File: spa.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (1334 lines) | stat: -rw-r--r-- 49,070 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
"""
irradiance.py from pvlib
========================
Stripped down, vendorized version from:
https://github.com/pvlib/pvlib-python/

Calculate the solar position using the NREL SPA algorithm either using
numpy arrays or compiling the code to machine language with numba.

The rational for not including this library as a strict dependency is to avoid
including a dependency on pandas, keeping load time low, and PyPy compatibility

Created by Tony Lorenzo (@alorenzo175), Univ. of Arizona, 2015

For a full list of contributors to this file, see the `pvlib` repository.

The copyright notice (BSD-3 clause) is as follows:

BSD 3-Clause License

Copyright (c) 2013-2018, Sandia National Laboratories and pvlib python
Development Team
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

  Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

  Redistributions in binary form must reproduce the above copyright notice, this
  list of conditions and the following disclaimer in the documentation and/or
  other materials provided with the distribution.

  Neither the name of the {organization} nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""


from math import acos, asin, atan, atan2, cos, degrees, radians, sin, tan

from fluids.constants import deg2rad, rad2deg
from fluids.numerics import sincos

__all__ = ['julian_day_dt', 'julian_day', 'julian_ephemeris_day', 'julian_century',
           'julian_ephemeris_century', 'julian_ephemeris_millennium', 'heliocentric_longitude',
           'heliocentric_latitude', 'heliocentric_radius_vector', 'geocentric_longitude',
           'geocentric_latitude', 'mean_elongation', 'mean_anomaly_sun', 'mean_anomaly_moon',
           'moon_argument_latitude', 'moon_ascending_longitude', 'longitude_nutation',
           'obliquity_nutation', 'mean_ecliptic_obliquity', 'true_ecliptic_obliquity',
           'aberration_correction', 'apparent_sun_longitude', 'mean_sidereal_time',
           'apparent_sidereal_time', 'geocentric_sun_right_ascension', 'geocentric_sun_declination',
           'local_hour_angle', 'equatorial_horizontal_parallax', 'uterm', 'xterm', 'yterm',
           'parallax_sun_right_ascension', 'topocentric_sun_right_ascension', 'topocentric_sun_declination',
           'topocentric_local_hour_angle', 'topocentric_elevation_angle_without_atmosphere',
           'atmospheric_refraction_correction', 'topocentric_elevation_angle', 'topocentric_zenith_angle',
           'topocentric_astronomers_azimuth', 'topocentric_azimuth_angle', 'sun_mean_longitude',
           'equation_of_time', 'calculate_deltat', 'longitude_obliquity_nutation',
           'transit_sunrise_sunset',
           ]
nan = float("nan")


HELIO_RADIUS_TABLE_LIST_0 = [[100013989.0, 0.0, 0.0],
 [1670700.0, 3.0984635, 6283.07585],
 [13956.0, 3.05525, 12566.1517],
 [3084.0, 5.1985, 77713.7715],
 [1628.0, 1.1739, 5753.3849],
 [1576.0, 2.8469, 7860.4194],
 [925.0, 5.453, 11506.77],
 [542.0, 4.564, 3930.21],
 [472.0, 3.661, 5884.927],
 [346.0, 0.964, 5507.553],
 [329.0, 5.9, 5223.694],
 [307.0, 0.299, 5573.143],
 [243.0, 4.273, 11790.629],
 [212.0, 5.847, 1577.344],
 [186.0, 5.022, 10977.079],
 [175.0, 3.012, 18849.228],
 [110.0, 5.055, 5486.778],
 [98.0, 0.89, 6069.78],
 [86.0, 5.69, 15720.84],
 [86.0, 1.27, 161000.69],
 [65.0, 0.27, 17260.15],
 [63.0, 0.92, 529.69],
 [57.0, 2.01, 83996.85],
 [56.0, 5.24, 71430.7],
 [49.0, 3.25, 2544.31],
 [47.0, 2.58, 775.52],
 [45.0, 5.54, 9437.76],
 [43.0, 6.01, 6275.96],
 [39.0, 5.36, 4694.0],
 [38.0, 2.39, 8827.39],
 [37.0, 0.83, 19651.05],
 [37.0, 4.9, 12139.55],
 [36.0, 1.67, 12036.46],
 [35.0, 1.84, 2942.46],
 [33.0, 0.24, 7084.9],
 [32.0, 0.18, 5088.63],
 [32.0, 1.78, 398.15],
 [28.0, 1.21, 6286.6],
 [28.0, 1.9, 6279.55],
 [26.0, 4.59, 10447.39]]

HELIO_RADIUS_TABLE_LIST_1 = [[103019.0, 1.10749, 6283.07585],
 [1721.0, 1.0644, 12566.1517],
 [702.0, 3.142, 0.0],
 [32.0, 1.02, 18849.23],
 [31.0, 2.84, 5507.55],
 [25.0, 1.32, 5223.69],
 [18.0, 1.42, 1577.34],
 [10.0, 5.91, 10977.08],
 [9.0, 1.42, 6275.96],
 [9.0, 0.27, 5486.78],
]
HELIO_RADIUS_TABLE_LIST_2 = [[4359.0, 5.7846, 6283.0758],
 [124.0, 5.579, 12566.152],
 [12.0, 3.14, 0.0],
 [9.0, 3.63, 77713.77],
 [6.0, 1.87, 5573.14],
 [3.0, 5.47, 18849.23]]
HELIO_RADIUS_TABLE_LIST_3 = [[145.0, 4.273, 6283.076],
 [7.0, 3.92, 12566.15]]
HELIO_RADIUS_TABLE_LIST_4 = [[4.0, 2.56, 6283.08]]

NUTATION_YTERM_LIST_0 = [0.0, -2.0, 0.0, 0.0, 0.0, 0.0, -2.0, 0.0, 0.0, -2.0, -2.0, -2.0, 0.0, 2.0, 0.0, 2.0, 0.0, 0.0, -2.0, 0.0, 2.0, 0.0, 0.0, -2.0, 0.0, -2.0, 0.0, 0.0, 2.0, -2.0, 0.0, -2.0, 0.0, 0.0, 2.0, 2.0, 0.0, -2.0, 0.0, 2.0, 2.0, -2.0, -2.0, 2.0, 2.0, 0.0, -2.0, -2.0, 0.0, -2.0, -2.0, 0.0, -1.0, -2.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 2.0, 0.0, 2.0]
NUTATION_YTERM_LIST_1 = [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 2.0, 1.0, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0, 1.0, -1.0, -1.0, 0.0, -1.0]
NUTATION_YTERM_LIST_2 = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 1.0, -1.0, -1.0, 1.0, 2.0, -2.0, 0.0, 2.0, 2.0, 1.0, 0.0, 0.0, -1.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 2.0, -1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 2.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, 2.0, 2.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, 1.0, 1.0, 1.0, -1.0, 3.0, 0.0]
NUTATION_YTERM_LIST_3 = [0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, -2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 2.0, 0.0, 2.0, -2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0]
NUTATION_YTERM_LIST_4 = [1.0, 2.0, 2.0, 2.0, 0.0, 0.0, 2.0, 1.0, 2.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 1.0, 1.0, 0.0, 1.0, 2.0, 2.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0, 1.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 2.0, 2.0, 0.0, 2.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 2.0, 2.0, 2.0]

NUTATION_ABCD_LIST = [[-171996.0, -174.2, 92025.0, 8.9],
 [-13187.0, -1.6, 5736.0, -3.1],
 [-2274.0, -0.2, 977.0, -0.5],
 [2062.0, 0.2, -895.0, 0.5],
 [1426.0, -3.4, 54.0, -0.1],
 [712.0, 0.1, -7.0, 0.0],
 [-517.0, 1.2, 224.0, -0.6],
 [-386.0, -0.4, 200.0, 0.0],
 [-301.0, 0.0, 129.0, -0.1],
 [217.0, -0.5, -95.0, 0.3],
 [-158.0, 0.0, 0.0, 0.0],
 [129.0, 0.1, -70.0, 0.0],
 [123.0, 0.0, -53.0, 0.0],
 [63.0, 0.0, 0.0, 0.0],
 [63.0, 0.1, -33.0, 0.0],
 [-59.0, 0.0, 26.0, 0.0],
 [-58.0, -0.1, 32.0, 0.0],
 [-51.0, 0.0, 27.0, 0.0],
 [48.0, 0.0, 0.0, 0.0],
 [46.0, 0.0, -24.0, 0.0],
 [-38.0, 0.0, 16.0, 0.0],
 [-31.0, 0.0, 13.0, 0.0],
 [29.0, 0.0, 0.0, 0.0],
 [29.0, 0.0, -12.0, 0.0],
 [26.0, 0.0, 0.0, 0.0],
 [-22.0, 0.0, 0.0, 0.0],
 [21.0, 0.0, -10.0, 0.0],
 [17.0, -0.1, 0.0, 0.0],
 [16.0, 0.0, -8.0, 0.0],
 [-16.0, 0.1, 7.0, 0.0],
 [-15.0, 0.0, 9.0, 0.0],
 [-13.0, 0.0, 7.0, 0.0],
 [-12.0, 0.0, 6.0, 0.0],
 [11.0, 0.0, 0.0, 0.0],
 [-10.0, 0.0, 5.0, 0.0],
 [-8.0, 0.0, 3.0, 0.0],
 [7.0, 0.0, -3.0, 0.0],
 [-7.0, 0.0, 0.0, 0.0],
 [-7.0, 0.0, 3.0, 0.0],
 [-7.0, 0.0, 3.0, 0.0],
 [6.0, 0.0, 0.0, 0.0],
 [6.0, 0.0, -3.0, 0.0],
 [6.0, 0.0, -3.0, 0.0],
 [-6.0, 0.0, 3.0, 0.0],
 [-6.0, 0.0, 3.0, 0.0],
 [5.0, 0.0, 0.0, 0.0],
 [-5.0, 0.0, 3.0, 0.0],
 [-5.0, 0.0, 3.0, 0.0],
 [-5.0, 0.0, 3.0, 0.0],
 [4.0, 0.0, 0.0, 0.0],
 [4.0, 0.0, 0.0, 0.0],
 [4.0, 0.0, 0.0, 0.0],
 [-4.0, 0.0, 0.0, 0.0],
 [-4.0, 0.0, 0.0, 0.0],
 [-4.0, 0.0, 0.0, 0.0],
 [3.0, 0.0, 0.0, 0.0],
 [-3.0, 0.0, 0.0, 0.0],
 [-3.0, 0.0, 0.0, 0.0],
 [-3.0, 0.0, 0.0, 0.0],
 [-3.0, 0.0, 0.0, 0.0],
 [-3.0, 0.0, 0.0, 0.0],
 [-3.0, 0.0, 0.0, 0.0],
 [-3.0, 0.0, 0.0, 0.0]]

HELIO_LAT_TABLE_LIST_0 = [[280.0, 3.199, 84334.662],
 [102.0, 5.422, 5507.553],
 [80.0, 3.88, 5223.69],
 [44.0, 3.7, 2352.87],
 [32.0, 4.0, 1577.34]]

HELIO_LAT_TABLE_LIST_1 = [[9.0, 3.9, 5507.55],
 [6.0, 1.73, 5223.69]]

#HELIO_LONG_TABLE_LIST = HELIO_LONG_TABLE.tolist()
HELIO_LONG_TABLE_LIST_0 = [[175347046.0, 0.0, 0.0],
 [3341656.0, 4.6692568, 6283.07585],
 [34894.0, 4.6261, 12566.1517],
 [3497.0, 2.7441, 5753.3849],
 [3418.0, 2.8289, 3.5231],
 [3136.0, 3.6277, 77713.7715],
 [2676.0, 4.4181, 7860.4194],
 [2343.0, 6.1352, 3930.2097],
 [1324.0, 0.7425, 11506.7698],
 [1273.0, 2.0371, 529.691],
 [1199.0, 1.1096, 1577.3435],
 [990.0, 5.233, 5884.927],
 [902.0, 2.045, 26.298],
 [857.0, 3.508, 398.149],
 [780.0, 1.179, 5223.694],
 [753.0, 2.533, 5507.553],
 [505.0, 4.583, 18849.228],
 [492.0, 4.205, 775.523],
 [357.0, 2.92, 0.067],
 [317.0, 5.849, 11790.629],
 [284.0, 1.899, 796.298],
 [271.0, 0.315, 10977.079],
 [243.0, 0.345, 5486.778],
 [206.0, 4.806, 2544.314],
 [205.0, 1.869, 5573.143],
 [202.0, 2.458, 6069.777],
 [156.0, 0.833, 213.299],
 [132.0, 3.411, 2942.463],
 [126.0, 1.083, 20.775],
 [115.0, 0.645, 0.98],
 [103.0, 0.636, 4694.003],
 [102.0, 0.976, 15720.839],
 [102.0, 4.267, 7.114],
 [99.0, 6.21, 2146.17],
 [98.0, 0.68, 155.42],
 [86.0, 5.98, 161000.69],
 [85.0, 1.3, 6275.96],
 [85.0, 3.67, 71430.7],
 [80.0, 1.81, 17260.15],
 [79.0, 3.04, 12036.46],
 [75.0, 1.76, 5088.63],
 [74.0, 3.5, 3154.69],
 [74.0, 4.68, 801.82],
 [70.0, 0.83, 9437.76],
 [62.0, 3.98, 8827.39],
 [61.0, 1.82, 7084.9],
 [57.0, 2.78, 6286.6],
 [56.0, 4.39, 14143.5],
 [56.0, 3.47, 6279.55],
 [52.0, 0.19, 12139.55],
 [52.0, 1.33, 1748.02],
 [51.0, 0.28, 5856.48],
 [49.0, 0.49, 1194.45],
 [41.0, 5.37, 8429.24],
 [41.0, 2.4, 19651.05],
 [39.0, 6.17, 10447.39],
 [37.0, 6.04, 10213.29],
 [37.0, 2.57, 1059.38],
 [36.0, 1.71, 2352.87],
 [36.0, 1.78, 6812.77],
 [33.0, 0.59, 17789.85],
 [30.0, 0.44, 83996.85],
 [30.0, 2.74, 1349.87],
 [25.0, 3.16, 4690.48]]
HELIO_LONG_TABLE_LIST_1 = [[628331966747.0, 0.0, 0.0],
 [206059.0, 2.678235, 6283.07585],
 [4303.0, 2.6351, 12566.1517],
 [425.0, 1.59, 3.523],
 [119.0, 5.796, 26.298],
 [109.0, 2.966, 1577.344],
 [93.0, 2.59, 18849.23],
 [72.0, 1.14, 529.69],
 [68.0, 1.87, 398.15],
 [67.0, 4.41, 5507.55],
 [59.0, 2.89, 5223.69],
 [56.0, 2.17, 155.42],
 [45.0, 0.4, 796.3],
 [36.0, 0.47, 775.52],
 [29.0, 2.65, 7.11],
 [21.0, 5.34, 0.98],
 [19.0, 1.85, 5486.78],
 [19.0, 4.97, 213.3],
 [17.0, 2.99, 6275.96],
 [16.0, 0.03, 2544.31],
 [16.0, 1.43, 2146.17],
 [15.0, 1.21, 10977.08],
 [12.0, 2.83, 1748.02],
 [12.0, 3.26, 5088.63],
 [12.0, 5.27, 1194.45],
 [12.0, 2.08, 4694.0],
 [11.0, 0.77, 553.57],
 [10.0, 1.3, 6286.6],
 [10.0, 4.24, 1349.87],
 [9.0, 2.7, 242.73],
 [9.0, 5.64, 951.72],
 [8.0, 5.3, 2352.87],
 [6.0, 2.65, 9437.76],
 [6.0, 4.67, 4690.48],
 ]
HELIO_LONG_TABLE_LIST_2 = [[52919.0, 0.0, 0.0],
 [8720.0, 1.0721, 6283.0758],
 [309.0, 0.867, 12566.152],
 [27.0, 0.05, 3.52],
 [16.0, 5.19, 26.3],
 [16.0, 3.68, 155.42],
 [10.0, 0.76, 18849.23],
 [9.0, 2.06, 77713.77],
 [7.0, 0.83, 775.52],
 [5.0, 4.66, 1577.34],
 [4.0, 1.03, 7.11],
 [4.0, 3.44, 5573.14],
 [3.0, 5.14, 796.3],
 [3.0, 6.05, 5507.55],
 [3.0, 1.19, 242.73],
 [3.0, 6.12, 529.69],
 [3.0, 0.31, 398.15],
 [3.0, 2.28, 553.57],
 [2.0, 4.38, 5223.69],
 [2.0, 3.75, 0.98]]

HELIO_LONG_TABLE_LIST_3 = [[289.0, 5.844, 6283.076],
 [35.0, 0.0, 0.0],
 [17.0, 5.49, 12566.15],
 [3.0, 5.2, 155.42],
 [1.0, 4.72, 3.52],
 [1.0, 5.3, 18849.23],
 [1.0, 5.97, 242.73]
 ]
HELIO_LONG_TABLE_LIST_4 = [[114.0, 3.142, 0.0],
 [8.0, 4.13, 6283.08],
 [1.0, 3.84, 12566.15]]



def julian_day_dt(year, month, day, hour, minute, second, microsecond):
    """This is the original way to calculate the julian day from the NREL paper.

    However, it is much faster to convert to unix/epoch time and then convert to
    julian day. Note that the date must be UTC.
    """
    # Not used anywhere!
    if month <= 2:
        year = year-1
        month = month+12
    a = int(year/100)
    b = 2 - a + int(a * 0.25)
    frac_of_day = (microsecond + (second + minute * 60 + hour * 3600)
                   ) * 1.0 / (3600*24)
    d = day + frac_of_day
    jd = (int(365.25 * (year + 4716)) + int(30.6001 * (month + 1)) + d +
          b - 1524.5)
    return jd


def julian_day(unixtime):
    jd = unixtime*1.1574074074074073e-05 + 2440587.5
#    jd = unixtime/86400.0 + 2440587.5
    return jd


def julian_ephemeris_day(julian_day, delta_t):
    jde = julian_day + delta_t*1.1574074074074073e-05
#    jde = julian_day + delta_t * 1.0 / 86400.0
    return jde


def julian_century(julian_day):
    jc = (julian_day - 2451545.0)*2.7378507871321012e-05# * 1.0 / 36525
    return jc


def julian_ephemeris_century(julian_ephemeris_day):
#    1/36525.0 =  2.7378507871321012e-05
    jce = (julian_ephemeris_day - 2451545.0)*2.7378507871321012e-05
    return jce


def julian_ephemeris_millennium(julian_ephemeris_century):
    jme = julian_ephemeris_century*0.1
    return jme


def heliocentric_longitude(jme):
    # Might be able to replace this with a pade approximation?
    # Looping over rows is probably still faster than (a, b, c)
    # Maximum optimization
    l0 = 0.0
    l1 = 0.0
    l2 = 0.0
    l3 = 0.0
    l4 = 0.0
    l5 = 0.0
    for row in range(64):
        HELIO_LONG_TABLE_LIST_0_ROW = HELIO_LONG_TABLE_LIST_0[row]
        l0 += (HELIO_LONG_TABLE_LIST_0_ROW[0]
               * cos(HELIO_LONG_TABLE_LIST_0_ROW[1]
                        + HELIO_LONG_TABLE_LIST_0_ROW[2] * jme)
               )
    for row in range(34):
        HELIO_LONG_TABLE_LIST_1_ROW = HELIO_LONG_TABLE_LIST_1[row]
        l1 += (HELIO_LONG_TABLE_LIST_1_ROW[0]
               * cos(HELIO_LONG_TABLE_LIST_1_ROW[1]
                        + HELIO_LONG_TABLE_LIST_1_ROW[2] * jme)
               )
    for row in range(20):
        HELIO_LONG_TABLE_LIST_2_ROW = HELIO_LONG_TABLE_LIST_2[row]
        l2 += (HELIO_LONG_TABLE_LIST_2_ROW[0]
               * cos(HELIO_LONG_TABLE_LIST_2_ROW[1]
                        + HELIO_LONG_TABLE_LIST_2_ROW[2] * jme)
               )

    for row in range(7):
        HELIO_LONG_TABLE_LIST_3_ROW = HELIO_LONG_TABLE_LIST_3[row]
        l3 += (HELIO_LONG_TABLE_LIST_3_ROW[0]
               * cos(HELIO_LONG_TABLE_LIST_3_ROW[1]
                        + HELIO_LONG_TABLE_LIST_3_ROW[2] * jme)
               )
    for row in range(3):
        HELIO_LONG_TABLE_LIST_4_ROW = HELIO_LONG_TABLE_LIST_4[row]
        l4 += (HELIO_LONG_TABLE_LIST_4_ROW[0]
               * cos(HELIO_LONG_TABLE_LIST_4_ROW[1]
                        + HELIO_LONG_TABLE_LIST_4_ROW[2] * jme)
               )
#    l5 = (HELIO_LONG_TABLE_LIST_5[0][0]*cos(HELIO_LONG_TABLE_LIST_5[0][1]))
    l5 = -0.9999987317275395
    l_rad = (jme*(jme*(jme*(jme*(jme*l5 + l4) + l3) + l2) + l1) + l0)*1E-8
    l = rad2deg*l_rad
    return l % 360


def heliocentric_latitude(jme):
    b0 = 0.0
    b1 = 0.0
    for row in range(5):
        HELIO_LAT_TABLE_LIST_0_ROW = HELIO_LAT_TABLE_LIST_0[row]
        b0 += (HELIO_LAT_TABLE_LIST_0_ROW[0]
               * cos(HELIO_LAT_TABLE_LIST_0_ROW[1]
                        + HELIO_LAT_TABLE_LIST_0_ROW[2] * jme)
               )
    HELIO_LAT_TABLE_LIST_1_ROW = HELIO_LAT_TABLE_LIST_1[0]
    b1 += (HELIO_LAT_TABLE_LIST_1_ROW[0]
           * cos(HELIO_LAT_TABLE_LIST_1_ROW[1]
                    + HELIO_LAT_TABLE_LIST_1_ROW[2] * jme))

    HELIO_LAT_TABLE_LIST_1_ROW = HELIO_LAT_TABLE_LIST_1[1]
    b1 += (HELIO_LAT_TABLE_LIST_1_ROW[0]
           * cos(HELIO_LAT_TABLE_LIST_1_ROW[1]
                    + HELIO_LAT_TABLE_LIST_1_ROW[2] * jme))
    b_rad = (b0 + b1 * jme)*1E-8
    b = rad2deg*b_rad
    return b


def heliocentric_radius_vector(jme):
    # no optimizations can be thought of
    r0 = 0.0
    r1 = 0.0
    r2 = 0.0
    r3 = 0.0
    r4 = 0.0
    # Would be possible to save a few multiplies of table1row[2]*jme, table1row[1]*jme as they are dups
    for row in range(40):
        table0row = HELIO_RADIUS_TABLE_LIST_0[row]
        r0 += (table0row[0]*cos(table0row[1] + table0row[2]*jme))
    for row in range(10):
        table1row = HELIO_RADIUS_TABLE_LIST_1[row]
        r1 += (table1row[0]*cos(table1row[1] + table1row[2]*jme))
    for row in range(6):
        table2row = HELIO_RADIUS_TABLE_LIST_2[row]
        r2 += (table2row[0]*cos(table2row[1] + table2row[2]*jme))

    table3row = HELIO_RADIUS_TABLE_LIST_3[0]
    r3 += (table3row[0]*cos(table3row[1] + table3row[2]*jme))
    table3row = HELIO_RADIUS_TABLE_LIST_3[1]
    r3 += (table3row[0]*cos(table3row[1] + table3row[2]*jme))

#    table4row = HELIO_RADIUS_TABLE_LIST_4[0]
#    r4 = (table4row[0]*cos(table4row[1] + table4row[2]*jme))
    r4 = (4.0*cos(2.56 + 6283.08*jme))
    return (jme*(jme*(jme*(jme*r4 + r3) + r2) + r1) + r0)*1E-8


def geocentric_longitude(heliocentric_longitude):
    theta = heliocentric_longitude + 180.0
    return theta % 360


def geocentric_latitude(heliocentric_latitude):
    beta = -heliocentric_latitude
    return beta


def mean_elongation(julian_ephemeris_century):
    return (julian_ephemeris_century*(julian_ephemeris_century
            *(5.27776898149614e-6*julian_ephemeris_century - 0.0019142)
            + 445267.11148) + 297.85036)
#    x0 = (297.85036
#          + 445267.111480 * julian_ephemeris_century
#          - 0.0019142 * julian_ephemeris_century**2
#          + julian_ephemeris_century**3 / 189474.0)
#    return x0


def mean_anomaly_sun(julian_ephemeris_century):
    return (julian_ephemeris_century*(julian_ephemeris_century*(
            -3.33333333333333e-6*julian_ephemeris_century - 0.0001603)
            + 35999.05034) + 357.52772)
#    x1 = (357.52772
#          + 35999.050340 * julian_ephemeris_century
#          - 0.0001603 * julian_ephemeris_century**2
#          - julian_ephemeris_century**3 / 300000.0)
#    return x1


def mean_anomaly_moon(julian_ephemeris_century):
    return (julian_ephemeris_century*(julian_ephemeris_century*(
            1.77777777777778e-5*julian_ephemeris_century + 0.0086972)
        + 477198.867398) + 134.96298)
#    x2 = (134.96298
#          + 477198.867398 * julian_ephemeris_century
#          + 0.0086972 * julian_ephemeris_century**2
#          + julian_ephemeris_century**3 / 56250)
#    return x2


def moon_argument_latitude(julian_ephemeris_century):
    return julian_ephemeris_century*(julian_ephemeris_century*(
            3.05558101873071e-6*julian_ephemeris_century - 0.0036825)
        + 483202.017538) + 93.27191
#    x3 = (93.27191
#          + 483202.017538 * julian_ephemeris_century
#          - 0.0036825 * julian_ephemeris_century**2
#          + julian_ephemeris_century**3 / 327270)
#    return x3


def moon_ascending_longitude(julian_ephemeris_century):
    return (julian_ephemeris_century*(julian_ephemeris_century*(
            2.22222222222222e-6*julian_ephemeris_century + 0.0020708)
            - 1934.136261) + 125.04452)
#    x4 = (125.04452
#          - 1934.136261 * julian_ephemeris_century
#          + 0.0020708 * julian_ephemeris_century**2
#          + julian_ephemeris_century**3 / 450000)
#    return x4


def longitude_obliquity_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4):
    x0, x1, x2, x3, x4 = deg2rad*x0, deg2rad*x1, deg2rad*x2, deg2rad*x3, deg2rad*x4
    delta_psi_sum = 0.0
    delta_eps_sum = 0.0
    # If the sincos formulation is used, the speed up is ~8% with numba.
    for row in range(63):
        arg = (NUTATION_YTERM_LIST_0[row]*x0 +
               NUTATION_YTERM_LIST_1[row]*x1 +
               NUTATION_YTERM_LIST_2[row]*x2 +
               NUTATION_YTERM_LIST_3[row]*x3 +
               NUTATION_YTERM_LIST_4[row]*x4)
        arr = NUTATION_ABCD_LIST[row]
        sinarg, cosarg = sincos(arg)
#        sinarg = sin(arg)
#        cosarg = sqrt(1.0 - sinarg*sinarg)
        t0 = (arr[0] + julian_ephemeris_century*arr[1])
        delta_psi_sum += t0*sinarg
#        delta_psi_sum += t0*sin(arg)
        t0 = (arr[2] + julian_ephemeris_century*arr[3])
        delta_eps_sum += t0*cosarg
#        delta_eps_sum += t0*cos(arg)
    delta_psi = delta_psi_sum/36000000.0
    delta_eps = delta_eps_sum/36000000.0
    res = [0.0]*2
    res[0] = delta_psi
    res[1] = delta_eps
    return res

def longitude_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4):
    x0, x1, x2, x3, x4 = deg2rad*x0, deg2rad*x1, deg2rad*x2, deg2rad*x3, deg2rad*x4
    delta_psi_sum = 0.0
    for row in range(63):
#       # None can be skipped but the multiplies can be with effort -2 to 2 with dict - just might be slower
        argsin = (NUTATION_YTERM_LIST_0[row]*x0 +
                  NUTATION_YTERM_LIST_1[row]*x1 +
                  NUTATION_YTERM_LIST_2[row]*x2 +
                  NUTATION_YTERM_LIST_3[row]*x3 +
                  NUTATION_YTERM_LIST_4[row]*x4)
        term = (NUTATION_ABCD_LIST[row][0] + NUTATION_ABCD_LIST[row][1]
                * julian_ephemeris_century)*sin(argsin)
        delta_psi_sum += term
    delta_psi = delta_psi_sum/36000000.0
    return delta_psi


def obliquity_nutation(julian_ephemeris_century, x0, x1, x2, x3, x4):
    delta_eps_sum = 0.0
    x0, x1, x2, x3, x4 = deg2rad*x0, deg2rad*x1, deg2rad*x2, deg2rad*x3, deg2rad*x4
    for row in range(63):
        argcos = (NUTATION_YTERM_LIST_0[row]*x0 +
                  NUTATION_YTERM_LIST_1[row]*x1 +
                  NUTATION_YTERM_LIST_2[row]*x2 +
                  NUTATION_YTERM_LIST_3[row]*x3 +
                  NUTATION_YTERM_LIST_4[row]*x4)
        term = (NUTATION_ABCD_LIST[row][2]
               + NUTATION_ABCD_LIST[row][3]*julian_ephemeris_century)*cos(argcos)
        delta_eps_sum += term
    delta_eps = delta_eps_sum/36000000.0
    return delta_eps


def mean_ecliptic_obliquity(julian_ephemeris_millennium):
    U = 0.1*julian_ephemeris_millennium
    e0 =  (U*(U*(U*(U*(U*(U*(U*(U*(U*(2.45*U + 5.79) + 27.87) + 7.12) - 39.05)
           - 249.67) - 51.38) + 1999.25) - 1.55) - 4680.93) + 84381.448)
    return e0


def true_ecliptic_obliquity(mean_ecliptic_obliquity, obliquity_nutation):
#    e0 = mean_ecliptic_obliquity
#    deleps = obliquity_nutation
    return mean_ecliptic_obliquity*0.0002777777777777778  + obliquity_nutation
#    e = e0/3600.0 + deleps
#    return e


def aberration_correction(earth_radius_vector):
    # -20.4898 / (3600)
    deltau = -0.005691611111111111/earth_radius_vector
    return deltau


def apparent_sun_longitude(geocentric_longitude, longitude_nutation,
                           aberration_correction):
    lamd = geocentric_longitude + longitude_nutation + aberration_correction
    return lamd


def mean_sidereal_time(julian_day, julian_century):
    julian_century2 = julian_century*julian_century
    v0 = (280.46061837 + 360.98564736629*(julian_day - 2451545.0)
          + 0.000387933*julian_century2
          - julian_century2*julian_century/38710000.0)
    return v0 % 360.0


def apparent_sidereal_time(mean_sidereal_time, longitude_nutation,
                           true_ecliptic_obliquity):
    v = mean_sidereal_time + longitude_nutation*cos(deg2rad*true_ecliptic_obliquity)
    return v


def geocentric_sun_right_ascension(apparent_sun_longitude,
                                   true_ecliptic_obliquity,
                                   geocentric_latitude):
    num = (sin(deg2rad*apparent_sun_longitude)
           * cos(deg2rad*true_ecliptic_obliquity)
           - tan(deg2rad*geocentric_latitude)
           * sin(deg2rad*true_ecliptic_obliquity))
    alpha = degrees(atan2(num, cos(
        deg2rad*apparent_sun_longitude)))
    return alpha % 360


def geocentric_sun_declination(apparent_sun_longitude, true_ecliptic_obliquity,
                               geocentric_latitude):
    delta = degrees(asin(sin(deg2rad*geocentric_latitude) *
                                 cos(deg2rad*true_ecliptic_obliquity) +
                                 cos(deg2rad*geocentric_latitude) *
                                 sin(deg2rad*true_ecliptic_obliquity) *
                                 sin(deg2rad*apparent_sun_longitude)))
    return delta


def local_hour_angle(apparent_sidereal_time, observer_longitude,
                     sun_right_ascension):
    """Measured westward from south."""
    H = apparent_sidereal_time + observer_longitude - sun_right_ascension
    return H % 360


def equatorial_horizontal_parallax(earth_radius_vector):
    return 8.794 / (3600.0 * earth_radius_vector)


def uterm(observer_latitude):
    u = atan(0.99664719*tan(deg2rad*observer_latitude))
    return u


def xterm(u, observer_latitude, observer_elevation):
    # 1/6378140.0 = const
    x = (cos(u) + observer_elevation*1.5678552054360676e-07*cos(deg2rad*observer_latitude))
    return x


def yterm(u, observer_latitude, observer_elevation):
    # 1/6378140.0 = const
    y = (0.99664719 * sin(u) + observer_elevation*1.5678552054360676e-07
         * sin(deg2rad*observer_latitude))
    return y


def parallax_sun_right_ascension(xterm, equatorial_horizontal_parallax,
                                 local_hour_angle, geocentric_sun_declination):
    x0 = sin(deg2rad*equatorial_horizontal_parallax)
    x1 = deg2rad*local_hour_angle
    num = -xterm*x0*sin(x1)
    denom = (cos(deg2rad*geocentric_sun_declination) - xterm*x0 * cos(x1))
    delta_alpha = degrees(atan2(num, denom))
    return delta_alpha


def topocentric_sun_right_ascension(geocentric_sun_right_ascension,
                                    parallax_sun_right_ascension):
    alpha_prime = geocentric_sun_right_ascension + parallax_sun_right_ascension
    return alpha_prime


def topocentric_sun_declination(geocentric_sun_declination, xterm, yterm,
                                equatorial_horizontal_parallax,
                                parallax_sun_right_ascension,
                                local_hour_angle):
    x0 = sin(deg2rad*equatorial_horizontal_parallax)
    num = ((sin(deg2rad*geocentric_sun_declination) - yterm
            * x0)
           * cos(deg2rad*parallax_sun_right_ascension))
    denom = (cos(deg2rad*geocentric_sun_declination) - xterm
             * x0
             * cos(deg2rad*local_hour_angle))
    delta = degrees(atan2(num, denom))
    return delta


def topocentric_local_hour_angle(local_hour_angle,
                                 parallax_sun_right_ascension):
    H_prime = local_hour_angle - parallax_sun_right_ascension
    return H_prime


def topocentric_elevation_angle_without_atmosphere(observer_latitude,
                                                   topocentric_sun_declination,
                                                   topocentric_local_hour_angle
                                                   ):

    r_observer_latitude = deg2rad*observer_latitude
    r_topocentric_sun_declination = deg2rad*topocentric_sun_declination
    e0 = degrees(asin(
        sin(r_observer_latitude)
        * sin(r_topocentric_sun_declination)
        + cos(r_observer_latitude)
        * cos(r_topocentric_sun_declination)
        * cos(deg2rad*topocentric_local_hour_angle)))

    return e0


def atmospheric_refraction_correction(local_pressure, local_temp,
                                      topocentric_elevation_angle_wo_atmosphere,
                                      atmos_refract):
    # switch sets delta_e when the sun is below the horizon
    switch = topocentric_elevation_angle_wo_atmosphere >= -1.0 * (
        0.26667 + atmos_refract)
    delta_e = ((local_pressure / 1010.0) * (283.0 / (273.0 + local_temp))
               * 1.02 / (60.0 * tan(deg2rad*(
                   topocentric_elevation_angle_wo_atmosphere
                   + 10.3 / (topocentric_elevation_angle_wo_atmosphere
                             + 5.11))))) * switch
    return delta_e


def topocentric_elevation_angle(topocentric_elevation_angle_without_atmosphere,
                                atmospheric_refraction_correction):
    e = (topocentric_elevation_angle_without_atmosphere
         + atmospheric_refraction_correction)
    return e


def topocentric_zenith_angle(topocentric_elevation_angle):
    theta = 90.0 - topocentric_elevation_angle
    return theta


def topocentric_astronomers_azimuth(topocentric_local_hour_angle,
                                    topocentric_sun_declination,
                                    observer_latitude):
    num = sin(deg2rad*topocentric_local_hour_angle)
    denom = (cos(deg2rad*topocentric_local_hour_angle)
             * sin(deg2rad*observer_latitude)
             - tan(deg2rad*topocentric_sun_declination)
             * cos(deg2rad*observer_latitude))
    gamma = degrees(atan2(num, denom))

    return gamma % 360.0


def topocentric_azimuth_angle(topocentric_astronomers_azimuth):
    phi = topocentric_astronomers_azimuth + 180.0
    return phi % 360.0


def sun_mean_longitude(julian_ephemeris_millennium):
    M = julian_ephemeris_millennium*(julian_ephemeris_millennium*(
            julian_ephemeris_millennium*(julian_ephemeris_millennium*(
                    -5.0e-7*julian_ephemeris_millennium - 6.5359477124183e-5)
        + 2.00276381406341e-5) + 0.03032028) + 360007.6982779) + 280.4664567
    return M


#@jcompile('float64(float64, float64, float64, float64)', nopython=True)
def equation_of_time(sun_mean_longitude, geocentric_sun_right_ascension,
                     longitude_nutation, true_ecliptic_obliquity):
    term = cos(deg2rad*true_ecliptic_obliquity)
    E = (sun_mean_longitude - 0.0057183 - geocentric_sun_right_ascension +
         longitude_nutation * term)
    # limit between 0 and 360
    E = E % 360
    # convert to minutes
    E *= 4.0
    greater = E > 20.0
    less = E < -20.0
    other = (E <= 20.0) & (E >= -20.0)
    E = greater * (E - 1440.0) + less * (E + 1440.0) + other * E
    return E


def earthsun_distance(unixtime, delta_t):
    """Calculates the distance from the earth to the sun using the NREL SPA
    algorithm described in [1].

    Parameters
    ----------
    unixtime : numpy array
        Array of unix/epoch timestamps to calculate solar position for.
        Unixtime is the number of seconds since Jan. 1, 1970 00:00:00 UTC.
        A pandas.DatetimeIndex is easily converted using .astype(np.int64)/10**9
    delta_t : float
        Difference between terrestrial time and UT. USNO has tables.

    Returns
    -------
    R : array
        Earth-Sun distance in AU.

    References
    ----------
    [1] Reda, I., Andreas, A., 2003. Solar position algorithm for solar
    radiation applications. Technical report: NREL/TP-560- 34302. Golden,
    USA, http://www.nrel.gov.
    """
    jd = julian_day(unixtime)
    jde = julian_ephemeris_day(jd, delta_t)
    jce = julian_ephemeris_century(jde)
    jme = julian_ephemeris_millennium(jce)
    R = heliocentric_radius_vector(jme)
    return R


def solar_position(unixtime, lat, lon, elev, pressure, temp, delta_t,
                   atmos_refract, sst=False):
    """Calculate the solar position using the NREL SPA algorithm described in
    [1].

    If numba is installed, the functions can be compiled
    and the code runs quickly. If not, the functions
    still evaluate but use numpy instead.

    Parameters
    ----------
    unixtime : numpy array
        Array of unix/epoch timestamps to calculate solar position for.
        Unixtime is the number of seconds since Jan. 1, 1970 00:00:00 UTC.
        A pandas.DatetimeIndex is easily converted using .astype(np.int64)/10**9
    lat : float
        Latitude to calculate solar position for
    lon : float
        Longitude to calculate solar position for
    elev : float
        Elevation of location in meters
    pressure : int or float
        avg. yearly pressure at location in millibars;
        used for atmospheric correction
    temp : int or float
        avg. yearly temperature at location in
        degrees C; used for atmospheric correction
    delta_t : float, optional
        If delta_t is None, uses spa.calculate_deltat
        using time.year and time.month from pandas.DatetimeIndex.
        For most simulations specifying delta_t is sufficient.
        Difference between terrestrial time and UT1.
        *Note: delta_t = None will break code using nrel_numba,
        this will be fixed in a future version.
        By default, use USNO historical data and predictions
    atmos_refrac : float, optional
        The approximate atmospheric refraction (in degrees)
        at sunrise and sunset.
    numthreads: int, optional, default None
        Number of threads to use for computation if numba>=0.17
        is installed.
    sst : bool, default False
        If True, return only data needed for sunrise, sunset, and transit
        calculations.

    Returns
    -------
    list with elements:
        apparent zenith,
        zenith,
        elevation,
        apparent_elevation,
        azimuth,
        equation_of_time

    References
    ----------
    .. [1] I. Reda and A. Andreas, Solar position algorithm for solar radiation
    applications. Solar Energy, vol. 76, no. 5, pp. 577-589, 2004.
    .. [2] I. Reda and A. Andreas, Corrigendum to Solar position algorithm for
    solar radiation applications. Solar Energy, vol. 81, no. 6, p. 838, 2007.
    """
    jd = julian_day(unixtime)
    jde = julian_ephemeris_day(jd, delta_t)
    jc = julian_century(jd)
    jce = julian_ephemeris_century(jde)
    jme = julian_ephemeris_millennium(jce)
    R = heliocentric_radius_vector(jme)
    L = heliocentric_longitude(jme)
    B = heliocentric_latitude(jme)
    Theta = geocentric_longitude(L)
    beta = geocentric_latitude(B)
    x0 = mean_elongation(jce)
    x1 = mean_anomaly_sun(jce)
    x2 = mean_anomaly_moon(jce)
    x3 = moon_argument_latitude(jce)
    x4 = moon_ascending_longitude(jce)
    delta_psi, delta_epsilon = longitude_obliquity_nutation(jce, x0, x1, x2, x3, x4)

    epsilon0 = mean_ecliptic_obliquity(jme)
    epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon)
    delta_tau = aberration_correction(R)
    lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau)
    v0 = mean_sidereal_time(jd, jc)
    v = apparent_sidereal_time(v0, delta_psi, epsilon)
    alpha = geocentric_sun_right_ascension(lamd, epsilon, beta)
    delta = geocentric_sun_declination(lamd, epsilon, beta)
    if sst: # numba: delete
        return v, alpha, delta # numba: delete

    m = sun_mean_longitude(jme)
    eot = equation_of_time(m, alpha, delta_psi, epsilon)
    H = local_hour_angle(v, lon, alpha)
    xi = equatorial_horizontal_parallax(R)
    u = uterm(lat)
    x = xterm(u, lat, elev)
    y = yterm(u, lat, elev)
    delta_alpha = parallax_sun_right_ascension(x, xi, H, delta)
    delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha, H)
    H_prime = topocentric_local_hour_angle(H, delta_alpha)
    e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime,
                                                        H_prime)
    delta_e = atmospheric_refraction_correction(pressure, temp, e0,
                                                atmos_refract)
    e = topocentric_elevation_angle(e0, delta_e)
    theta = topocentric_zenith_angle(e)
    theta0 = topocentric_zenith_angle(e0)
    gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat)
    phi = topocentric_azimuth_angle(gamma)
    return [theta, theta0, e, e0, phi, eot]


try:
    if IS_NUMBA:  # type: ignore # noqa: F821
        import threading

        import numba
        import numpy as np
        # This is 3x slower without nogil
        @numba.njit(nogil=True)
        def solar_position_loop(unixtime, loc_args, out):
            """Loop through the time array and calculate the solar position."""
            lat = loc_args[0]
            lon = loc_args[1]
            elev = loc_args[2]
            pressure = loc_args[3]
            temp = loc_args[4]
            delta_t = loc_args[5]
            atmos_refract = loc_args[6]
            sst = loc_args[7]
            esd = loc_args[8]

            for i in range(len(unixtime)):
                utime = unixtime[i]
                jd = julian_day(utime)
                jde = julian_ephemeris_day(jd, delta_t)
                jc = julian_century(jd)
                jce = julian_ephemeris_century(jde)
                jme = julian_ephemeris_millennium(jce)
                R = heliocentric_radius_vector(jme)
                L = heliocentric_longitude(jme)
                B = heliocentric_latitude(jme)

                Theta = geocentric_longitude(L)
                beta = geocentric_latitude(B)
                x0 = mean_elongation(jce)
                x1 = mean_anomaly_sun(jce)
                x2 = mean_anomaly_moon(jce)
                x3 = moon_argument_latitude(jce)
                x4 = moon_ascending_longitude(jce)
#                delta_psi = longitude_nutation(jce, x0, x1, x2, x3, x4)
#                delta_epsilon = obliquity_nutation(jce, x0, x1, x2, x3, x4)
                delta_psi, delta_epsilon = longitude_obliquity_nutation(jce, x0, x1, x2, x3, x4)
                epsilon0 = mean_ecliptic_obliquity(jme)
                epsilon = true_ecliptic_obliquity(epsilon0, delta_epsilon)
                delta_tau = aberration_correction(R)
                lamd = apparent_sun_longitude(Theta, delta_psi, delta_tau)
                v0 = mean_sidereal_time(jd, jc)
                v = apparent_sidereal_time(v0, delta_psi, epsilon)
                alpha = geocentric_sun_right_ascension(lamd, epsilon, beta)
                delta = geocentric_sun_declination(lamd, epsilon, beta)
#                if sst:
#                    out[0, i] = v
#                    out[1, i] = alpha
#                    out[2, i] = delta
#                    continue
                m = sun_mean_longitude(jme)
                eot = equation_of_time(m, alpha, delta_psi, epsilon)
                H = local_hour_angle(v, lon, alpha)
                xi = equatorial_horizontal_parallax(R)
                u = uterm(lat)
                x = xterm(u, lat, elev)
                y = yterm(u, lat, elev)
                delta_alpha = parallax_sun_right_ascension(x, xi, H, delta)
                delta_prime = topocentric_sun_declination(delta, x, y, xi, delta_alpha,
                                                          H)
                H_prime = topocentric_local_hour_angle(H, delta_alpha)
                e0 = topocentric_elevation_angle_without_atmosphere(lat, delta_prime,
                                                                    H_prime)
                delta_e = atmospheric_refraction_correction(pressure, temp, e0,
                                                            atmos_refract)
                e = topocentric_elevation_angle(e0, delta_e)
                theta = topocentric_zenith_angle(e)
                theta0 = topocentric_zenith_angle(e0)
                gamma = topocentric_astronomers_azimuth(H_prime, delta_prime, lat)
                phi = topocentric_azimuth_angle(gamma)
                out[0, i] = theta
                out[1, i] = theta0
                out[2, i] = e
                out[3, i] = e0
                out[4, i] = phi
                out[5, i] = eot


        def solar_position_numba(unixtime, lat, lon, elev, pressure, temp, delta_t,
                                 atmos_refract, numthreads, sst=False, esd=False):
            """Calculate the solar position using the numba compiled functions
            and multiple threads.

            Very slow if functions are not numba compiled.
            """
            # these args are the same for each thread
            loc_args = np.array([lat, lon, elev, pressure, temp, delta_t,
                                 atmos_refract, sst, esd])

            # construct dims x ulength array to put the results in
            ulength = unixtime.shape[0]
            if sst:
                dims = 3
            elif esd:
                dims = 1
            else:
                dims = 6
            result = np.empty((dims, ulength), dtype=np.float64)

            if unixtime.dtype != np.float64:
                unixtime = unixtime.astype(np.float64)

            if ulength < numthreads:
                numthreads = ulength

            if numthreads <= 1:
                solar_position_loop(unixtime, loc_args, result)
                return result

            # split the input and output arrays into numthreads chunks
            split0 = np.array_split(unixtime, numthreads)
            split2 = np.array_split(result, numthreads, axis=1)
            chunks = [[a0, loc_args, split2[i]] for i, a0 in enumerate(split0)]
            # Spawn one thread per chunk
            threads = [threading.Thread(target=solar_position_loop, args=chunk)
                       for chunk in chunks]
            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join()
            return result


except:
    pass


def transit_sunrise_sunset(dates, lat, lon, delta_t):
    """Calculate the sun transit, sunrise, and sunset for a set of dates at a
    given location.

    Parameters
    ----------
    dates : array
        Numpy array of ints/floats corresponding to the Unix time
        for the dates of interest, must be midnight UTC (00:00+00:00)
        on the day of interest.
    lat : float
        Latitude of location to perform calculation for
    lon : float
        Longitude of location
    delta_t : float
        Difference between terrestrial time and UT. USNO has tables.

    Returns
    -------
    tuple : (transit, sunrise, sunset) localized to UTC

    >>> transit_sunrise_sunset(1523836800, 51.0486, -114.07, 70.68302220312503)
    (1523907360.3863413, 1523882341.570479, 1523932345.7781625)
    """
    condition = (dates % 86400) != 0.0
    if condition:
        raise ValueError('Input dates must be at 00:00 UTC')

    utday = (dates // 86400) * 86400
    ttday0 = utday - delta_t
    ttdayn1 = ttday0 - 86400.0
    ttdayp1 = ttday0 + 86400.0

    # index 0 is v, 1 is alpha, 2 is delta
    utday_res = solar_position(utday, 0, 0, 0, 0, 0, delta_t,
                               0, sst=True)
    v = utday_res[0]

    ttday0_res = solar_position(ttday0, 0, 0, 0, 0, 0, delta_t,
                                0, sst=True)
    ttdayn1_res = solar_position(ttdayn1, 0, 0, 0, 0, 0, delta_t,
                                 0, sst=True)
    ttdayp1_res = solar_position(ttdayp1, 0, 0, 0, 0, 0, delta_t,
                                 0, sst=True)
    m0 = (ttday0_res[1] - lon - v) / 360
    cos_arg = ((-0.014543315936696236 - sin(radians(lat)) # sin(radians(-0.8333)) = -0.0145...
               * sin(radians(ttday0_res[2]))) /
               (cos(radians(lat)) * cos(radians(ttday0_res[2]))))
    if abs(cos_arg) > 1:
        cos_arg = nan

    H0 = degrees(acos(cos_arg)) % 180

    m = [0.0]*3
    m[0] = m0 % 1
    m[1] = (m[0] - H0 / 360.0)
    m[2] = (m[0] + H0 / 360.0)

    # need to account for fractions of day that may be the next or previous
    # day in UTC
    add_a_day = m[2] >= 1
    sub_a_day = m[1] < 0
    m[1] = m[1] % 1
    m[2] = m[2] % 1
    vs = [0.0]*3
    for i in range(3):
        vs[i] = v + 360.985647*m[i]
    n = [0.0]*3
    for i in range(3):
        n[i] = m[i] + delta_t / 86400.0

    a = ttday0_res[1] - ttdayn1_res[1]

    if abs(a) > 2:
        a = a %1
    ap = ttday0_res[2] - ttdayn1_res[2]
    if (abs(ap) > 2):
        ap = ap % 1
    b = ttdayp1_res[1] - ttday0_res[1]
    if (abs(b) > 2):
        b = b % 1
    bp = ttdayp1_res[2] - ttday0_res[2]
    if abs(bp) > 2:
        bp = bp % 1


    c = b - a
    cp = bp - ap

    alpha_prime = [0.0]*3
    delta_prime = [0.0]*3
    Hp = [0.0]*3
    for i in range(3):
        alpha_prime[i] = ttday0_res[1] + (n[i] * (a + b + c * n[i]))*0.5
        delta_prime[i] = ttday0_res[2] + (n[i] * (ap + bp + cp * n[i]))*0.5
        Hp[i] = (vs[i] + lon - alpha_prime[i]) % 360
        if Hp[i] >= 180.0:
            Hp[i] = Hp[i] - 360.0


    #alpha_prime = ttday0_res[1] + (n * (a + b + c * n)) / 2 # this is vect
    #delta_prime = ttday0_res[2] + (n * (ap + bp + cp * n)) / 2 # this is vect
    #Hp = (vs + lon - alpha_prime) % 360
    #Hp[Hp >= 180] = Hp[Hp >= 180] - 360
    x1 = sin(radians(lat))
    x2 = cos(radians(lat))

    h = [0.0]*3
    for i in range(3):
        h[i] = degrees(asin(x1*sin(radians(delta_prime[i])) + x2 * cos(radians(delta_prime[i])) * cos(radians(Hp[i]))))

    T = float((m[0] - Hp[0] / 360.0) * 86400.0)
    R = float((m[1] + (h[1] + 0.8333) / (360.0 * cos(radians(delta_prime[1])) *
                                   cos(radians(lat)) *
                                   sin(radians(Hp[1])))) * 86400.0)
    S = float((m[2] + (h[2] + 0.8333) / (360.0 * cos(radians(delta_prime[2])) *
                                   cos(radians(lat)) *
                                   sin(radians(Hp[2])))) * 86400.0)

    if add_a_day:
        S += 86400.0
    if sub_a_day:
        R -= 86400.0

    transit = T + utday
    sunrise = R + utday
    sunset = S + utday

    return transit, sunrise, sunset


def calculate_deltat(year, month):
    y = year + (month - 0.5)/12
    if (2005 <= year) & (year < 2050):
        t1 = (y-2000.0)
        deltat = (62.92+0.32217*t1 + 0.005589*t1*t1)
    elif  (1986 <= year) & (year < 2005):
        t1 = y - 2000.0
        deltat = (63.86+0.3345*t1
                      - 0.060374*t1**2
                      + 0.0017275*t1**3
                      + 0.000651814*t1**4
                      + 0.00002373599*t1**5)
    elif (2050 <= year) & (year < 2150):
        deltat = (-20+32*((y-1820)/100)**2
                      - 0.5628*(2150-y))
    elif year < -500.0:
        deltat = -20.0 + 32*(0.01*(y-1820.0))**2

    elif (-500 <= year) & (year < 500):
        t1 = y/100
        deltat = (10583.6-1014.41*(y/100)
                      + 33.78311*(y/100)**2
                      - 5.952053*(y/100)**3
                      - 0.1798452*(y/100)**4
                      + 0.022174192*(y/100)**5
                      + 0.0090316521*(y/100)**6)
    elif (500 <= year) & (year < 1600):
        t1 = (y-1000)/100
        deltat = (1574.2-556.01*((y-1000)/100)
                      + 71.23472*((y-1000)/100)**2
                      + 0.319781*((y-1000)/100)**3
                      - 0.8503463*((y-1000)/100)**4
                      - 0.005050998*((y-1000)/100)**5
                      + 0.0083572073*((y-1000)/100)**6)
    elif (1600 <= year) & (year < 1700):
        t1 = (y-1600.0)
        deltat = (120-0.9808*(y-1600)
                      - 0.01532*(y-1600)**2
                      + (y-1600)**3/7129)
    elif (1700 <= year) & (year < 1800):
        t1 = (y - 1700.0)
        deltat = (8.83+0.1603*(y-1700)
                      - 0.0059285*(y-1700)**2
                      + 0.00013336*(y-1700)**3
                      - (y-1700)**4/1174000)
    elif (1800 <= year) & (year < 1860):
        t1 = y - 1800.0
        deltat = (13.72-0.332447*(y-1800)
                      + 0.0068612*(y-1800)**2
                      + 0.0041116*(y-1800)**3
                      - 0.00037436*(y-1800)**4
                      + 0.0000121272*(y-1800)**5
                      - 0.0000001699*(y-1800)**6
                      + 0.000000000875*(y-1800)**7)
    elif (1860 <= year) & (year < 1900):
        t1 = y-1860.0
        deltat = (7.62+0.5737*(y-1860)
                      - 0.251754*(y-1860)**2
                      + 0.01680668*(y-1860)**3
                      - 0.0004473624*(y-1860)**4
                      + (y-1860)**5/233174)
    elif (1900 <= year) & (year < 1920):
        t1 = y - 1900.0
        deltat = (-2.79+1.494119*(y-1900)
                      - 0.0598939*(y-1900)**2
                      + 0.0061966*(y-1900)**3
                      - 0.000197*(y-1900)**4)
    elif (1920 <= year) & (year < 1941):
        t1 = y - 1920.0
        deltat = (21.20+0.84493*(y-1920)
                      - 0.076100*(y-1920)**2
                      + 0.0020936*(y-1920)**3)
    elif (1941 <= year) & (year < 1961):
        t1 = y - 1950.0
        deltat = (29.07+0.407*(y-1950)
                      - (y-1950)**2/233
                      + (y-1950)**3/2547)
    elif (1961 <= year) & (year < 1986):
        t1 = y-1975
        deltat = (45.45+1.067*(y-1975)
                      - (y-1975)**2/260
                      - (y-1975)**3/718)

    elif year >= 2150:
        deltat = -20+32*((y-1820)/100)**2


    return deltat