1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains correlations and functions for calculating pressure drop
from packings and demisters; separation efficiency of demisters; demister
pressure drop; and demister geometry.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Packing Pressure Drop
---------------------
.. autofunction:: fluids.packed_tower.Robbins
.. autofunction:: fluids.packed_tower.Stichlmair_dry
.. autofunction:: fluids.packed_tower.Stichlmair_wet
Packing Flooding
----------------
.. autofunction:: fluids.packed_tower.Stichlmair_flood
Demister Pressure Drop
----------------------
.. autofunction:: fluids.packed_tower.dP_demister_dry_Setekleiv_Svendsen
.. autofunction:: fluids.packed_tower.dP_demister_dry_Setekleiv_Svendsen_lit
.. autofunction:: fluids.packed_tower.dP_demister_wet_ElDessouky
Demister Separation Efficiency
------------------------------
.. autofunction:: fluids.packed_tower.separation_demister_ElDessouky
Demister Geometry
-----------------
.. autofunction:: fluids.packed_tower.voidage_experimental
.. autofunction:: fluids.packed_tower.specific_area_mesh
"""
from math import log, sqrt
from fluids.constants import g, pi
from fluids.numerics import newton_system, secant, solve_2_direct
__all__ = ['voidage_experimental', 'specific_area_mesh',
'Stichlmair_dry', 'Stichlmair_wet', 'Stichlmair_flood', 'Robbins',
'dP_demister_dry_Setekleiv_Svendsen_lit',
'dP_demister_dry_Setekleiv_Svendsen',
'dP_demister_wet_ElDessouky', 'separation_demister_ElDessouky']
### Demister
def dP_demister_dry_Setekleiv_Svendsen(S, voidage, vs, rho, mu, L=1.0):
r'''Calculates dry pressure drop across a demister, using the
correlation in [1]_. This model is for dry demisters with no holdup only.
.. math::
\frac{\Delta P \epsilon^2}{\rho_f v^2} = 10.29 - \frac{565}
{69.6SL - (SL)^2 - 779} - \frac{74.9}{160.9 - 4.85SL} + 45.33\left(
\frac{\mu_f \epsilon S^2 L}{\rho_f v}\right)^{0.75}
Parameters
----------
S : float
Specific area of the demister, normally ~250-1000 [m^2/m^3]
voidage : float
Voidage of bed of the demister material, normally ~0.98 []
vs : float
Superficial velocity of fluid, Q/A [m/s]
rho : float
Density of fluid [kg/m^3]
mu : float
Viscosity of fluid [Pa*s]
L : float, optional
Length of the demister [m]
Returns
-------
dP : float
Pressure drop across a dry demister [Pa]
Notes
-----
Useful at startup and in modeling. Dry pressure drop is normally negligible
compared to wet pressure drop. Coefficients obtained by evolutionary
programming and may not fit data outside of the limits of the variables.
Examples
--------
>>> dP_demister_dry_Setekleiv_Svendsen(S=250, voidage=.983, vs=1.2, rho=10, mu=3E-5, L=1)
320.3280788941329
References
----------
.. [1] Setekleiv, A. Eddie, and Hallvard F. Svendsen. "Dry Pressure Drop in
Spiral Wound Wire Mesh Pads at Low and Elevated Pressures." Chemical
Engineering Research and Design 109 (May 2016): 141-149.
doi:10.1016/j.cherd.2016.01.019.
'''
term = 10.29 - 565./(69.6*S*L - (S*L)**2 - 779) - 74.9/(160.9 - 4.85*S*L)
right = term + 45.33*(mu*voidage*S**2*L/rho/vs)**0.75
return right*rho*vs**2/voidage**2
def dP_demister_dry_Setekleiv_Svendsen_lit(S, voidage, vs, rho, mu, L=1.0):
r'''Calculates dry pressure drop across a demister, using the
correlation in [1]_. This model is for dry demisters with no holdup only.
Developed with literature data included as well as their own experimental
data.
.. math::
\frac{\Delta P \epsilon^2}{\rho_f v^2} = 7.3 - \frac{320}
{69.6SL - (SL)^2 - 779} - \frac{52.4}{161 - 4.85SL} + 27.2\left(
\frac{\mu_f \epsilon S^2 L}{\rho_f v}\right)^{0.75}
Parameters
----------
S : float
Specific area of the demister, normally ~250-1000 [m^2/m^3]
voidage : float
Voidage of bed of the demister material, normally ~0.98 []
vs : float
Superficial velocity of fluid, Q/A [m/s]
rho : float
Density of fluid [kg/m^3]
mu : float
Viscosity of fluid [Pa*s]
L : float, optional
Length of the demister [m]
Returns
-------
dP : float
Pressure drop across a dry demister [Pa]
Notes
-----
Useful at startup and in modeling. Dry pressure drop is normally negligible
compared to wet pressure drop. Coefficients obtained by evolutionary
programming and may not fit data outside of the limits of the variables.
Examples
--------
>>> dP_demister_dry_Setekleiv_Svendsen_lit(S=250, voidage=.983, vs=1.2, rho=10, mu=3E-5, L=1.0)
209.083848658307
References
----------
.. [1] Setekleiv, A. Eddie, and Hallvard F. Svendsen. "Dry Pressure Drop in
Spiral Wound Wire Mesh Pads at Low and Elevated Pressures." Chemical
Engineering Research and Design 109 (May 2016): 141-149.
doi:10.1016/j.cherd.2016.01.019.
'''
term = 7.3 - 320./(69.6*S*L - (S*L)**2 - 779) - 52.4/(161 - 4.85*S*L)
right = term + 27.2*(mu*voidage*S**2*L/rho/vs)**0.75
return right*rho*vs**2/voidage**2
def dP_demister_wet_ElDessouky(vs, voidage, d_wire, L=1.0):
r'''Calculates wet pressure drop across a demister, using the
correlation in [1]_. Uses only their own experimental data.
.. math::
\frac{\Delta P}{L} = 0.002357(1-\epsilon)^{0.375798}(V)^{0.81317}
(d_w)^{-1.56114147}
Parameters
----------
vs : float
Superficial velocity of fluid, Q/A [m/s]
voidage : float
Voidage of bed of the demister material, normally ~0.98 []
d_wire : float
Diameter of mesh wire,[m]
L : float, optional
Length of the demister [m]
Returns
-------
dP : float
Pressure drop across a dry demister [Pa]
Notes
-----
No dependency on the liquid properties is included here. Because of the
exponential nature of the correlation, the limiting pressure drop as V
is lowered is 0 Pa. A dry pressure drop correlation should be compared with
results from this at low velocities, and the larger of the
two pressure drops used.
The correlation in [1]_ was presented as follows, with wire diameter in
units of mm, density in kg/m^3, V in m/s, and dP in Pa/m.
.. math::
\Delta P = 3.88178(\rho_{mesh})^{0.375798}(V)^{0.81317}
(d_w)^{-1.56114147}
Here, the correlation is converted to base SI units and to use voidage;
not all demisters are stainless steel as in [1]_. A density of 7999 kg/m^3
was used in the conversion.
In [1]_, V ranged from 0.98-7.5 m/s, rho from 80.317-208.16 kg/m^3, depth
from 100 to 200 mm, wire diameter of 0.2mm to 0.32 mm, and particle
diameter from 1 to 5 mm.
Examples
--------
>>> dP_demister_wet_ElDessouky(6, 0.978, 0.00032)
688.9216420105029
References
----------
.. [1] El-Dessouky, Hisham T, Imad M Alatiqi, Hisham M Ettouney, and Noura
S Al-Deffeeri. "Performance of Wire Mesh Mist Eliminator." Chemical
Engineering and Processing: Process Intensification 39, no. 2 (March
2000): 129-39. doi:10.1016/S0255-2701(99)00033-1.
'''
return L*0.002356999643727531*(1-voidage)**0.375798*vs**0.81317*d_wire**-1.56114147
def separation_demister_ElDessouky(vs, voidage, d_wire, d_drop):
r'''Calculates droplet removal by a demister as a fraction from 0 to 1,
using the correlation in [1]_. Uses only their own experimental data.
.. math::
\eta = 0.85835(d_w)^{-0.28264}(1-\epsilon)^{0.099625}(V)^{0.106878}
(d_p)^{0.383197}
Parameters
----------
vs : float
Superficial velocity of fluid, Q/A [m/s]
voidage : float
Voidage of bed of the demister material, normally ~0.98 []
d_wire : float
Diameter of mesh wire,[m]
d_drop : float
Drop diameter, [m]
Returns
-------
eta : float
Fraction droplets removed by mass [-]
Notes
-----
No dependency on the liquid properties is included here. Because of the
exponential nature of the correlation, for smaller diameters separation
quickly lowers. This correlation can predict a separation larger than 1
for higher velocities, lower voidages, lower wire diameters, and large
droplet sizes. This function truncates these larger values to 1.
The correlation in [1]_ was presented as follows, with wire diameter in
units of mm, density in kg/m^3, V in m/s, separation in %, and particle
diameter in mm.
.. math::
\eta = 17.5047(d_w)^{-0.28264}(\rho_{mesh})^{0.099625}(V)^{0.106878}
(d_p)^{0.383197}
Here, the correlation is converted to base SI units and to use voidage;
not all demisters are stainless steel as in [1]_. A density of 7999 kg/m^3
was used in the conversion.
In [1]_, V ranged from 0.98-7.5 m/s, rho from 80.317-208.16 kg/m^3, depth
from 100 to 200 mm, wire diameter of 0.2 mm to 0.32 mm, and particle
diameter from 1 to 5 mm.
Examples
--------
>>> separation_demister_ElDessouky(1.35, 0.974, 0.0002, 0.005)
0.8982892997640582
References
----------
.. [1] El-Dessouky, Hisham T, Imad M Alatiqi, Hisham M Ettouney, and Noura
S Al-Deffeeri. "Performance of Wire Mesh Mist Eliminator." Chemical
Engineering and Processing: Process Intensification 39, no. 2 (March
2000): 129-39. doi:10.1016/S0255-2701(99)00033-1.
'''
eta = 0.858352355761947*d_wire**-0.28264*(1-voidage)**0.099625*vs**0.106878*d_drop**0.383197
return min(eta, 1.0)
def voidage_experimental(m, rho, D, H):
r'''Calculates voidage of a bed or mesh given an experimental weight and
fixed density, diameter, and height, as shown in [1]_. The formula is also
self-evident.
.. math::
\epsilon = 1 - \frac{\frac{m_{mesh}}{\frac{\pi}{4}d_{column}^2
L_{mesh}}}{\rho_{material}}
Parameters
----------
m : float
Mass of mesh or bed particles weighted, [kg]
rho : float
Density of solid particles or mesh [kg/m^3]
D : float
Diameter of the cylindrical bed [m]
H : float
Height of the demister or bed [m]
Returns
-------
voidage : float
Voidage of bed of the material []
Notes
-----
Should be trusted over manufacturer data.
Examples
--------
>>> voidage_experimental(m=126, rho=8000, D=1, H=1)
0.9799464771704212
References
----------
.. [1] Helsør, T., and H. Svendsen. "Experimental Characterization of
Pressure Drop in Dry Demisters at Low and Elevated Pressures." Chemical
Engineering Research and Design 85, no. 3 (2007): 377-85.
doi:10.1205/cherd06048.
'''
return 1 - m/(pi/4*D**2*H)/rho
def specific_area_mesh(voidage, d):
r'''Calculates the specific area of a wire mesh, as used in demisters or
filters. Shown in [1]_, and also self-evident and non-empirical.
Makes the ideal assumption that wires never touch.
.. math::
S = \frac{4(1-\epsilon)}{d_{wire}}
Parameters
----------
voidage : float
Voidage of the mesh []
d : float
Diameter of the wires making the mesh, [m]
Returns
-------
S : float
Specific area of the mesh [m^2/m^3]
Notes
-----
Should be preferred over manufacturer data. Can also be used to show that
manufacturer's data is inconsistent with their claimed voidage and wire
diameter.
Examples
--------
>>> specific_area_mesh(voidage=.934, d=3e-4)
879.9999999999994
References
----------
.. [1] Helsør, T., and H. Svendsen. "Experimental Characterization of
Pressure Drop in Dry Demisters at Low and Elevated Pressures." Chemical
Engineering Research and Design 85, no. 3 (2007): 377-85.
doi:10.1205/cherd06048.
'''
return 4*(1-voidage)/d
### Packing
def Stichlmair_dry(Vg, rhog, mug, voidage, specific_area, C1, C2, C3, H=1.):
r'''Calculates dry pressure drop across a packed column, using the
Stichlmair [1]_ correlation. Uses three regressed constants for each
type of packing, and voidage and specific area.
Pressure drop is given by:
.. math::
\Delta P_{dry} = \frac{3}{4} f_0 \frac{1-\epsilon}{\epsilon^{4.65}}
\rho_G \frac{H}{d_p}V_g^2
.. math::
f_0 = \frac{C_1}{Re_g} + \frac{C_2}{Re_g^{0.5}} + C_3
.. math::
d_p = \frac{6(1-\epsilon)}{a}
Parameters
----------
Vg : float
Superficial velocity of gas, Q/A [m/s]
rhog : float
Density of gas [kg/m^3]
mug : float
Viscosity of gas [Pa*s]
voidage : float
Voidage of bed of packing material []
specific_area : float
Specific area of the packing material [m^2/m^3]
C1 : float
Packing-specific constant []
C2 : float
Packing-specific constant []
C3 : float
Packing-specific constant []
H : float, optional
Height of packing [m]
Returns
-------
dP_dry : float
Pressure drop across dry packing [Pa]
Notes
-----
This model is used by most process simulation tools. If H is not provided,
it defaults to 1. If Z is not provided, it defaults to 1.
Examples
--------
>>> Stichlmair_dry(Vg=0.4, rhog=5., mug=5E-5, voidage=0.68,
... specific_area=260., C1=32., C2=7.0, C3=1.0)
236.80904286559885
References
----------
.. [1] Stichlmair, J., J. L. Bravo, and J. R. Fair. "General Model for
Prediction of Pressure Drop and Capacity of Countercurrent Gas/liquid
Packed Columns." Gas Separation & Purification 3, no. 1 (March 1989):
19-28. doi:10.1016/0950-4214(89)80016-7.
'''
dp = 6*(1-voidage)/specific_area
Re = Vg*rhog*dp/mug
f0 = C1/Re + C2/sqrt(Re) + C3
return 3/4.*f0*(1-voidage)/voidage**4.65*rhog*H/dp*Vg**2
def _Stichlmair_wet_err(dP_irr, h0, c1, dP_dry, H, voidage, c):
hT = h0*(1.0 + 20.0*dP_irr*dP_irr*c1)
err = dP_dry/H*((1-voidage+hT)/(1.0 - voidage))**((2.0 + c)/3.)*(voidage/(voidage-hT))**4.65 -dP_irr/H
return err
def Stichlmair_wet(Vg, Vl, rhog, rhol, mug, voidage, specific_area, C1, C2, C3, H=1.0):
r'''Calculates dry pressure drop across a packed column, using the
Stichlmair [1]_ correlation. Uses three regressed constants for each
type of packing, and voidage and specific area. This model is for irrigated
columns only.
Pressure drop is given by:
.. math::
\frac{\Delta P_{irr}}{H} = \frac{\Delta P_{dry}}{H}\left(\frac
{1-\epsilon + h_T}{1-\epsilon}\right)^{(2+c)/3}
\left(\frac{\epsilon}{\epsilon-h_T}\right)^{4.65}
.. math::
h_T = h_0\left[1 + 20\left(\frac{\Delta Pirr}{H\rho_L g}\right)^2\right]
.. math::
Fr_L = \frac{V_L^2 a}{g \epsilon^{4.65}}
.. math::
h_0 = 0.555 Fr_L^{1/3}
.. math::
c = \frac{-C_1/Re_g - C_2/(2Re_g^{0.5})}{f_0}
.. math::
\Delta P_{dry} = \frac{3}{4} f_0 \frac{1-\epsilon}{\epsilon^{4.65}}
\rho_G \frac{H}{d_p}V_g^2
.. math::
f_0 = \frac{C_1}{Re_g} + \frac{C_2}{Re_g^{0.5}} + C_3
.. math::
d_p = \frac{6(1-\epsilon)}{a}
Parameters
----------
Vg : float
Superficial velocity of gas, Q/A [m/s]
Vl : float
Superficial velocity of liquid, Q/A [m/s]
rhog : float
Density of gas [kg/m^3]
rhol : float
Density of liquid [kg/m^3]
mug : float
Viscosity of gas [Pa*s]
voidage : float
Voidage of bed of packing material []
specific_area : float
Specific area of the packing material [m^2/m^3]
C1 : float
Packing-specific constant []
C2 : float
Packing-specific constant []
C3 : float
Packing-specific constant []
H : float, optional
Height of packing [m]
Returns
-------
dP : float
Pressure drop across irrigated packing [Pa]
Notes
-----
This model is used by most process simulation tools. If H is not provided,
it defaults to 1. If Z is not provided, it defaults to 1.
A numerical solver is used and needed by this model. Its initial guess
is the dry pressure drop. Convergence problems may occur.
The model as described in [1]_ appears to have a typo, and could not match
the example. As described in [2]_, however, the model works.
Examples
--------
Example is from [1]_, matches.
>>> Stichlmair_wet(Vg=0.4, Vl = 5E-3, rhog=5., rhol=1200., mug=5E-5,
... voidage=0.68, specific_area=260., C1=32., C2=7., C3=1.)
539.876823725352
References
----------
.. [1] Stichlmair, J., J. L. Bravo, and J. R. Fair. "General Model for
Prediction of Pressure Drop and Capacity of Countercurrent Gas/liquid
Packed Columns." Gas Separation & Purification 3, no. 1 (March 1989):
19-28. doi:10.1016/0950-4214(89)80016-7.
.. [2] Piche, Simon R., Faical Larachi, and Bernard P. A. Grandjean.
"Improving the Prediction of Irrigated Pressure Drop in Packed
Absorption Towers." The Canadian Journal of Chemical Engineering 79,
no. 4 (August 1, 2001): 584-94. doi:10.1002/cjce.5450790417.
'''
dp = 6.0*(1.0 - voidage)/specific_area
Re = Vg*rhog*dp/mug
f0 = C1/Re + C2/sqrt(Re) + C3
dP_dry = 3/4.*f0*(1-voidage)/voidage**4.65*rhog*H/dp*Vg*Vg
c = (-C1/Re - C2/(2*sqrt(Re)))/f0
Frl = Vl**2*specific_area/(g*voidage**4.65)
h0 = 0.555*Frl**(1/3.)
c1 = 1.0/(H*rhol*g)
c1 *= c1
return secant(_Stichlmair_wet_err, dP_dry, args=(h0, c1, dP_dry, H, voidage, c))
def _Stichlmair_flood_f(inputs, Vl, rhog, rhol, mug, voidage, specific_area,
C1, C2, C3, H):
"""Internal function which calculates the errors of the two Stichlmair
objective functions, and their jacobian.
"""
Vg, dP_irr = float(inputs[0]), float(inputs[1])
dp = 6.0*(1.0 - voidage)/specific_area
Re = Vg*rhog*dp/mug
f0 = C1/Re + C2/sqrt(Re) + C3
dP_dry = 0.75*f0*(1.0 - voidage)/voidage**4.65*rhog*H/dp*Vg*Vg
c = (-C1/Re - 0.5*C2*1.0/sqrt(Re))/f0
Frl = Vl*Vl*specific_area/(g*voidage**4.65)
h0 = 0.555*Frl**(1/3.)
hT = h0*(1.0 + 20.0*(dP_irr/H/rhol/g)**2)
err1 = dP_dry/H*((1.0 - voidage + hT)/(1.0 - voidage))**((2.0 + c)/3.)*(voidage/(voidage-hT))**4.65 - dP_irr/H
term = (dP_irr/(rhol*g*H))**2
err2 = (1./term - 40.0*((2.0+c)/3.)*h0/(1.0 - voidage + h0*(1.0 + 20.0*term))
- 186.0*h0/(voidage - h0*(1.0 + 20.0*term)))
return err1, err2
def _Stichlmair_flood_f_and_jac(inputs, Vl, rhog, rhol, mug, voidage,
specific_area, C1, C2, C3, H):
"""Internal function which calculates the errors of the two Stichlmair
objective functions, and their jacobian.
Derived using SymPy on the main flooding function.
"""
Vg, dP_irr = inputs[0], inputs[1]
x0 = 1.0/H
x1 = Vg*Vg
x2 = voidage**(-4.65)
x3 = specific_area*x2
x4 = Vl*Vl*x3/g
x5 = x4**0.333333333333333
x6 = dP_irr*dP_irr
x7 = H*H
x8 = 1.0/x7
x9 = g*g
x10 = 1.0/x9
x11 = rhol*rhol
x12 = 1.0/x11
x13 = x5*(20.0*x10*x12*x6*x8 + 1.0)
x14 = 0.555*x13
x15 = (voidage/(voidage - x14))**4.65
x16 = 1.0/Vg
x17 = 1.0/rhog
x18 = voidage - 1.0
x19 = 1.0/x18
x20 = C1*mug*specific_area*x16*x17*x19
x21 = 2.44948974278318*C2
x22 = Vg*rhog/(mug*specific_area)
x23 = x21*1.0/sqrt(-x18*x22)
x24 = 6.0*C3 - x20 + x23
x25 = 1.0 - voidage
x26 = x14 + x25
x27 = -x19*x26
x28 = 2.0*C1*mug*specific_area*x16*x17/x25 + x21*1.0/sqrt(x22*x25)
x29 = 1.0/x24
x30 = x28*x29
x31 = x27**(-0.166666666666667*x30 + 0.666666666666667)
x32 = x11*x7*x9
x33 = 200.0*voidage
x34 = 111.0*x13
x35 = x33 - x34
x36 = 1.0/x35
x37 = -x33 + x34 + 200.0
x38 = 1.0/x37
x39 = 2.0*x20
x40 = -4.0*x20 + x23 + x29*(-x23 + x39)*(x23 - x39)
x41 = dP_irr*rhog*specific_area*x0*x1*x10*x12*x15*x2*x24*x31
x42 = dP_irr*x10*x12*x4**0.666666666666667*x8
F1, F2, dF1_dVg, dF2_dVg, dF1_dP_irr, dF2_dP_irr = (
-dP_irr*x0 + 0.0208333333333333*rhog*specific_area*x1*x15*x2*x24*x31,
x32/x6 - 20646.0*x36*x5 - x38*x5*(2960.0 - 740.0*x28*x29),
0.00173611111111111*Vg*rhog*x15*x3*x31*(144.0*C3 - 12.0*x20 + 18.0*x23 + x40*log(x27)),
x0*(430.125*x36*x41*x5 - 15.4166666666667*x38*x41*x5*(x30 - 4.0) - 1.0),
-1.85*x16*x29*x40*x5/x26,
3285600.0*x42*(-x30 + 4.0)*x38*x38- 91668240.0*x42*x36*x36 - 2.0*x32/(dP_irr*x6))
err = [0.0]*2
err[0] = F1
err[1] = F2
jac = [[dF1_dVg, dF2_dVg], [dF1_dP_irr, dF2_dP_irr]]# numba: delete
# jac = np.array([[dF1_dVg, dF2_dVg], [dF1_dP_irr, dF2_dP_irr]]) # numba: uncomment
return err, jac
def Stichlmair_flood(Vl, rhog, rhol, mug, voidage, specific_area, C1, C2, C3,
H=1.0):
r'''Calculates gas rate for flooding of a packed column, using the
Stichlmair [1]_ correlation. Uses three regressed constants for each
type of packing, and voidage and specific area.
Pressure drop is given by:
.. math::
\frac{\Delta P_{irr}}{H} = \frac{\Delta P_{dry}}{H}\left(\frac
{1-\epsilon + h_T}{1-\epsilon}\right)^{(2+c)/3}
\left(\frac{\epsilon}{\epsilon-h_T}\right)^{4.65}
.. math::
h_T = h_0\left[1 + 20\left(\frac{\Delta Pirr}{H\rho_L g}\right)^2\right]
.. math::
Fr_L = \frac{V_L^2 a}{g \epsilon^{4.65}}
.. math::
h_0 = 0.555 Fr_L^{1/3}
.. math::
c = \frac{-C_1/Re_g - C_2/(2Re_g^{0.5})}{f_0}
.. math::
\Delta P_{dry} = \frac{3}{4} f_0 \frac{1-\epsilon}{\epsilon^{4.65}}
\rho_G \frac{H}{d_p}V_g^2
.. math::
f_0 = \frac{C_1}{Re_g} + \frac{C_2}{Re_g^{0.5}} + C_3
.. math::
d_p = \frac{6(1-\epsilon)}{a}
Parameters
----------
Vl : float
Superficial velocity of liquid, Q/A [m/s]
rhog : float
Density of gas [kg/m^3]
rhol : float
Density of liquid [kg/m^3]
mug : float
Viscosity of gas [Pa*s]
voidage : float
Voidage of bed of packing material []
specific_area : float
Specific area of the packing material [m^2/m^3]
C1 : float
Packing-specific constant []
C2 : float
Packing-specific constant []
C3 : float
Packing-specific constant []
H : float, optional
Height of packing [m]
Returns
-------
Vg : float
Superficial velocity of gas, Q/A [m/s]
Notes
-----
A numerical solver is used to solve this model.
Examples
--------
Example is from [1]_, matches.
>>> Stichlmair_flood(Vl = 5E-3, rhog=5., rhol=1200., mug=5E-5,
... voidage=0.68, specific_area=260., C1=32., C2=7., C3=1.)
0.6394323542746928
References
----------
.. [1] Stichlmair, J., J. L. Bravo, and J. R. Fair. "General Model for
Prediction of Pressure Drop and Capacity of Countercurrent Gas/liquid
Packed Columns." Gas Separation & Purification 3, no. 1 (March 1989):
19-28. doi:10.1016/0950-4214(89)80016-7.
'''
guess = [0.0]*2
guess[0] = Vl*100.0
guess[1] = 1000.0
return newton_system(_Stichlmair_flood_f_and_jac, x0=guess, jac=True,
args=(Vl, rhog, rhol, mug, voidage, specific_area, C1,
C2, C3, H), ytol=1e-11, solve_func=solve_2_direct)[0][0]
def Robbins(L, G, rhol, rhog, mul, H=1.0, Fpd=24.0):
r'''Calculates pressure drop across a packed column, using the Robbins
equation.
Pressure drop is given by:
.. math::
\Delta P = C_3 G_f^2 10^{C_4L_f}+0.4[L_f/20000]^{0.1}[C_3G_f^210^{C_4L_f}]^4
.. math::
G_f=G[0.075/\rho_g]^{0.5}[F_{pd}/20]^{0.5}=986F_s[F_{pd}/20]^{0.5}
.. math::
L_f=L[62.4/\rho_L][F_{pd}/20]^{0.5}\mu^{0.1}
.. math::
F_s=V_s\rho_g^{0.5}
Parameters
----------
L : float
Specific liquid mass flow rate [kg/s/m^2]
G : float
Specific gas mass flow rate [kg/s/m^2]
rhol : float
Density of liquid [kg/m^3]
rhog : float
Density of gas [kg/m^3]
mul : float
Viscosity of liquid [Pa*s]
H : float
Height of packing [m]
Fpd : float
Robbins packing factor (tabulated for packings) [1/ft]
Returns
-------
dP : float
Pressure drop across packing [Pa]
Notes
-----
Perry's displayed equation has a typo in a superscript.
This model is based on the example in Perry's.
Examples
--------
>>> Robbins(L=12.2, G=2.03, rhol=1000., rhog=1.1853, mul=0.001, H=2.0, Fpd=24.0)
619.6624593438102
References
----------
.. [1] Robbins [Chem. Eng. Progr., p. 87 (May 1991) Improved Pressure Drop
Prediction with a New Correlation.
'''
# Convert SI units to imperial for use in correlation
L = L*737.33812 # kg/s/m^2 to lb/hr/ft^2
G = G*737.33812 # kg/s/m^2 to lb/hr/ft^2
rhol = rhol*0.062427961 # kg/m^3 to lb/ft^3
rhog = rhog*0.062427961 # kg/m^3 to lb/ft^3
mul = mul*1000.0 # Pa*s to cP
C3 = 7.4E-8
C4 = 2.7E-5
Fpd_root_term = sqrt(.05*Fpd)
Lf = L*(62.4/rhol)*Fpd_root_term*mul**0.1
Gf = G*sqrt(0.075/rhog)*Fpd_root_term
Gf2 = Gf*Gf
C4LF_10_GF2_C3 = C3*Gf2*10.0**(C4*Lf)
C4LF_10_GF2_C3_2 = C4LF_10_GF2_C3*C4LF_10_GF2_C3
dP = C4LF_10_GF2_C3 + 0.4*(5e-5*Lf)**0.1*(C4LF_10_GF2_C3_2*C4LF_10_GF2_C3_2)
return dP*817.22083*H # in. H2O to Pa/m
|