1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains correlations for calculating the saltation velocity of
entrained particles.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Correlations
------------
.. autofunction :: Rizk
.. autofunction :: Matsumoto_1974
.. autofunction :: Matsumoto_1975
.. autofunction :: Matsumoto_1977
.. autofunction :: Schade
.. autofunction :: Weber_saltation
.. autofunction :: Geldart_Ling
"""
from math import sqrt
from fluids.constants import g, pi
__all__ = ['Rizk', 'Matsumoto_1974', 'Matsumoto_1975', 'Matsumoto_1977',
'Schade', 'Weber_saltation', 'Geldart_Ling']
def Rizk(mp, dp, rhog, D):
r'''Calculates saltation velocity of the gas for pneumatic conveying,
according to [1]_ as described in [2]_ and many others.
.. math::
\mu=\left(\frac{1}{10^{1440d_p+1.96}}\right)\left(Fr_s\right)^{1100d_p+2.5}
.. math::
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
.. math::
\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}
Parameters
----------
mp : float
Solid mass flow rate, [kg/s]
dp : float
Particle diameter, [m]
rhog : float
Gas density, [kg/m^3]
D : float
Diameter of pipe, [m]
Returns
-------
V : float
Saltation velocity of gas, [m/s]
Notes
-----
Model is rearranged to be explicit in terms of saltation velocity
internally.
Examples
--------
Example is from [3]_.
>>> Rizk(mp=0.25, dp=100E-6, rhog=1.2, D=.078)
9.8833092829357
References
----------
.. [1] Rizk, F. "Pneumatic conveying at optimal operation conditions and a
solution of Bath's equation." Proceedings of Pneumotransport 3,
paper D4. BHRA Fluid Engineering, Cranfield, England (1973)
.. [2] Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic
Conveying of Solids: A Theoretical and Practical Approach.
Springer, 2013.
.. [3] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013.
'''
alpha = 1440.0*dp + 1.96
beta = 1100.0*dp + 2.5
term1 = 0.1**alpha
Frs_sorta = 1.0/sqrt(g*D)
expression1 = term1*Frs_sorta**beta
expression2 = mp/rhog/(pi/4*D*D)
return (expression2/expression1)**(1./(1. + beta))
def Matsumoto_1974(mp, rhop, dp, rhog, D, Vterminal=1):
r'''Calculates saltation velocity of the gas for pneumatic conveying,
according to [1]_. Also described in [2]_.
.. math::
\mu = 0.448 \left(\frac{\rho_p}{\rho_f}\right)^{0.50}\left(\frac{Fr_p}
{10}\right)^{-1.75}\left(\frac{Fr_s}{10}\right)^{3}
.. math::
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
.. math::
Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}
.. math::
\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}
Parameters
----------
mp : float
Solid mass flow rate, [kg/s]
rhop : float
Particle density, [kg/m^3]
dp : float
Particle diameter, [m]
rhog : float
Gas density, [kg/m^3]
D : float
Diameter of pipe, [m]
Vterminal : float
Terminal velocity of particle settling in gas, [m/s]
Returns
-------
V : float
Saltation velocity of gas, [m/s]
Notes
-----
Model is rearranged to be explicit in terms of saltation velocity
internally.
Result looks high, something may be wrong.
For particles > 0.3 mm.
Examples
--------
>>> Matsumoto_1974(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
19.583617317317895
References
----------
.. [1] Matsumoto, Shigeru, Michio Kara, Shozaburo Saito, and Siro Maeda.
"Minimum Transport Velocity for Horizontal Pneumatic Conveying."
Journal of Chemical Engineering of Japan 7, no. 6 (1974): 425-30.
doi:10.1252/jcej.7.425.
.. [2] Jones, Peter J., and L. S. Leung. "A Comparison of Correlations for
Saltation Velocity in Horizontal Pneumatic Conveying." Industrial &
Engineering Chemistry Process Design and Development 17, no. 4
(October 1, 1978): 571-75. doi:10.1021/i260068a031
'''
A = pi/4*D**2
Frp = Vterminal/sqrt(g*dp)
Frs_sorta = 1./sqrt(g*D)
expression1 = 0.448*sqrt(rhop/rhog)*(Frp/10.)**-1.75*(Frs_sorta/10.)**3
expression2 = mp/rhog/A
return (expression2/expression1)**(1/4.)
def Matsumoto_1975(mp, rhop, dp, rhog, D, Vterminal=1):
r'''Calculates saltation velocity of the gas for pneumatic conveying,
according to [1]_. Also described in [2]_.
.. math::
\mu = 1.11 \left(\frac{\rho_p}{\rho_f}\right)^{0.55}\left(\frac{Fr_p}
{10}\right)^{-2.3}\left(\frac{Fr_s}{10}\right)^{3}
.. math::
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
.. math::
Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}
.. math::
\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}
Parameters
----------
mp : float
Solid mass flow rate, [kg/s]
rhop : float
Particle density, [kg/m^3]
dp : float
Particle diameter, [m]
rhog : float
Gas density, [kg/m^3]
D : float
Diameter of pipe, [m]
Vterminal : float
Terminal velocity of particle settling in gas, [m/s]
Returns
-------
V : float
Saltation velocity of gas, [m/s]
Notes
-----
Model is rearranged to be explicit in terms of saltation velocity
internally.
Result looks high, something may be wrong.
For particles > 0.3 mm.
Examples
--------
>>> Matsumoto_1975(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
18.04523091703009
References
----------
.. [1] Matsumoto, Shigeru, Shundo Harada, Shozaburo Saito, and Siro Maeda.
"Saltation Velocity for Horizontal Pneumatic Conveying." Journal of
Chemical Engineering of Japan 8, no. 4 (1975): 331-33.
doi:10.1252/jcej.8.331.
.. [2] Jones, Peter J., and L. S. Leung. "A Comparison of Correlations for
Saltation Velocity in Horizontal Pneumatic Conveying." Industrial &
Engineering Chemistry Process Design and Development 17, no. 4
(October 1, 1978): 571-75. doi:10.1021/i260068a031
'''
A = pi/4*D**2
Frp = Vterminal/sqrt(g*dp)
Frs_sorta = 1./sqrt(g*D)
expression1 = 1.11*(rhop/rhog)**0.55*(Frp/10.)**-2.3*(Frs_sorta/10.)**3
expression2 = mp/rhog/A
return (expression2/expression1)**(1/4.)
def Matsumoto_1977(mp, rhop, dp, rhog, D, Vterminal=1):
r'''Calculates saltation velocity of the gas for pneumatic conveying,
according to [1]_ and reproduced in [2]_, [3]_, and [4]_.
First equation is used if third equation yields d* higher than dp.
Otherwise, use equation 2.
.. math::
\mu = 5560\left(\frac{d_p}{D}\right)^{1.43}\left(\frac{Fr_s}{10}\right)^4
.. math::
\mu = 0.373 \left(\frac{\rho_p}{\rho_f}\right)^{1.06}\left(\frac{Fr_p}
{10}\right)^{-3.7}\left(\frac{Fr_s}{10}\right)^{3.61}
.. math::
\frac{d_p^*}{D} = 1.39\left(\frac{\rho_p}{\rho_f}\right)^{-0.74}
.. math::
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
.. math::
Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}
.. math::
\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}
Parameters
----------
mp : float
Solid mass flow rate, [kg/s]
rhop : float
Particle density, [kg/m^3]
dp : float
Particle diameter, [m]
rhog : float
Gas density, [kg/m^3]
D : float
Diameter of pipe, [m]
Vterminal : float
Terminal velocity of particle settling in gas, [m/s]
Returns
-------
V : float
Saltation velocity of gas, [m/s]
Notes
-----
Model is rearanged to be explicit in terms of saltation velocity
internally.r
Examples
--------
Example is only a self-test.
Course routine, terminal velocity input is from example in [2].
>>> Matsumoto_1977(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
16.64284834446686
References
----------
.. [1] Matsumoto, Shigeru, Makoto Kikuta, and Siro Maeda. "Effect of
Particle Size on the Minimum Transport Velocity for Horizontal Pneumatic
Conveying of Solids." Journal of Chemical Engineering of Japan 10,
no. 4 (1977): 273-79. doi:10.1252/jcej.10.273.
.. [2] Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic
Conveying of Solids: A Theoretical and Practical Approach.
Springer, 2013.
.. [3] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
doi:10.1590/S0104-66322014000100005
.. [4] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
doi:10.1515/REVCE.2011.011.
'''
limit = 1.39*D*(rhop/rhog)**-0.74
A = pi/4*D**2
if limit < dp:
# Coarse routine
Frp = Vterminal/sqrt(g*dp)
Frs_sorta = 1./sqrt(g*D)
expression1 = 0.373*(rhop/rhog)**1.06*(Frp/10.)**-3.7*(Frs_sorta/10.)**3.61
expression2 = mp/rhog/A
return (expression2/expression1)**(1/4.61)
else:
Frs_sorta = 1./sqrt(g*D)
expression1 = 5560*(dp/D)**1.43*(Frs_sorta/10.)**4
expression2 = mp/rhog/A
return (expression2/expression1)**(0.2)
def Schade(mp, rhop, dp, rhog, D):
r'''Calculates saltation velocity of the gas for pneumatic conveying,
according to [1]_ as described in [2]_, [3]_, [4]_, and [5]_.
.. math::
Fr_s = \mu^{0.11}\left(\frac{D}{d_p}\right)^{0.025}\left(\frac{\rho_p}
{\rho_f}\right)^{0.34}
.. math::
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
.. math::
\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}
Parameters
----------
mp : float
Solid mass flow rate, [kg/s]
rhop : float
Particle density, [kg/m^3]
dp : float
Particle diameter, [m]
rhog : float
Gas density, [kg/m^3]
D : float
Diameter of pipe, [m]
Returns
-------
V : float
Saltation velocity of gas, [m/s]
Notes
-----
Model is rearranged to be explicit in terms of saltation velocity
internally.
Examples
--------
>>> Schade(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1)
13.697415809497912
References
----------
.. [1] Schade, B., Zum Ubergang Sprung-Strahnen-forderung bei der
Horizontalen Pneumatischen Feststoffordrung. Dissertation, University of
Karlsruche (1987)
.. [2] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
doi:10.1515/REVCE.2011.011.
.. [3] Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. "Modeling
Minimum Transport Boundary for Fluidized Dense-Phase Pneumatic Conveying
Systems." Powder Technology 277 (June 2015): 244-51.
doi:10.1016/j.powtec.2015.02.050.
.. [4] Bansal, A., S. S. Mallick, and P. W. Wypych. "Investigating
Straight-Pipe Pneumatic Conveying Characteristics for Fluidized
Dense-Phase Pneumatic Conveying." Particulate Science and Technology
31, no. 4 (July 4, 2013): 348-56. doi:10.1080/02726351.2012.732677.
.. [5] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
doi:10.1590/S0104-66322014000100005
'''
B = (D/dp)**0.025*(rhop/rhog)**0.34
A = sqrt(g*D)
C = mp/(rhog*pi/4*D**2)
return (C**0.11*B*A)**(1/1.11)
def Weber_saltation(mp, rhop, dp, rhog, D, Vterminal=4):
r'''Calculates saltation velocity of the gas for pneumatic conveying,
according to [1]_ as described in [2]_, [3]_, [4]_, and [5]_.
If Vterminal is under 3 m/s, use equation 1; otherwise, equation 2.
.. math::
Fr_s = \left(7 + \frac{8}{3}V_{terminal}\right)\mu^{0.25}
\left(\frac{d_p}{D}\right)^{0.1}
.. math::
Fr_s = 15\mu^{0.25}\left(\frac{d_p}{D}\right)^{0.1}
.. math::
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
.. math::
\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}
Parameters
----------
mp : float
Solid mass flow rate, [kg/s]
rhop : float
Particle density, [kg/m^3]
dp : float
Particle diameter, [m]
rhog : float
Gas density, [kg/m^3]
D : float
Diameter of pipe, [m]
Vterminal : float
Terminal velocity of particle settling in gas, [m/s]
Returns
-------
V : float
Saltation velocity of gas, [m/s]
Notes
-----
Model is rearranged to be explicit in terms of saltation velocity
internally.
Examples
--------
Examples are only a self-test.
>>> Weber_saltation(mp=1, rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=4)
15.227445436331474
References
----------
.. [1] Weber, M. 1981. Principles of hydraulic and pneumatic conveying in
pipes. Bulk Solids Handling 1: 57-63.
.. [2] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
doi:10.1515/REVCE.2011.011.
.. [3] Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. "Modeling
Minimum Transport Boundary for Fluidized Dense-Phase Pneumatic Conveying
Systems." Powder Technology 277 (June 2015): 244-51.
doi:10.1016/j.powtec.2015.02.050.
.. [4] Bansal, A., S. S. Mallick, and P. W. Wypych. "Investigating
Straight-Pipe Pneumatic Conveying Characteristics for Fluidized
Dense-Phase Pneumatic Conveying." Particulate Science and Technology
31, no. 4 (July 4, 2013): 348-56. doi:10.1080/02726351.2012.732677.
.. [5] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
doi:10.1590/S0104-66322014000100005
'''
if Vterminal <= 3:
term1 = (7 + 8/3.*Vterminal)*(dp/D)**0.1
else:
term1 = 15.*(dp/D)**0.1
term2 = 1./sqrt(g*D)
term3 = mp/rhog/(pi/4*D**2)
return (term1/term2*sqrt(sqrt(term3)))**(1/1.25)
def Geldart_Ling(mp, rhog, D, mug):
r'''Calculates saltation velocity of the gas for pneumatic conveying,
according to [1]_ as described in [2]_ and [3]_.
if Gs/D < 47000, use equation 1, otherwise use equation 2.
.. math::
V_{salt} = 1.5G_s^{0.465}D^{-0.01} \mu^{0.055}\rho_f^{-0.42}
.. math::
V_{salt} = 8.7G_s^{0.302}D^{0.153} \mu^{0.055}\rho_f^{-0.42}
.. math::
Fr_s = 15\mu^{0.25}\left(\frac{d_p}{D}\right)^{0.1}
.. math::
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
.. math::
\mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}
.. math::
G_s = \frac{m_p}{A}
Parameters
----------
mp : float
Solid mass flow rate, [kg/s]
rhog : float
Gas density, [kg/m^3]
D : float
Diameter of pipe, [m]
mug : float
Gas viscosity, [Pa*s]
Returns
-------
V : float
Saltation velocity of gas, [m/s]
Notes
-----
Model is rearranged to be explicit in terms of saltation velocity
internally.
Examples
--------
>>> Geldart_Ling(1., 1.2, 0.1, 2E-5)
7.467495862402707
References
----------
.. [1] Weber, M. 1981. Principles of hydraulic and pneumatic conveying in
pipes. Bulk Solids Handling 1: 57-63.
.. [2] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
doi:10.1515/REVCE.2011.011.
.. [3] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
doi:10.1590/S0104-66322014000100005
'''
Gs = mp/(0.25*pi*D*D)
if Gs/D <= 47000.0:
return 1.5*Gs**0.465*D**-0.01*mug**0.055*rhog**-0.42
else:
return 8.7*Gs**0.302*D**0.153*mug**0.055*rhog**-0.42
|