1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains functions for sizing and rating pressure relief valves.
At present, this consists of several functions from API 520.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Interfaces
----------
.. autofunction:: API520_A_g
.. autofunction:: API520_A_steam
.. autofunction:: API520_A_l
.. autofunction:: API521_noise
Functions and Data
------------------
.. autofunction:: API520_round_size
.. autofunction:: API520_C
.. autofunction:: API520_F2
.. autofunction:: API520_Kv
.. autofunction:: API520_N
.. autofunction:: API520_SH
.. autofunction:: API520_B
.. autofunction:: API520_W
.. autofunction:: API521_noise_graph
.. autofunction:: VDI_3732_noise_ground_flare
.. autofunction:: VDI_3732_noise_elevated_flare
.. autodata:: API526_letters
.. autodata:: API526_A_sq_inch
.. autodata:: API526_A
"""
from math import log10, pi, sqrt
from fluids.compressible import is_critical_flow
from fluids.constants import atm, inch
from fluids.numerics import bisplev, interp, tck_interp2d_linear
__all__ = ['API526_A_sq_inch', 'API526_letters', 'API526_A',
'API520_round_size', 'API520_C', 'API520_F2', 'API520_Kv', 'API520_N',
'API520_SH', 'API520_B', 'API520_W', 'API520_A_g', 'API520_A_steam',
'API521_noise', 'API521_noise_graph', 'VDI_3732_noise_ground_flare',
'VDI_3732_noise_elevated_flare', 'API520_A_l']
API526_A_sq_inch = [0.110, 0.196, 0.307, 0.503, 0.785, 1.287, 1.838, 2.853, 3.60,
4.34, 6.38, 11.05, 16.00, 26.00] # square inches
"""list: Nominal relief area in for different valve sizes in API 520, [in^2]"""
API526_letters = ['D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R','T']
"""list: Letter size designations for different valve sizes in API 520"""
inch2 = inch*inch
API526_A = [i*inch2 for i in API526_A_sq_inch]
"""list: Nominal relief area in for different valve sizes in API 520, [m^2]"""
del inch2
TENTH_EDITION = '10E'
SEVENTH_EDITION = '7E'
def API520_round_size(A):
r'''Rounds up the area from an API 520 calculation to an API526 standard
valve area. The returned area is always larger or equal to the input area.
Parameters
----------
A : float
Minimum discharge area [m^2]
Returns
-------
area : float
Actual discharge area [m^2]
Notes
-----
To obtain the letter designation of an input area, lookup the area with
the following:
API526_letters[API526_A.index(area)]
An exception is raised if the required relief area is larger than any of
the API 526 sizes.
Examples
--------
From [1]_, checked with many points on Table 8.
>>> API520_round_size(1E-4)
0.00012645136
>>> API526_letters[API526_A.index(API520_round_size(1E-4))]
'E'
References
----------
.. [1] API Standard 526.
'''
for area in API526_A:
if area >= A:
return area
raise ValueError('Required relief area is larger than can be provided with one valve')
def API520_C(k):
r'''Calculates coefficient C for use in API 520 critical flow relief valve
sizing.
.. math::
C = 0.03948\sqrt{k\left(\frac{2}{k+1}\right)^\frac{k+1}{k-1}}
Parameters
----------
k : float
Isentropic coefficient or ideal gas heat capacity ratio [-]
Returns
-------
C : float
Coefficient `C` [-]
Notes
-----
If C cannot be established, assume a coefficient of 0.0239,
the highest value possible for C.
Although not dimensional, C varies with the units used.
If k is exactly equal to 1, the expression is undefined, and the formula
must be simplified as follows from an application of L'Hopital's rule.
.. math::
C = 0.03948\sqrt{\frac{1}{e}}
Examples
--------
From [1]_, checked with many points on Table 8.
>>> API520_C(1.35)
0.02669419967057233
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
if k != 1:
kp1 = k+1
return 0.03948*sqrt(k*(2./kp1)**(kp1/(k-1.)))
else:
return 0.023945830445454768
# return 0.03948*sqrt(1./exp(1))
def API520_F2(k, P1, P2):
r'''Calculates coefficient F2 for subcritical flow for use in API 520
subcritical flow relief valve sizing.
.. math::
F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^\frac{2}{k}
\left[\frac{1-r^\frac{k-1}{k}}{1-r}\right]}
.. math::
r = \frac{P_2}{P_1}
Parameters
----------
k : float
Isentropic coefficient or ideal gas heat capacity ratio [-]
P1 : float
Upstream relieving pressure; the set pressure plus the allowable
overpressure, plus atmospheric pressure, [Pa]
P2 : float
Built-up backpressure; the increase in pressure during flow at the
outlet of a pressure-relief device after it opens, [Pa]
Returns
-------
F2 : float
Subcritical flow coefficient `F2` [-]
Notes
-----
F2 is completely dimensionless.
Examples
--------
From [1]_ example 2, matches.
>>> API520_F2(1.8, 1E6, 7E5)
0.8600724121105563
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
r = P2/P1
return sqrt(k/(k-1.0)*r**(2./k) * ((1-r**((k-1.)/k))/(1.-r)))
def API520_N(P1):
r'''Calculates correction due to steam pressure for steam flow for use in
API 520 relief valve sizing.
For pressures below 10339 kPa, the correction factor is 1.
.. math::
K_N = \frac{0.02764P_1-1000}{0.03324P_1-1061}
Parameters
----------
P1 : float
Upstream relieving pressure; the set pressure plus the allowable
overpressure, plus atmospheric pressure, [Pa]
Returns
-------
KN : float
Correction due to steam temperature [-]
Notes
-----
Although not dimensional, KN varies with the units used.
For temperatures above 922 K or pressures above 22057 kPa, KN is not defined.
Internally, units of kPa are used to match the equation in the standard.
Examples
--------
>>> API520_N(10500e3)
0.9969100255
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
P1 = P1*1e-3 # Pa to kPa
if P1 <= 10339.0:
KN = 1.0
else:
KN = (0.02764*P1 - 1000.)/(0.03324*P1 - 1061.0)
return KN
# Values from API 520 7th edition through 9th edition
_KSH_psigs_7E = [15, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260,
280, 300, 350, 400, 500, 600, 800, 1000, 1250, 1500, 1750, 2000,
2500, 3000]
_KSH_tempFs_7E = [300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200]
# _KSH_psigs_7E converted from psig to Pa
_KSH_Pa_7E = [204746.3593975254, 239220.14586336722, 377115.29172673443,
515010.4375901016, 652905.5834534689, 790800.7293168361,
928695.8751802032, 1066591.0210435705, 1204486.1669069377,
1342381.312770305, 1480276.4586336722, 1618171.6044970395,
1756066.7503604065, 1893961.8962237737, 2031857.042087141,
2169752.187950508, 2514490.0526089263, 2859227.9172673444,
3548703.64658418, 4238179.375901016, 5617130.834534689,
6996082.29316836, 8719771.616460452, 10443460.939752541,
12167150.263044631, 13890839.58633672, 17338218.232920904,
20785596.879505083]
# _KSH_tempFs_7E converted from F to K
_KSH_tempKs_7E = [422.03888888888889, 477.59444444444443, 533.14999999999998,
588.70555555555552, 644.26111111111106, 699.81666666666661,
755.37222222222226, 810.92777777777769, 866.48333333333335,
922.03888888888889]
_KSH_factors_7E = [[1, 0.98, 0.93, 0.88, 0.84, 0.8, 0.77, 0.74, 0.72, 0.7],
[1, 0.98, 0.93, 0.88, 0.84, 0.8, 0.77, 0.74, 0.72, 0.7],
[1, 0.99, 0.93, 0.88, 0.84, 0.81, 0.77, 0.74, 0.72, 0.7],
[1, 0.99, 0.93, 0.88, 0.84, 0.81, 0.77, 0.75, 0.72, 0.7],
[1, 0.99, 0.93, 0.88, 0.84, 0.81, 0.77, 0.75, 0.72, 0.7],
[1, 0.99, 0.94, 0.89, 0.84, 0.81, 0.77, 0.75, 0.72, 0.7],
[1, 0.99, 0.94, 0.89, 0.84, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 0.99, 0.94, 0.89, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 0.99, 0.94, 0.89, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 0.99, 0.94, 0.89, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 0.99, 0.95, 0.89, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 0.99, 0.95, 0.89, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 1, 0.95, 0.9, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 1, 0.95, 0.9, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 1, 0.96, 0.9, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 1, 0.96, 0.9, 0.85, 0.81, 0.78, 0.75, 0.72, 0.7],
[1, 1, 0.96, 0.9, 0.86, 0.82, 0.78, 0.75, 0.72, 0.7],
[1, 1, 0.96, 0.91, 0.86, 0.82, 0.78, 0.75, 0.72, 0.7],
[1, 1, 0.96, 0.92, 0.86, 0.82, 0.78, 0.75, 0.73, 0.7],
[1, 1, 0.97, 0.92, 0.87, 0.82, 0.79, 0.75, 0.73, 0.7],
[1, 1, 1, 0.95, 0.88, 0.83, 0.79, 0.76, 0.73, 0.7],
[1, 1, 1, 0.96, 0.89, 0.84, 0.78, 0.76, 0.73, 0.71],
[1, 1, 1, 0.97, 0.91, 0.85, 0.8, 0.77, 0.74, 0.71],
[1, 1, 1, 1, 0.93, 0.86, 0.81, 0.77, 0.74, 0.71],
[1, 1, 1, 1, 0.94, 0.86, 0.81, 0.77, 0.73, 0.7],
[1, 1, 1, 1, 0.95, 0.86, 0.8, 0.76, 0.72, 0.69],
[1, 1, 1, 1, 0.95, 0.85, 0.78, 0.73, 0.69, 0.66],
[1, 1, 1, 1, 1, 0.82, 0.74, 0.69, 0.65, 0.62]]
_KSH_Pa_10E = [500000.0, 750000.0, 1000000.0, 1250000.0, 1500000.0, 1750000.0,
2000000.0, 2250000.0, 2500000.0, 2750000.0, 3000000.0, 3250000.0,
3500000.0, 3750000.0, 4000000.0, 4250000.0, 4500000.0, 4750000.0,
5000000.0, 5250000.0, 5500000.0, 5750000.0, 6000000.0, 6250000.0,
6500000.0, 6750000.0, 7000000.0, 7250000.0, 7500000.0, 7750000.0,
8000000.0, 8250000.0, 8500000.0, 8750000.0, 9000000.0, 9250000.0,
9500000.0, 9750000.0, 10000000.0, 10250000.0, 10500000.0,
10750000.0, 11000000.0, 11250000.0, 11500000.0, 11750000.0,
12000000.0, 12250000.0, 12500000.0, 12750000.0, 13000000.0,
13250000.0, 13500000.0, 14000000.0, 14250000.0, 14500000.0,
14750000.0, 15000000.0, 15250000.0, 15500000.0, 15750000.0,
16000000.0, 16250000.0, 16500000.0, 16750000.0, 17000000.0,
17250000.0, 17500000.0, 17750000.0, 18000000.0, 18250000.0,
18500000.0, 18750000.0, 19000000.0, 19250000.0, 19500000.0,
19750000.0, 20000000.0, 20250000.0, 20500000.0, 20750000.0,
21000000.0, 21250000.0, 21500000.0, 21750000.0, 22000000.0, ]
_KSH_K_10E = [478.15, 498.15, 523.15, 548.15, 573.15, 598.15, 623.15, 648.15,
673.15, 698.15, 723.15, 748.15, 773.15, 798.15, 823.15, 848.15,
873.15, 898.15]
_KSH_factors_10E = [[0.991, 0.968, 0.942, 0.919, 0.896, 0.876, 0.857, 0.839, 0.823, 0.807, 0.792, 0.778, 0.765, 0.752, 0.74, 0.728, 0.717, 0.706],
[0.995, 0.972, 0.946, 0.922, 0.899, 0.878, 0.859, 0.841, 0.824, 0.808, 0.793, 0.779, 0.766, 0.753, 0.74, 0.729, 0.717, 0.707],
[0.985, 0.973, 0.95, 0.925, 0.902, 0.88, 0.861, 0.843, 0.825, 0.809, 0.794, 0.78, 0.766, 0.753, 0.741, 0.729, 0.718, 0.707],
[0.981, 0.976, 0.954, 0.928, 0.905, 0.883, 0.863, 0.844, 0.827, 0.81, 0.795, 0.781, 0.767, 0.754, 0.741, 0.729, 0.718, 0.707],
[1, 1, 0.957, 0.932, 0.907, 0.885, 0.865, 0.846, 0.828, 0.812, 0.796, 0.782, 0.768, 0.755, 0.742, 0.73, 0.718, 0.708],
[1, 1, 0.959, 0.935, 0.91, 0.887, 0.866, 0.847, 0.829, 0.813, 0.797, 0.782, 0.769, 0.756, 0.743, 0.731, 0.719, 0.708],
[1, 1, 0.96, 0.939, 0.913, 0.889, 0.868, 0.849, 0.831, 0.814, 0.798, 0.784, 0.769, 0.756, 0.744, 0.731, 0.72, 0.708],
[1, 1, 0.963, 0.943, 0.916, 0.892, 0.87, 0.85, 0.832, 0.815, 0.799, 0.785, 0.77, 0.757, 0.744, 0.732, 0.72, 0.709],
[1, 1, 1, 0.946, 0.919, 0.894, 0.872, 0.852, 0.834, 0.816, 0.8, 0.785, 0.771, 0.757, 0.744, 0.732, 0.72, 0.71],
[1, 1, 1, 0.948, 0.922, 0.897, 0.874, 0.854, 0.835, 0.817, 0.801, 0.786, 0.772, 0.758, 0.745, 0.733, 0.721, 0.71],
[1, 1, 1, 0.949, 0.925, 0.899, 0.876, 0.855, 0.837, 0.819, 0.802, 0.787, 0.772, 0.759, 0.746, 0.733, 0.722, 0.71],
[1, 1, 1, 0.951, 0.929, 0.902, 0.879, 0.857, 0.838, 0.82, 0.803, 0.788, 0.773, 0.759, 0.746, 0.734, 0.722, 0.711],
[1, 1, 1, 0.953, 0.933, 0.905, 0.881, 0.859, 0.84, 0.822, 0.804, 0.789, 0.774, 0.76, 0.747, 0.734, 0.722, 0.711],
[1, 1, 1, 0.956, 0.936, 0.908, 0.883, 0.861, 0.841, 0.823, 0.806, 0.79, 0.775, 0.761, 0.748, 0.735, 0.723, 0.711],
[1, 1, 1, 0.959, 0.94, 0.91, 0.885, 0.863, 0.842, 0.824, 0.807, 0.791, 0.776, 0.762, 0.748, 0.735, 0.723, 0.712],
[1, 1, 1, 0.961, 0.943, 0.913, 0.887, 0.864, 0.844, 0.825, 0.808, 0.792, 0.776, 0.762, 0.749, 0.736, 0.724, 0.713],
[1, 1, 1, 1, 0.944, 0.917, 0.89, 0.866, 0.845, 0.826, 0.809, 0.793, 0.777, 0.763, 0.749, 0.737, 0.725, 0.713],
[1, 1, 1, 1, 0.946, 0.919, 0.892, 0.868, 0.847, 0.828, 0.81, 0.793, 0.778, 0.764, 0.75, 0.737, 0.725, 0.713],
[1, 1, 1, 1, 0.947, 0.922, 0.894, 0.87, 0.848, 0.829, 0.811, 0.794, 0.779, 0.765, 0.751, 0.738, 0.725, 0.714],
[1, 1, 1, 1, 0.949, 0.926, 0.897, 0.872, 0.85, 0.83, 0.812, 0.795, 0.78, 0.765, 0.752, 0.738, 0.726, 0.714],
[1, 1, 1, 1, 0.952, 0.93, 0.899, 0.874, 0.851, 0.831, 0.813, 0.797, 0.78, 0.766, 0.752, 0.739, 0.727, 0.714],
[1, 1, 1, 1, 0.954, 0.933, 0.902, 0.876, 0.853, 0.833, 0.815, 0.798, 0.782, 0.767, 0.753, 0.739, 0.727, 0.715],
[1, 1, 1, 1, 0.957, 0.937, 0.904, 0.878, 0.855, 0.834, 0.816, 0.798, 0.783, 0.768, 0.753, 0.74, 0.727, 0.716],
[1, 1, 1, 1, 0.96, 0.94, 0.907, 0.88, 0.856, 0.836, 0.817, 0.799, 0.783, 0.768, 0.754, 0.74, 0.728, 0.716],
[1, 1, 1, 1, 0.964, 0.944, 0.91, 0.882, 0.859, 0.837, 0.818, 0.801, 0.784, 0.769, 0.754, 0.741, 0.729, 0.716],
[1, 1, 1, 1, 0.966, 0.946, 0.913, 0.885, 0.86, 0.839, 0.819, 0.802, 0.785, 0.769, 0.755, 0.742, 0.729, 0.717],
[1, 1, 1, 1, 1, 0.947, 0.916, 0.887, 0.862, 0.84, 0.82, 0.802, 0.786, 0.77, 0.756, 0.742, 0.729, 0.717],
[1, 1, 1, 1, 1, 0.949, 0.919, 0.889, 0.863, 0.842, 0.822, 0.803, 0.787, 0.771, 0.756, 0.743, 0.73, 0.717],
[1, 1, 1, 1, 1, 0.951, 0.922, 0.891, 0.865, 0.843, 0.823, 0.805, 0.788, 0.772, 0.757, 0.744, 0.73, 0.718],
[1, 1, 1, 1, 1, 0.953, 0.925, 0.893, 0.867, 0.844, 0.824, 0.806, 0.788, 0.772, 0.758, 0.744, 0.731, 0.719],
[1, 1, 1, 1, 1, 0.955, 0.928, 0.896, 0.869, 0.846, 0.825, 0.806, 0.789, 0.773, 0.758, 0.744, 0.732, 0.719],
[1, 1, 1, 1, 1, 0.957, 0.932, 0.898, 0.871, 0.847, 0.827, 0.807, 0.79, 0.774, 0.759, 0.745, 0.732, 0.719],
[1, 1, 1, 1, 1, 0.96, 0.935, 0.901, 0.873, 0.849, 0.828, 0.809, 0.791, 0.775, 0.76, 0.746, 0.732, 0.72],
[1, 1, 1, 1, 1, 0.963, 0.939, 0.903, 0.875, 0.85, 0.829, 0.81, 0.792, 0.776, 0.76, 0.746, 0.733, 0.721],
[1, 1, 1, 1, 1, 0.966, 0.943, 0.906, 0.877, 0.852, 0.83, 0.811, 0.793, 0.776, 0.761, 0.747, 0.734, 0.721],
[1, 1, 1, 1, 1, 0.97, 0.947, 0.909, 0.879, 0.853, 0.832, 0.812, 0.794, 0.777, 0.762, 0.747, 0.734, 0.721],
[1, 1, 1, 1, 1, 0.973, 0.95, 0.911, 0.881, 0.855, 0.833, 0.813, 0.795, 0.778, 0.763, 0.748, 0.734, 0.722],
[1, 1, 1, 1, 1, 0.977, 0.954, 0.914, 0.883, 0.857, 0.834, 0.814, 0.796, 0.779, 0.763, 0.749, 0.735, 0.722],
[1, 1, 1, 1, 1, 0.981, 0.957, 0.917, 0.885, 0.859, 0.836, 0.815, 0.797, 0.78, 0.764, 0.749, 0.735, 0.722],
[1, 1, 1, 1, 1, 0.984, 0.959, 0.92, 0.887, 0.86, 0.837, 0.816, 0.798, 0.78, 0.764, 0.75, 0.736, 0.723],
[1, 1, 1, 1, 1, 1, 0.961, 0.923, 0.889, 0.862, 0.838, 0.817, 0.799, 0.781, 0.765, 0.75, 0.737, 0.723],
[1, 1, 1, 1, 1, 1, 0.962, 0.925, 0.891, 0.863, 0.839, 0.818, 0.799, 0.782, 0.766, 0.751, 0.737, 0.724],
[1, 1, 1, 1, 1, 1, 0.963, 0.928, 0.893, 0.865, 0.84, 0.819, 0.8, 0.782, 0.766, 0.751, 0.737, 0.724],
[1, 1, 1, 1, 1, 1, 0.964, 0.93, 0.893, 0.865, 0.84, 0.819, 0.799, 0.781, 0.765, 0.75, 0.736, 0.723],
[1, 1, 1, 1, 1, 1, 0.964, 0.931, 0.894, 0.865, 0.84, 0.818, 0.798, 0.78, 0.764, 0.749, 0.735, 0.722],
[1, 1, 1, 1, 1, 1, 0.965, 0.932, 0.894, 0.865, 0.839, 0.817, 0.797, 0.78, 0.763, 0.748, 0.734, 0.721],
[1, 1, 1, 1, 1, 1, 0.966, 0.933, 0.894, 0.864, 0.839, 0.817, 0.797, 0.779, 0.762, 0.747, 0.733, 0.719],
[1, 1, 1, 1, 1, 1, 0.967, 0.935, 0.895, 0.864, 0.839, 0.816, 0.796, 0.778, 0.761, 0.746, 0.732, 0.718],
[1, 1, 1, 1, 1, 1, 0.967, 0.936, 0.896, 0.864, 0.838, 0.816, 0.796, 0.777, 0.76, 0.745, 0.731, 0.717],
[1, 1, 1, 1, 1, 1, 0.968, 0.937, 0.896, 0.864, 0.838, 0.815, 0.795, 0.776, 0.759, 0.744, 0.729, 0.716],
[1, 1, 1, 1, 1, 1, 0.969, 0.939, 0.896, 0.864, 0.837, 0.814, 0.794, 0.775, 0.758, 0.743, 0.728, 0.715],
[1, 1, 1, 1, 1, 1, 0.971, 0.94, 0.897, 0.864, 0.837, 0.813, 0.792, 0.774, 0.757, 0.741, 0.727, 0.713],
[1, 1, 1, 1, 1, 1, 0.972, 0.942, 0.897, 0.863, 0.837, 0.813, 0.792, 0.773, 0.756, 0.74, 0.725, 0.712],
[1, 1, 1, 1, 1, 1, 0.976, 0.946, 0.897, 0.863, 0.835, 0.811, 0.79, 0.771, 0.753, 0.737, 0.723, 0.709],
[1, 1, 1, 1, 1, 1, 0.978, 0.947, 0.898, 0.862, 0.834, 0.81, 0.789, 0.77, 0.752, 0.736, 0.721, 0.707],
[1, 1, 1, 1, 1, 1, 1, 0.948, 0.898, 0.862, 0.833, 0.809, 0.787, 0.768, 0.751, 0.734, 0.72, 0.706],
[1, 1, 1, 1, 1, 1, 1, 0.948, 0.898, 0.862, 0.832, 0.808, 0.786, 0.767, 0.749, 0.733, 0.719, 0.704],
[1, 1, 1, 1, 1, 1, 1, 0.948, 0.899, 0.861, 0.832, 0.807, 0.785, 0.766, 0.748, 0.732, 0.717, 0.703],
[1, 1, 1, 1, 1, 1, 1, 0.947, 0.899, 0.861, 0.831, 0.806, 0.784, 0.764, 0.746, 0.73, 0.716, 0.702],
[1, 1, 1, 1, 1, 1, 1, 0.947, 0.899, 0.861, 0.83, 0.804, 0.782, 0.763, 0.745, 0.728, 0.714, 0.7],
[1, 1, 1, 1, 1, 1, 1, 0.946, 0.899, 0.86, 0.829, 0.803, 0.781, 0.761, 0.743, 0.727, 0.712, 0.698],
[1, 1, 1, 1, 1, 1, 1, 0.945, 0.9, 0.859, 0.828, 0.802, 0.779, 0.759, 0.741, 0.725, 0.71, 0.696],
[1, 1, 1, 1, 1, 1, 1, 0.945, 0.9, 0.859, 0.827, 0.801, 0.778, 0.757, 0.739, 0.723, 0.708, 0.694],
[1, 1, 1, 1, 1, 1, 1, 0.945, 0.9, 0.858, 0.826, 0.799, 0.776, 0.756, 0.738, 0.721, 0.706, 0.692],
[1, 1, 1, 1, 1, 1, 1, 0.944, 0.9, 0.857, 0.825, 0.797, 0.774, 0.754, 0.736, 0.719, 0.704, 0.69],
[1, 1, 1, 1, 1, 1, 1, 0.944, 0.9, 0.856, 0.823, 0.796, 0.773, 0.752, 0.734, 0.717, 0.702, 0.688],
[1, 1, 1, 1, 1, 1, 1, 0.944, 0.9, 0.855, 0.822, 0.794, 0.771, 0.75, 0.732, 0.715, 0.7, 0.686],
[1, 1, 1, 1, 1, 1, 1, 0.944, 0.9, 0.854, 0.82, 0.792, 0.769, 0.748, 0.73, 0.713, 0.698, 0.684],
[1, 1, 1, 1, 1, 1, 1, 0.944, 0.9, 0.853, 0.819, 0.791, 0.767, 0.746, 0.728, 0.711, 0.696, 0.681],
[1, 1, 1, 1, 1, 1, 1, 0.944, 0.901, 0.852, 0.817, 0.789, 0.765, 0.744, 0.725, 0.709, 0.694, 0.679],
[1, 1, 1, 1, 1, 1, 1, 0.945, 0.901, 0.851, 0.815, 0.787, 0.763, 0.742, 0.723, 0.706, 0.691, 0.677],
[1, 1, 1, 1, 1, 1, 1, 0.945, 0.901, 0.85, 0.814, 0.785, 0.761, 0.739, 0.72, 0.704, 0.689, 0.674],
[1, 1, 1, 1, 1, 1, 1, 0.945, 0.901, 0.849, 0.812, 0.783, 0.758, 0.737, 0.718, 0.701, 0.686, 0.671],
[1, 1, 1, 1, 1, 1, 1, 0.946, 0.901, 0.847, 0.81, 0.781, 0.756, 0.734, 0.715, 0.698, 0.683, 0.669],
[1, 1, 1, 1, 1, 1, 1, 0.948, 0.901, 0.846, 0.808, 0.778, 0.753, 0.732, 0.713, 0.696, 0.681, 0.666],
[1, 1, 1, 1, 1, 1, 1, 0.95, 0.9, 0.844, 0.806, 0.776, 0.75, 0.729, 0.71, 0.693, 0.677, 0.663],
[1, 1, 1, 1, 1, 1, 1, 0.952, 0.899, 0.842, 0.803, 0.773, 0.748, 0.726, 0.707, 0.69, 0.674, 0.66],
[1, 1, 1, 1, 1, 1, 1, 1, 0.899, 0.84, 0.801, 0.77, 0.745, 0.723, 0.704, 0.687, 0.671, 0.657],
[1, 1, 1, 1, 1, 1, 1, 1, 0.899, 0.839, 0.798, 0.767, 0.742, 0.72, 0.701, 0.683, 0.668, 0.654],
[1, 1, 1, 1, 1, 1, 1, 1, 0.899, 0.837, 0.795, 0.764, 0.738, 0.717, 0.697, 0.68, 0.665, 0.651],
[1, 1, 1, 1, 1, 1, 1, 1, 0.898, 0.834, 0.792, 0.761, 0.735, 0.713, 0.694, 0.677, 0.661, 0.647],
[1, 1, 1, 1, 1, 1, 1, 1, 0.896, 0.832, 0.79, 0.758, 0.732, 0.71, 0.691, 0.673, 0.658, 0.643],
[1, 1, 1, 1, 1, 1, 1, 1, 0.894, 0.829, 0.786, 0.754, 0.728, 0.706, 0.686, 0.669, 0.654, 0.64],
[1, 1, 1, 1, 1, 1, 1, 1, 0.892, 0.826, 0.783, 0.75, 0.724, 0.702, 0.682, 0.665, 0.65, 0.636],
[1, 1, 1, 1, 1, 1, 1, 1, 0.891, 0.823, 0.779, 0.746, 0.72, 0.698, 0.679, 0.661, 0.646, 0.631],
[1, 1, 1, 1, 1, 1, 1, 1, 0.887, 0.82, 0.776, 0.743, 0.716, 0.694, 0.674, 0.657, 0.641, 0.627]]
API520_KSH_tck_7E = tck_interp2d_linear(_KSH_tempKs_7E, _KSH_Pa_7E, _KSH_factors_7E)
API520_KSH_tck_10E = tck_interp2d_linear(_KSH_K_10E, _KSH_Pa_10E, _KSH_factors_10E)
def API520_SH(T1, P1, edition=TENTH_EDITION):
r'''Calculates correction due to steam superheat for steam flow for use in
API 520 relief valve sizing. 2D interpolation among a table with 28
pressures and 10 temperatures is performed.
Parameters
----------
T1 : float
Temperature of the fluid entering the valve [K]
P1 : float
Upstream relieving pressure; the set pressure plus the allowable
overpressure, plus atmospheric pressure, [Pa]
edition : str, optional
One of '10E', '7E', [-]
Returns
-------
KSH : float
Correction due to steam superheat [-]
Notes
-----
For P above 20679 kPag, use the critical flow model.
Superheat cannot be above 649 degrees Celsius.
If T1 is above 149 degrees Celsius, returns 1.
Examples
--------
Custom example from table 9, 7th edition:
>>> API520_SH(593+273.15, 1066.325E3, '7E')
0.7201800000
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
if T1 > 922.15:
raise ValueError('Superheat cannot be above 649 degrees Celcius')
if edition == SEVENTH_EDITION:
if P1 > 20780325.0: # 20679E3+atm
raise ValueError('For P above 20679 kPag, use the gas flow model')
if T1 < 422.15:
return 1. # No superheat under 15 psig
return float(bisplev(T1, P1, API520_KSH_tck_7E))
elif edition == TENTH_EDITION:
if T1 < 478.15:
# Avoid extrapolating above 1.0
return 1.0
if P1 > 22063223.338138755:
raise ValueError('For P1 above 22.06 MPa, use the gas flow model')
return float(bisplev(T1, P1, API520_KSH_tck_10E))
else:
raise ValueError("Acceptable editions are '7E', '10E'")
# Kb Backpressure correction factor, for gases
Kb_16_over_x = [37.6478, 38.1735, 38.6991, 39.2904, 39.8817, 40.4731, 40.9987,
41.59, 42.1156, 42.707, 43.2326, 43.8239, 44.4152, 44.9409,
45.5322, 46.0578, 46.6491, 47.2405, 47.7661, 48.3574, 48.883,
49.4744, 50.0]
Kb_16_over_y = [0.998106, 0.994318, 0.99053, 0.985795, 0.982008, 0.97822,
0.973485, 0.96875, 0.964962, 0.961174, 0.956439, 0.951705,
0.947917, 0.943182, 0.939394, 0.935606, 0.930871, 0.926136,
0.921402, 0.918561, 0.913826, 0.910038, 0.90625]
Kb_10_over_x = [30.0263, 30.6176, 31.1432, 31.6689, 32.1945, 32.6544, 33.18,
33.7057, 34.1656, 34.6255, 35.0854, 35.5453, 36.0053, 36.4652,
36.9251, 37.385, 37.8449, 38.2392, 38.6334, 39.0276, 39.4875,
39.9474, 40.4074, 40.8016, 41.1958, 41.59, 42.0499, 42.4442,
42.8384, 43.2326, 43.6925, 44.0867, 44.4809, 44.8752, 45.2694,
45.6636, 46.0578, 46.452, 46.8463, 47.2405, 47.6347, 48.0289,
48.4231, 48.883, 49.2773, 49.6715]
Kb_10_over_y = [0.998106, 0.995265, 0.99053, 0.985795, 0.981061, 0.975379,
0.969697, 0.963068, 0.957386, 0.950758, 0.945076, 0.938447,
0.930871, 0.925189, 0.918561, 0.910985, 0.904356, 0.897727,
0.891098, 0.883523, 0.876894, 0.870265, 0.862689, 0.856061,
0.848485, 0.840909, 0.83428, 0.827652, 0.820076, 0.8125,
0.805871, 0.798295, 0.79072, 0.783144, 0.775568, 0.768939,
0.762311, 0.754735, 0.747159, 0.739583, 0.732008, 0.724432,
0.716856, 0.70928, 0.701705, 0.695076]
def API520_B(Pset, Pback, overpressure=0.1):
r'''Calculates capacity correction due to backpressure on balanced
spring-loaded PRVs in vapor service. For pilot operated valves,
this is always 1. Applicable up to 50% of the percent gauge backpressure,
For use in API 520 relief valve sizing. 1D interpolation among a table with
53 backpressures is performed.
Parameters
----------
Pset : float
Set pressure for relief [Pa]
Pback : float
Backpressure, [Pa]
overpressure : float, optional
The maximum fraction overpressure; one of 0.1, 0.16, or 0.21, [-]
Returns
-------
Kb : float
Correction due to vapor backpressure [-]
Notes
-----
If the calculated gauge backpressure is less than 30%, 38%, or 50% for
overpressures of 0.1, 0.16, or 0.21, a value of 1 is returned.
Percent gauge backpressure must be under 50%.
Examples
--------
Custom examples from figure 30:
>>> API520_B(1E6, 5E5)
0.7929945420944432
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
gauge_backpressure = (Pback-atm)/(Pset-atm)*100.0 # in percent
if overpressure not in (0.1, 0.16, 0.21):
raise ValueError('Only overpressure of 10%, 16%, or 21% are permitted')
if (overpressure == 0.1 and gauge_backpressure < 30.0) or (
overpressure == 0.16 and gauge_backpressure < 38.0) or (
overpressure == 0.21 and gauge_backpressure <= 50.0):
return 1.0
elif gauge_backpressure > 50.0:
raise ValueError('Gauge pressure must be < 50%')
if overpressure == 0.16:
Kb = interp(gauge_backpressure, Kb_16_over_x, Kb_16_over_y)
elif overpressure == 0.1:
Kb = interp(gauge_backpressure, Kb_10_over_x, Kb_10_over_y)
return Kb
def API520_A_g(m, T, Z, MW, k, P1, P2=101325, Kd=0.975, Kb=1, Kc=1):
r'''Calculates required relief valve area for an API 520 valve passing
a gas or a vapor, at either critical or sub-critical flow.
For critical flow:
.. math::
A = \frac{m}{CK_dP_1K_bK_c}\sqrt{\frac{TZ}{M}}
For sub-critical flow:
.. math::
A = \frac{17.9m}{F_2K_dK_c}\sqrt{\frac{TZ}{MP_1(P_1-P_2)}}
Parameters
----------
m : float
Mass flow rate of vapor through the valve, [kg/s]
T : float
Temperature of vapor entering the valve, [K]
Z : float
Compressibility factor of the vapor, [-]
MW : float
Molecular weight of the vapor, [g/mol]
k : float
Isentropic coefficient or ideal gas heat capacity ratio [-]
P1 : float
Upstream relieving pressure; the set pressure plus the allowable
overpressure, plus atmospheric pressure, [Pa]
P2 : float, optional
Built-up backpressure; the increase in pressure during flow at the
outlet of a pressure-relief device after it opens, [Pa]
Kd : float, optional
The effective coefficient of discharge, from the manufacturer or for
preliminary sizing, using 0.975 normally or 0.62 when used with a
rupture disc as described in [1]_, []
Kb : float, optional
Correction due to vapor backpressure [-]
Kc : float, optional
Combination correction factor for installation with a rupture disk
upstream of the PRV; 1.0 when a rupture disk is not installed, and
0.9 if a rupture disk is present and the combination has not been
certified, []
Returns
-------
A : float
Minimum area for relief valve according to [1]_, [m^2]
Notes
-----
Units are interlally kg/hr, kPa, and mm^2 to match [1]_.
Examples
--------
Example 1 from [1]_ for critical flow, matches:
>>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, Kb=1, Kc=1)
0.0036990460646834414
Example 2 from [1]_ for sub-critical flow, matches:
>>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, P2=532E3, Kd=0.975, Kb=1, Kc=1)
0.004248358775943481
The mass flux in (kg/(s*m^2)) can be found by dividing the specified mass
flow by the calculated area:
>>> (24270/3600.)/API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, Kb=1, Kc=1)
1822.541960488834
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
P1, P2 = P1*1e-3, P2*1e-3 # Pa to Kpa in the standard
m = m*3600. # kg/s to kg/hr
if is_critical_flow(P1, P2, k):
C = API520_C(k)
A = m/(C*Kd*Kb*Kc*P1)*sqrt(T*Z/MW)
else:
F2 = API520_F2(k, P1, P2)
A = 17.9*m/(F2*Kd*Kc)*sqrt(T*Z/(MW*P1*(P1-P2)))
return A*1e-6# convert mm^2 to m^2
def API520_A_steam(m, T, P1, Kd=0.975, Kb=1, Kc=1, edition=TENTH_EDITION):
r'''Calculates required relief valve area for an API 520 valve passing
a steam, at either saturation or superheat but not partially condensed.
.. math::
A = \frac{190.5m}{P_1 K_d K_b K_c K_N K_{SH}}
Parameters
----------
m : float
Mass flow rate of steam through the valve, [kg/s]
T : float
Temperature of steam entering the valve, [K]
P1 : float
Upstream relieving pressure; the set pressure plus the allowable
overpressure, plus atmospheric pressure, [Pa]
Kd : float, optional
The effective coefficient of discharge, from the manufacturer or for
preliminary sizing, using 0.975 normally or 0.62 when used with a
rupture disc as described in [1]_, []
Kb : float, optional
Correction due to backpressure, see :obj:`API520_B` [-]
Kc : float, optional
Combination correction factor for installation with a rupture disk
upstream of the PRV; 1.0 when a rupture disk is not installed, and
0.9 if a rupture disk is present and the combination has not been
certified, []
edition : str, optional
One of '10E', '7E', [-]
Returns
-------
A : float
Minimum area for relief valve according to [1]_, [m^2]
Notes
-----
Units are interlally kg/hr, kPa, and mm^2 to match [1]_.
With the provided temperature and pressure, the KN coefficient is
calculated with the function API520_N; as is the superheat correction KSH,
with the function API520_SH.
Examples
--------
Example 4 from [1]_ 7th edition, matches:
>>> API520_A_steam(m=69615/3600., T=592.5, P1=12236E3, Kd=0.975, Kb=1, Kc=1, edition='7E')
0.001103471242369
Example 4 from the 10th edition of [1]_:
>>> API520_A_steam(m=69615/3600., T=707.0389, P1=12236E3, Kd=0.975, Kb=1, Kc=1, edition='10E')
0.00128518893191
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
KN = API520_N(P1)
KSH = API520_SH(T, P1, edition)
P1 = P1*1e-3 # Pa to kPa
m = m*3600. # kg/s to kg/hr
A = 190.5*m/(P1*Kd*Kb*Kc*KN*KSH)
return A*1e-6# convert mm^2 to m^2
### Liquids
def API520_Kv(Re, edition=TENTH_EDITION):
r'''Calculates correction due to viscosity for liquid flow for use in
API 520 relief valve sizing.
From the 7th to 9th editions, the formula for this calculation is as
follows:
.. math::
K_v = \left(0.9935 + \frac{2.878}{Re^{0.5}} + \frac{342.75}
{Re^{1.5}}\right)^{-1}
Startign in the 10th edition, the formula is
.. math::
K_v = \left(1 + \frac{170}{Re}\right)^{-0.5}
In the 10th edition, the formula is applicable for Re > 80. It is also
recommended there that if the viscosity is < 0.1 Pa*s, this correction
should be set to 1.
Parameters
----------
Re : float
Reynolds number for flow out the valve [-]
edition : str, optional
One of '10E', '7E', [-]
Returns
-------
Kv : float
Correction due to viscosity [-]
Notes
-----
Reynolds number in the standard is defined as follows, with Q in L/min, G1
as specific gravity, mu in centipoise, and area in mm^2:
.. math::
Re = \frac{Q(18800G_1)}{\mu \sqrt{A}}
The constant 18800 is derived as follows, combining multiple unit
conversions and the formula from diameter from area together. The precise
value is shown below.
>>> from scipy.constants import *
>>> liter/minute*1000./(0.001*(milli**2)**0.5)*sqrt(4/pi)
18806.319451591
Note that 4 formulas are provided in API 520 part 1; two metric and two
imperial. One pair of formulas uses viscosity in conventional units; the
other uses it in Saybolt Universal Seconds. A conversion is essentially
embedded in the the Saybolt Universal Seconds formula. A more precise
conversion can be obtained from
:obj:`chemicals.viscosity.viscosity_converter`.
In both editions, if the formula is used below the recommended Re range
and into the very low Re region this correction tends towards 0.
In the 10th edition, the formula tends to 1 exactly as Re increases. In the
7th edition, the formula can actually produce corrections above 1; this is
handled by truncating the factor to 1.
Examples
--------
From [1]_ 7E, checked with example 5.
>>> API520_Kv(100, edition='7E')
0.615744589
From [2]_ 10E, checked with example 5:
>>> API520_Kv(4525, edition='10E')
0.9817287137013179
Example in [3]_, using the 7th edition formula:
>>> API520_Kv(2110, edition='7E')
0.943671807
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection, 7E
.. [2] API Standard 520, Part 1 - Sizing and Selection, 10E
.. [3] CCPS. Guidelines for Pressure Relief and Effluent Handling Systems.
2nd edition. New York, NY: Wiley-AIChE, 2017.
'''
if edition == SEVENTH_EDITION:
factor = 1.0/(0.9935 + 2.878/sqrt(Re) + 342.75/(Re*sqrt(Re)))
if factor > 1.0:
factor = 1.0
return factor
elif edition == TENTH_EDITION:
return 1.0/sqrt(170.0/Re + 1.0)
else:
raise ValueError("Acceptable editions are '7E', '10E'")
# Kw, for liquids. Applicable for all overpressures.
Kw_x = [15., 16.5493, 17.3367, 18.124, 18.8235, 19.5231, 20.1351, 20.8344,
21.4463, 22.0581, 22.9321, 23.5439, 24.1556, 24.7674, 25.0296, 25.6414,
26.2533, 26.8651, 27.7393, 28.3511, 28.9629, 29.6623, 29.9245, 30.5363,
31.2357, 31.8475, 32.7217, 33.3336, 34.0329, 34.6448, 34.8196, 35.4315,
36.1308, 36.7428, 37.7042, 38.3162, 39.0154, 39.7148, 40.3266, 40.9384,
41.6378, 42.7742, 43.386, 43.9978, 44.6098, 45.2216, 45.921, 46.5329,
47.7567, 48.3685, 49.0679, 49.6797, 50.]
Kw_y = [1, 0.996283, 0.992565, 0.987918, 0.982342, 0.976766, 0.97119, 0.964684,
0.958178, 0.951673, 0.942379, 0.935874, 0.928439, 0.921933, 0.919145,
0.912639, 0.906134, 0.899628, 0.891264, 0.884758, 0.878253, 0.871747,
0.868959, 0.862454, 0.855948, 0.849442, 0.841078, 0.834572, 0.828067,
0.821561, 0.819703, 0.814126, 0.806691, 0.801115, 0.790892, 0.785316,
0.777881, 0.771375, 0.76487, 0.758364, 0.751859, 0.740706, 0.734201,
0.727695, 0.722119, 0.715613, 0.709108, 0.702602, 0.69052, 0.684015,
0.677509, 0.671004, 0.666357]
def API520_W(Pset, Pback):
r'''Calculates capacity correction due to backpressure on balanced
spring-loaded PRVs in liquid service. For pilot operated valves,
this is always 1. Applicable up to 50% of the percent gauge backpressure,
For use in API 520 relief valve sizing. 1D interpolation among a table with
53 backpressures is performed.
Parameters
----------
Pset : float
Set pressure for relief [Pa]
Pback : float
Backpressure, [Pa]
Returns
-------
KW : float
Correction due to liquid backpressure [-]
Notes
-----
If the calculated gauge backpressure is less than 15%, a value of 1 is
returned.
Examples
--------
Custom example from figure 31 in [1]_:
>>> API520_W(1E6, 3E5) # 22% overpressure
0.95114718480085
Example 5 from [2]_, set pressure 250 psig and backpressure up to 50 psig:
>>> API520_W(Pset=1825014, Pback=446062)
0.97242133397677
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection. 7E
.. [2] API Standard 520, Part 1 - Sizing and Selection. 10E
'''
gauge_backpressure = (Pback-atm)/(Pset-atm)*100.0 # in percent
if gauge_backpressure < 15.0:
return 1.0
return interp(gauge_backpressure, Kw_x, Kw_y)
rho0 = 999.0107539518483
def API520_A_l(m, rho, P1, P2, overpressure, Kd=0.65, Kc=1.0,
Kw=None, Kv=None, edition=TENTH_EDITION, mu=None):
r'''Calculates required relief valve area for an API 520 valve passing
a liquid in sub-critical flow.
.. math::
A = \frac{11.78Q}{K_d K_w K_c K_v}\left(\frac{G_1}{P1 - P2}\right)^{0.5}
Parameters
----------
m : float
Mass flow rate of liquid through the valve, [kg/s]
rho : float
Liquid density, [kg/m^3]
P1 : float
Upstream relieving pressure; the set pressure plus the allowable
overpressure, plus atmospheric pressure, [Pa]
P2 : float
Built-up backpressure; the increase in pressure during flow at the
outlet of a pressure-relief device after it opens, [Pa]
overpressure : float
The maximum fraction overpressure; used if `Kw` is not specified, [-]
Kd : float, optional
The effective coefficient of discharge, from the manufacturer or for
preliminary sizing, using 0.65 normally or 0.62 when used with a
rupture disc as described in [1]_, []
Kc : float, optional
Combination correction factor for installation with a rupture disk
upstream of the PRV; 1.0 when a rupture disk is not installed, and
0.9 if a rupture disk is present and the combination has not been
certified, []
Kw : float, optional
Correction due to liquid backpressure [-]
Kv : float, optional
Correction due to viscosity [-]
edition : str, optional
One of '10E', '7E', [-]
mu : float, optional
If provided and `Kv` is None, `Kv` will be calculated automatically,
[Pa*s]
Returns
-------
A : float
Minimum area for relief valve according to [1]_, [m^2]
Notes
-----
Units are interlally kg/hr, kPa, and mm^2 to match [1]_.
This expression is essentially a form of the Loss coefficient `K`
expression, with many factors and unit conversions. The raw expression in
SI units, with `K` the true loss coefficient, is as follows:
.. math::
A = \frac{\sqrt{2} m \sqrt{\frac{K}{\rho \left(P_{1} - P_{2}\right)}}}{2}
The constant 11.78 is the result of the following conversions:
* 60000, converting from m^3/s to L/min
* sqrt(2)/2 as a factor from algebra
* 1e6 converting from m^2 to mm^2
* sqrt(1e-3*(rho0)) converting from Pa to kPa and kg/m^3 to specific gravity
The full precise value is (depending on the reference density chosen)
>>> sqrt(1e-3*(999.0107539518483))/60000*sqrt(2)/2*1e6
11.779282389196
The K value from a relief valve sized with this method can be calculated
as follows:
.. math::
K = \frac{2 A^{2} \rho \left(P_{1} - P_{2}\right)}{m^{2}}
The K value can also be directly calculated from the coefficients Kd, Kc,
Kw, and Kv. The calculation is as follows, making use of the correction
above.
.. math::
K = \left(\frac{1}{K_d K_w K_c K_v\cdot (11.779282389196/11.78)}\right)^2
Examples
--------
Example 5 in [1]_, 10th edition. The calculation involves numerous steps,
shown below and ending with a recalculation with a viscosity correction.
>>> Q = 6814*1.6666666666666667e-05 # L/min to m^3/s
>>> rho = 0.9*999 # specific gravity times density of water kg/m^3
>>> m = rho*Q # mass flow rate, kg/s
>>> overpressure = 0.1
>>> P_design_g = 1724E3 # design pressure, guage
>>> P1 = (1+overpressure)*P_design_g + 101325.0 # upstream relieving pressure, Pa
>>> backpressure = 0.2
>>> mu = 0.388 # viscosity, Pa*s, converted from 2000 Saybolt Universal Seconds
>>> P2 = backpressure*P_design_g + 101325.0 # backpressure, Pa
Do the first calculation, using the value of Kw=0.97 shown in [1]
>>> A0 = API520_A_l(m=m, rho=rho, P1=P1, P2=P2, overpressure=overpressure, Kd=0.65, Kw=0.97, Kc=1.0, Kv=1.0)
>>> A0
0.0030661356203
This value matches the 3066 mm^2 shown in the example calculation.
Do the same calculation but allow the calculation of `Kw` automatically:
>>> A0 = API520_A_l(m=m, rho=rho, P1=P1, P2=P2, overpressure=overpressure, Kd=0.65, Kc=1.0, Kv=1.0)
>>> A0
0.0030585022573
There is a slight deviation with a more precise `Kw` value.
Compute Reynolds number from this original area
>>> from math import pi
>>> D = (A0*4/pi)**0.5
>>> v = Q/A0
>>> Re = rho*v*D/mu
>>> Re
5369.4253339
The reynolds number shown in [1] is 4525; the difference comes from the less
precise Saybolt Universal Seconds conversion.
Compute the viscosity correction:
>>> Kv = API520_Kv(Re, '10E')
>>> Kv
0.984535878488
Compute the final area
>>> A = API520_A_l(m=m, rho=rho, P1=P1, P2=P2, overpressure=overpressure, Kd=0.65, Kc=1.0, Kv=Kv)
>>> A
0.003106542203
The final answer given in API 520 example 5 is 3122 mm^2, a very similar
value despite the small differences.
If is also possible to have `Kv` be calculated by this routine
automatically, by setting `Kv` to None and providing the fluid's viscosity.
>>> A = API520_A_l(m=m, rho=rho, P1=P1, P2=P2, overpressure=overpressure, Kd=0.65, Kc=1.0, Kv=None, mu=mu)
>>> A
0.003106542203
As described in the note, an overall K value can be calculated for the
valve
>>> K = 2*A**2*rho*(P1 - P2)/m**2
>>> K
2.5825844233354602
We can check the calculation
>>> from fluids.core import dP_from_K
>>> v = Q/A
>>> dP_from_K(K=K, rho=rho, V=v), P1-P2
(1551600.000, 1551600.00)
References
----------
.. [1] API Standard 520, Part 1 - Sizing and Selection.
'''
G1 = rho/rho0
Q = m/rho # m^3/s
Q *= 60000.0 # m^3/s to L/min in the original equation
P_set_guage = (P1 - atm)/(1.0 + overpressure)
P_set = P_set_guage + atm
if Kw is None:
Kw = API520_W(P_set, P2)
if Kv is None and mu is not None:
A0 = API520_A_l(m=m, rho=rho, P1=P1, P2=P2, overpressure=overpressure, Kd=Kd, Kc=Kc, Kv=1.0, Kw=Kw)
D = sqrt(A0*4.0/pi)
v = (Q/60000.0)/A0
Re = rho*v*D/mu
Kv = API520_Kv(Re, edition)
P1 = P1*1e-3 # Pa to kPa
P2 = P2*1e-3 # Pa to kPa
A = 11.78*Q*sqrt(G1/(P1-P2))/(Kd*Kw*Kc*Kv)
A = A*1e-6# convert mm^2 to m^2
return A
def API521_noise_graph(P_ratio):
r'''Calculate the `L` parameter used in the API 521
noise calculation, from their Figure 18, Sound
Pressure Level at 30 m from the stack tip.
Parameters
----------
P_ratio : float
The ratio of relieving pressure to atmospheric pressure [-]
Returns
-------
L : float
Sound pressure level at 30 m from the stack tip [decibels]
Notes
-----
Two logarithmic linear polynomials are used. The function is
continious throughout. The pressure ratio should be more than 1
for physical reasons; the value is checked for this case.
References
----------
.. [1] API Standard 521.
'''
if P_ratio < 1.0:
P_ratio = 1.0
lgX = log10(P_ratio)
# Small curve fit
lower_value = 87.9084*lgX + 12.7647
higher_value = 4.8239*lgX + 51.6217
if P_ratio < 2.92:
value = lower_value
elif P_ratio < 2.93:
# interpolate between the two curves to keep the function continuous
value = interp(P_ratio, [2.92, 2.93], [lower_value, higher_value])
else:
value = higher_value
return value
def API521_noise(m, P1, P2, c, r):
r'''Calculate the the noise coming from a flare tip at a
specified distance according to API 521. A graphical technique
is used to get the noise at 30 m from the tip, and it is then
adjusted for distance.
.. math::
L_{30 \text{m}} = L - 10 \log_{10}(0.5 m c^2)
.. math::
L_p = L_{30 \text{m}} - 20 \log_{10}(r/(30 \text{m}))
Parameters
----------
m : float
Mass flow rate of relieving fluid, [kg/s]
P1 : float
Upstream pressure at the source, before the relieving
device [Pa]
P2 : float
Atmospheric pressure, [Pa]
c : float
Speed of sound of the fluid at the relieving device [m/s]
r : float
Distance from the flare stack, [m]
Returns
-------
L : float
Sound pressure level at the specified distance from the
stack tip [decibels]
Notes
-----
Examples
--------
Example as shown in [1]_:
>>> API521_noise(m=14.6, P1=330E3, P2=101325, c=353.0, r=30)
113.6841057
References
----------
.. [1] API Standard 521.
'''
P_ratio = P1/P2
L = API521_noise_graph(P_ratio) # from chart, hardcoded for now
L30 = L + 10.0*log10(0.5*m*c*c)
Lp = L30 - 20.0*log10(r*(1.0/30.0))
return Lp
def VDI_3732_noise_ground_flare(m):
r'''Calculate the the noise at the flare tip of a ground flare
[1]_, [2]_.
.. math::
L = 100 + 15\log_{10}\left(\frac{m}{\text{tonne/hour}}\right)
Parameters
----------
m : float
Mass flow rate of relieving fluid, [kg/s]
Returns
-------
noise : float
Sound pressure level at the relieving flare stack [decibels]
Notes
-----
Examples
--------
>>> VDI_3732_noise_ground_flare(3.0)
145.501356332
References
----------
.. [1] VDI 3732 - Standard Noise Levels of Technical Sound
Sources - Flares, 1999.
https://www.vdi.de/en/home/vdi-standards/details/vdi-3732-standard-noise-levels-of-technical-sound-sources-flares.
.. [2] AdminFlare Noise Calculator. WKC Group (blog).
https://www.wkcgroup.com/tools-room/flare-noise-calculator/.
'''
m *= 360.0
return 100.0 + 15.0*log10(m)
def VDI_3732_noise_elevated_flare(m):
r'''Calculate the the noise at the flare tip of an elevated flare stack
[1]_, [2]_.
.. math::
L = 112 + 17\log_{10}\left(\frac{m}{\text{tonne/hour}}\right)
Parameters
----------
m : float
Mass flow rate of relieving fluid, [kg/s]
Returns
-------
noise : float
Sound pressure level at the relieving flare stack [decibels]
Notes
-----
Examples
--------
>>> VDI_3732_noise_elevated_flare(3.0)
163.56820384
References
----------
.. [1] VDI 3732 - Standard Noise Levels of Technical Sound
Sources - Flares, 1999.
https://www.vdi.de/en/home/vdi-standards/details/vdi-3732-standard-noise-levels-of-technical-sound-sources-flares.
.. [2] AdminFlare Noise Calculator. WKC Group (blog).
https://www.wkcgroup.com/tools-room/flare-noise-calculator/.
'''
m *= 360.0
return 112.0 + 17.0*log10(m)
|