ (y-1860)**5/233174)
elif (1900 <= year) & (year < 1920):
t1 = y - 1900.0
deltat = (-2.79+1.494119*(y-1900)
- 0.0598939*(y-1900)**2
+ 0.0061966*(y-1900)**3
- 0.000197*(y-1900)**4)
elif (1920 <= year) & (year < 1941):
t1 = y - 1920.0
deltat = (21.20+0.84493*(y-1920)
- 0.076100*(y-1920)**2
+ 0.0020936*(y-1920)**3)
elif (1941 <= year) & (year < 1961):
t1 = y - 1950.0
deltat = (29.07+0.407*(y-1950)
- (y-1950)**2/233
+ (y-1950)**3/2547)
elif (1961 <= year) & (year < 1986):
t1 = y-1975
deltat = (45.45+1.067*(y-1975)
- (y-1975)**2/260
- (y-1975)**3/718)
elif year >= 2150:
deltat = -20+32*((y-1820)/100)**2
return deltat
|