File: saltation.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (560 lines) | stat: -rw-r--r-- 17,985 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

This module contains correlations for calculating the saltation velocity of
entrained particles.

For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.

.. contents:: :local:

Correlations
------------
.. autofunction :: Rizk
.. autofunction :: Matsumoto_1974
.. autofunction :: Matsumoto_1975
.. autofunction :: Matsumoto_1977
.. autofunction :: Schade
.. autofunction :: Weber_saltation
.. autofunction :: Geldart_Ling

"""

from math import sqrt

from fluids.constants import g, pi

__all__ = ['Rizk', 'Matsumoto_1974', 'Matsumoto_1975', 'Matsumoto_1977',
'Schade', 'Weber_saltation', 'Geldart_Ling']


def Rizk(mp, dp, rhog, D):
    r'''Calculates saltation velocity of the gas for pneumatic conveying,
    according to [1]_ as described in [2]_ and many others.

    .. math::
        \mu=\left(\frac{1}{10^{1440d_p+1.96}}\right)\left(Fr_s\right)^{1100d_p+2.5}

    .. math::
        Fr_s = \frac{V_{salt}}{\sqrt{gD}}

    .. math::
        \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}

    Parameters
    ----------
    mp : float
        Solid mass flow rate, [kg/s]
    dp : float
        Particle diameter, [m]
    rhog : float
        Gas density, [kg/m^3]
    D : float
        Diameter of pipe, [m]

    Returns
    -------
    V : float
        Saltation velocity of gas, [m/s]

    Notes
    -----
    Model is rearranged to be explicit in terms of saltation velocity
    internally.

    Examples
    --------
    Example is from [3]_.

    >>> Rizk(mp=0.25, dp=100E-6, rhog=1.2, D=.078)
    9.8833092829357

    References
    ----------
    .. [1] Rizk, F. "Pneumatic conveying at optimal operation conditions and a
       solution of Bath's equation." Proceedings of Pneumotransport 3,
       paper D4. BHRA Fluid Engineering, Cranfield, England (1973)
    .. [2] Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic
       Conveying of Solids: A Theoretical and Practical Approach.
       Springer, 2013.
    .. [3] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013.
    '''
    alpha = 1440.0*dp + 1.96
    beta = 1100.0*dp + 2.5
    term1 = 0.1**alpha
    Frs_sorta = 1.0/sqrt(g*D)
    expression1 = term1*Frs_sorta**beta
    expression2 = mp/rhog/(pi/4*D*D)
    return (expression2/expression1)**(1./(1. + beta))


def Matsumoto_1974(mp, rhop, dp, rhog, D, Vterminal=1):
    r'''Calculates saltation velocity of the gas for pneumatic conveying,
    according to [1]_. Also described in [2]_.

    .. math::
        \mu = 0.448 \left(\frac{\rho_p}{\rho_f}\right)^{0.50}\left(\frac{Fr_p}
        {10}\right)^{-1.75}\left(\frac{Fr_s}{10}\right)^{3}

    .. math::
        Fr_s = \frac{V_{salt}}{\sqrt{gD}}

    .. math::
        Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}

    .. math::
        \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}

    Parameters
    ----------
    mp : float
        Solid mass flow rate, [kg/s]
    rhop : float
        Particle density, [kg/m^3]
    dp : float
        Particle diameter, [m]
    rhog : float
        Gas density, [kg/m^3]
    D : float
        Diameter of pipe, [m]
    Vterminal : float
        Terminal velocity of particle settling in gas, [m/s]

    Returns
    -------
    V : float
        Saltation velocity of gas, [m/s]

    Notes
    -----
    Model is rearranged to be explicit in terms of saltation velocity
    internally.
    Result looks high, something may be wrong.
    For particles > 0.3 mm.

    Examples
    --------
    >>> Matsumoto_1974(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
    19.583617317317895

    References
    ----------
    .. [1] Matsumoto, Shigeru, Michio Kara, Shozaburo Saito, and Siro Maeda.
       "Minimum Transport Velocity for Horizontal Pneumatic Conveying."
       Journal of Chemical Engineering of Japan 7, no. 6 (1974): 425-30.
       doi:10.1252/jcej.7.425.
    .. [2] Jones, Peter J., and L. S. Leung. "A Comparison of Correlations for
       Saltation Velocity in Horizontal Pneumatic Conveying." Industrial &
       Engineering Chemistry Process Design and Development 17, no. 4
       (October 1, 1978): 571-75. doi:10.1021/i260068a031
    '''
    A = pi/4*D**2
    Frp = Vterminal/sqrt(g*dp)
    Frs_sorta = 1./sqrt(g*D)
    expression1 = 0.448*sqrt(rhop/rhog)*(Frp/10.)**-1.75*(Frs_sorta/10.)**3
    expression2 = mp/rhog/A
    return (expression2/expression1)**(1/4.)


def Matsumoto_1975(mp, rhop, dp, rhog, D, Vterminal=1):
    r'''Calculates saltation velocity of the gas for pneumatic conveying,
    according to [1]_. Also described in [2]_.

    .. math::
        \mu = 1.11 \left(\frac{\rho_p}{\rho_f}\right)^{0.55}\left(\frac{Fr_p}
        {10}\right)^{-2.3}\left(\frac{Fr_s}{10}\right)^{3}

    .. math::
        Fr_s = \frac{V_{salt}}{\sqrt{gD}}

    .. math::
        Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}

    .. math::
        \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}

    Parameters
    ----------
    mp : float
        Solid mass flow rate, [kg/s]
    rhop : float
        Particle density, [kg/m^3]
    dp : float
        Particle diameter, [m]
    rhog : float
        Gas density, [kg/m^3]
    D : float
        Diameter of pipe, [m]
    Vterminal : float
        Terminal velocity of particle settling in gas, [m/s]

    Returns
    -------
    V : float
        Saltation velocity of gas, [m/s]

    Notes
    -----
    Model is rearranged to be explicit in terms of saltation velocity
    internally.
    Result looks high, something may be wrong.
    For particles > 0.3 mm.

    Examples
    --------
    >>> Matsumoto_1975(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
    18.04523091703009

    References
    ----------
    .. [1] Matsumoto, Shigeru, Shundo Harada, Shozaburo Saito, and Siro Maeda.
       "Saltation Velocity for Horizontal Pneumatic Conveying." Journal of
       Chemical Engineering of Japan 8, no. 4 (1975): 331-33.
       doi:10.1252/jcej.8.331.
    .. [2] Jones, Peter J., and L. S. Leung. "A Comparison of Correlations for
       Saltation Velocity in Horizontal Pneumatic Conveying." Industrial &
       Engineering Chemistry Process Design and Development 17, no. 4
       (October 1, 1978): 571-75. doi:10.1021/i260068a031
    '''
    A = pi/4*D**2
    Frp = Vterminal/sqrt(g*dp)
    Frs_sorta = 1./sqrt(g*D)
    expression1 = 1.11*(rhop/rhog)**0.55*(Frp/10.)**-2.3*(Frs_sorta/10.)**3
    expression2 = mp/rhog/A
    return (expression2/expression1)**(1/4.)


def Matsumoto_1977(mp, rhop, dp, rhog, D, Vterminal=1):
    r'''Calculates saltation velocity of the gas for pneumatic conveying,
    according to [1]_ and reproduced in [2]_, [3]_, and [4]_.

    First equation is used if third equation yields d* higher than dp.
    Otherwise, use equation 2.

    .. math::
        \mu = 5560\left(\frac{d_p}{D}\right)^{1.43}\left(\frac{Fr_s}{10}\right)^4

    .. math::
        \mu = 0.373 \left(\frac{\rho_p}{\rho_f}\right)^{1.06}\left(\frac{Fr_p}
        {10}\right)^{-3.7}\left(\frac{Fr_s}{10}\right)^{3.61}

    .. math::
        \frac{d_p^*}{D} = 1.39\left(\frac{\rho_p}{\rho_f}\right)^{-0.74}

    .. math::
        Fr_s = \frac{V_{salt}}{\sqrt{gD}}

    .. math::
        Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}

    .. math::
        \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}

    Parameters
    ----------
    mp : float
        Solid mass flow rate, [kg/s]
    rhop : float
        Particle density, [kg/m^3]
    dp : float
        Particle diameter, [m]
    rhog : float
        Gas density, [kg/m^3]
    D : float
        Diameter of pipe, [m]
    Vterminal : float
        Terminal velocity of particle settling in gas, [m/s]

    Returns
    -------
    V : float
        Saltation velocity of gas, [m/s]

    Notes
    -----
    Model is rearanged to be explicit in terms of saltation velocity
    internally.r

    Examples
    --------
    Example is only a self-test.

    Course routine, terminal velocity input is from example in [2].

    >>> Matsumoto_1977(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
    16.64284834446686

    References
    ----------
    .. [1] Matsumoto, Shigeru, Makoto Kikuta, and Siro Maeda. "Effect of
       Particle Size on the Minimum Transport Velocity for Horizontal Pneumatic
       Conveying of Solids." Journal of Chemical Engineering of Japan 10,
       no. 4 (1977): 273-79. doi:10.1252/jcej.10.273.
    .. [2] Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic
       Conveying of Solids: A Theoretical and Practical Approach.
       Springer, 2013.
    .. [3] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
       Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
       Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
       doi:10.1590/S0104-66322014000100005
    .. [4] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
       Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
       Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
       doi:10.1515/REVCE.2011.011.
    '''
    limit = 1.39*D*(rhop/rhog)**-0.74
    A = pi/4*D**2
    if limit < dp:
        # Coarse routine
        Frp = Vterminal/sqrt(g*dp)
        Frs_sorta = 1./sqrt(g*D)
        expression1 = 0.373*(rhop/rhog)**1.06*(Frp/10.)**-3.7*(Frs_sorta/10.)**3.61
        expression2 = mp/rhog/A
        return (expression2/expression1)**(1/4.61)
    else:
        Frs_sorta = 1./sqrt(g*D)
        expression1 = 5560*(dp/D)**1.43*(Frs_sorta/10.)**4
        expression2 = mp/rhog/A
        return (expression2/expression1)**(0.2)


def Schade(mp, rhop, dp, rhog, D):
    r'''Calculates saltation velocity of the gas for pneumatic conveying,
    according to [1]_ as described in [2]_, [3]_, [4]_, and [5]_.

    .. math::
        Fr_s = \mu^{0.11}\left(\frac{D}{d_p}\right)^{0.025}\left(\frac{\rho_p}
        {\rho_f}\right)^{0.34}

    .. math::
        Fr_s = \frac{V_{salt}}{\sqrt{gD}}

    .. math::
        \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}

    Parameters
    ----------
    mp : float
        Solid mass flow rate, [kg/s]
    rhop : float
        Particle density, [kg/m^3]
    dp : float
        Particle diameter, [m]
    rhog : float
        Gas density, [kg/m^3]
    D : float
        Diameter of pipe, [m]

    Returns
    -------
    V : float
        Saltation velocity of gas, [m/s]

    Notes
    -----
    Model is rearranged to be explicit in terms of saltation velocity
    internally.

    Examples
    --------
    >>> Schade(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1)
    13.697415809497912

    References
    ----------
    .. [1] Schade, B., Zum Ubergang Sprung-Strahnen-forderung bei der
       Horizontalen Pneumatischen Feststoffordrung. Dissertation, University of
       Karlsruche (1987)
    .. [2] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
       Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
       Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
       doi:10.1515/REVCE.2011.011.
    .. [3] Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. "Modeling
       Minimum Transport Boundary for Fluidized Dense-Phase Pneumatic Conveying
       Systems." Powder Technology 277 (June 2015): 244-51.
       doi:10.1016/j.powtec.2015.02.050.
    .. [4] Bansal, A., S. S. Mallick, and P. W. Wypych. "Investigating
       Straight-Pipe Pneumatic Conveying Characteristics for Fluidized
       Dense-Phase Pneumatic Conveying." Particulate Science and Technology
       31, no. 4 (July 4, 2013): 348-56. doi:10.1080/02726351.2012.732677.
    .. [5] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
       Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
       Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
       doi:10.1590/S0104-66322014000100005
    '''
    B = (D/dp)**0.025*(rhop/rhog)**0.34
    A = sqrt(g*D)
    C = mp/(rhog*pi/4*D**2)
    return (C**0.11*B*A)**(1/1.11)


def Weber_saltation(mp, rhop, dp, rhog, D, Vterminal=4):
    r'''Calculates saltation velocity of the gas for pneumatic conveying,
    according to [1]_ as described in [2]_, [3]_, [4]_, and [5]_.

    If Vterminal is under 3 m/s, use equation 1; otherwise, equation 2.

    .. math::
        Fr_s = \left(7 + \frac{8}{3}V_{terminal}\right)\mu^{0.25}
        \left(\frac{d_p}{D}\right)^{0.1}

    .. math::
        Fr_s = 15\mu^{0.25}\left(\frac{d_p}{D}\right)^{0.1}

    .. math::
        Fr_s = \frac{V_{salt}}{\sqrt{gD}}

    .. math::
        \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}

    Parameters
    ----------
    mp : float
        Solid mass flow rate, [kg/s]
    rhop : float
        Particle density, [kg/m^3]
    dp : float
        Particle diameter, [m]
    rhog : float
        Gas density, [kg/m^3]
    D : float
        Diameter of pipe, [m]
    Vterminal : float
        Terminal velocity of particle settling in gas, [m/s]

    Returns
    -------
    V : float
        Saltation velocity of gas, [m/s]

    Notes
    -----
    Model is rearranged to be explicit in terms of saltation velocity
    internally.

    Examples
    --------
    Examples are only a self-test.

    >>> Weber_saltation(mp=1, rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=4)
    15.227445436331474

    References
    ----------
    .. [1] Weber, M. 1981. Principles of hydraulic and pneumatic conveying in
       pipes. Bulk Solids Handling 1: 57-63.
    .. [2] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
       Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
       Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
       doi:10.1515/REVCE.2011.011.
    .. [3] Setia, G., S. S. Mallick, R. Pan, and P. W. Wypych. "Modeling
       Minimum Transport Boundary for Fluidized Dense-Phase Pneumatic Conveying
       Systems." Powder Technology 277 (June 2015): 244-51.
       doi:10.1016/j.powtec.2015.02.050.
    .. [4] Bansal, A., S. S. Mallick, and P. W. Wypych. "Investigating
       Straight-Pipe Pneumatic Conveying Characteristics for Fluidized
       Dense-Phase Pneumatic Conveying." Particulate Science and Technology
       31, no. 4 (July 4, 2013): 348-56. doi:10.1080/02726351.2012.732677.
    .. [5] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
       Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
       Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
       doi:10.1590/S0104-66322014000100005
    '''
    if Vterminal <= 3:
        term1 = (7 + 8/3.*Vterminal)*(dp/D)**0.1
    else:
        term1 = 15.*(dp/D)**0.1
    term2 = 1./sqrt(g*D)
    term3 = mp/rhog/(pi/4*D**2)
    return (term1/term2*sqrt(sqrt(term3)))**(1/1.25)


def Geldart_Ling(mp, rhog, D, mug):
    r'''Calculates saltation velocity of the gas for pneumatic conveying,
    according to [1]_ as described in [2]_ and [3]_.

    if Gs/D < 47000, use equation 1, otherwise use equation 2.

    .. math::
        V_{salt} = 1.5G_s^{0.465}D^{-0.01} \mu^{0.055}\rho_f^{-0.42}

    .. math::
        V_{salt} = 8.7G_s^{0.302}D^{0.153} \mu^{0.055}\rho_f^{-0.42}

    .. math::
        Fr_s = 15\mu^{0.25}\left(\frac{d_p}{D}\right)^{0.1}

    .. math::
        Fr_s = \frac{V_{salt}}{\sqrt{gD}}

    .. math::
        \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f}

    .. math::
        G_s = \frac{m_p}{A}

    Parameters
    ----------
    mp : float
        Solid mass flow rate, [kg/s]
    rhog : float
        Gas density, [kg/m^3]
    D : float
        Diameter of pipe, [m]
    mug : float
        Gas viscosity, [Pa*s]

    Returns
    -------
    V : float
        Saltation velocity of gas, [m/s]

    Notes
    -----
    Model is rearranged to be explicit in terms of saltation velocity
    internally.

    Examples
    --------
    >>> Geldart_Ling(1., 1.2, 0.1, 2E-5)
    7.467495862402707

    References
    ----------
    .. [1] Weber, M. 1981. Principles of hydraulic and pneumatic conveying in
       pipes. Bulk Solids Handling 1: 57-63.
    .. [2] Rabinovich, Evgeny, and Haim Kalman. "Threshold Velocities of
       Particle-Fluid Flows in Horizontal Pipes and Ducts: Literature Review."
       Reviews in Chemical Engineering 27, no. 5-6 (January 1, 2011).
       doi:10.1515/REVCE.2011.011.
    .. [3] Gomes, L. M., and A. L. Amarante Mesquita. "On the Prediction of
       Pickup and Saltation Velocities in Pneumatic Conveying." Brazilian
       Journal of Chemical Engineering 31, no. 1 (March 2014): 35-46.
       doi:10.1590/S0104-66322014000100005
    '''
    Gs = mp/(0.25*pi*D*D)
    if Gs/D <= 47000.0:
        return 1.5*Gs**0.465*D**-0.01*mug**0.055*rhog**-0.42
    else:
        return 8.7*Gs**0.302*D**0.153*mug**0.055*rhog**-0.42