1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
|
"""Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This module contains functions for calculating two-phase pressure drop. It also
contains correlations for flow regime.
For reporting bugs, adding feature requests, or submitting pull requests,
please use the `GitHub issue tracker <https://github.com/CalebBell/fluids/>`_
or contact the author at Caleb.Andrew.Bell@gmail.com.
.. contents:: :local:
Interfaces
----------
.. autofunction:: two_phase_dP
.. autofunction:: two_phase_dP_methods
.. autofunction:: two_phase_dP_acceleration
.. autofunction:: two_phase_dP_gravitational
.. autofunction:: two_phase_dP_dz_acceleration
.. autofunction:: two_phase_dP_dz_gravitational
Two Phase Pressure Drop Correlations
------------------------------------
.. autofunction:: Beggs_Brill
.. autofunction:: Lockhart_Martinelli
.. autofunction:: Friedel
.. autofunction:: Chisholm
.. autofunction:: Kim_Mudawar
.. autofunction:: Baroczy_Chisholm
.. autofunction:: Theissing
.. autofunction:: Muller_Steinhagen_Heck
.. autofunction:: Gronnerud
.. autofunction:: Lombardi_Pedrocchi
.. autofunction:: Jung_Radermacher
.. autofunction:: Tran
.. autofunction:: Chen_Friedel
.. autofunction:: Zhang_Webb
.. autofunction:: Xu_Fang
.. autofunction:: Yu_France
.. autofunction:: Wang_Chiang_Lu
.. autofunction:: Hwang_Kim
.. autofunction:: Zhang_Hibiki_Mishima
.. autofunction:: Mishima_Hibiki
.. autofunction:: Bankoff
Two Phase Flow Regime Correlations
----------------------------------
.. autofunction:: Mandhane_Gregory_Aziz_regime
.. autofunction:: Taitel_Dukler_regime
"""
__all__ = ['two_phase_dP', 'two_phase_dP_methods', 'two_phase_dP_acceleration',
'two_phase_dP_dz_acceleration', 'two_phase_dP_gravitational',
'two_phase_dP_dz_gravitational',
'Beggs_Brill', 'Lockhart_Martinelli', 'Friedel', 'Chisholm',
'Kim_Mudawar', 'Baroczy_Chisholm', 'Theissing',
'Muller_Steinhagen_Heck', 'Gronnerud', 'Lombardi_Pedrocchi',
'Jung_Radermacher', 'Tran', 'Chen_Friedel', 'Zhang_Webb', 'Xu_Fang',
'Yu_France', 'Wang_Chiang_Lu', 'Hwang_Kim', 'Zhang_Hibiki_Mishima',
'Mishima_Hibiki', 'Bankoff',
'Mandhane_Gregory_Aziz_regime', 'Taitel_Dukler_regime']
from math import cos, exp, log, log10, pi, radians, sin, sqrt
from fluids.constants import deg2rad, g
from fluids.core import Bond, Confinement, Froude, Reynolds, Suratman, Weber
from fluids.friction import friction_factor
from fluids.numerics import implementation_optimize_tck, splev, cbrt
from fluids.two_phase_voidage import Lockhart_Martinelli_Xtt, homogeneous
Beggs_Brill_dat = {'segregated': (0.98, 0.4846, 0.0868),
'intermittent': (0.845, 0.5351, 0.0173),
'distributed': (1.065, 0.5824, 0.0609)}
def _Beggs_Brill_holdup(regime, lambda_L, Fr, angle, LV):
if regime == 0:
a, b, c = 0.98, 0.4846, 0.0868
elif regime == 2:
a, b, c = 0.845, 0.5351, 0.0173
elif regime == 3:
a, b, c = 1.065, 0.5824, 0.0609
HL0 = a*lambda_L**b*Fr**-c
if HL0 < lambda_L:
HL0 = lambda_L
if angle > 0.0: # uphill
# h used instead of g to avoid conflict with gravitational constant
if regime == 0:
d, e, f, h = 0.011, -3.768, 3.539, -1.614
elif regime == 2:
d, e, f, h = 2.96, 0.305, -0.4473, 0.0978
elif regime == 3:
# Dummy values for distributed - > psi = 1.
d, e, f, h = 2.96, 0.305, -0.4473, 0.0978
elif angle <= 0: # downhill
d, e, f, h = 4.70, -0.3692, 0.1244, -0.5056
C = (1.0 - lambda_L)*log(d*lambda_L**e*LV**f*Fr**h)
if C < 0.0:
C = 0.0
# Correction factor for inclination angle
x1 = sin(1.8*angle)
Psi = 1.0 + C*x1*(1.0 - (1.0/3.0)*x1*x1)
if (angle > 0 and regime == 3) or angle == 0:
Psi = 1.0
Hl = HL0*Psi
return Hl
def Beggs_Brill(m, x, rhol, rhog, mul, mug, sigma, P, D, angle, roughness=0.0,
L=1.0, g=g, acceleration=True):
r'''Calculates the two-phase pressure drop according to the Beggs-Brill
correlation ([1]_, [2]_, [3]_).
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Mass quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
P : float
Pressure of fluid (used only if `acceleration=True`), [Pa]
D : float
Diameter of pipe, [m]
angle : float
The angle of the pipe with respect to the horizontal, [degrees]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
g : float, optional
Acceleration due to gravity, [m/s^2]
acceleration : bool
Whether or not to include the original acceleration component, [-]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
The original acceleration formula is fairly primitive and normally
neglected. The model was developed assuming smooth pipe, so leaving
`roughness` to zero may be wise.
Note this is a "mechanistic" pressure drop model - the gravitational
pressure drop cannot be separated from the frictional pressure drop.
Examples
--------
>>> Beggs_Brill(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, P=1E7, D=0.05, angle=0, roughness=0.0, L=1.0)
686.9724506803469
References
----------
.. [1] Beggs, D.H., and J.P. Brill. "A Study of Two-Phase Flow in Inclined
Pipes." Journal of Petroleum Technology 25, no. 05 (May 1, 1973):
607-17. https://doi.org/10.2118/4007-PA.
.. [2] Brill, James P., and Howard Dale Beggs. Two-Phase Flow in Pipes,
1994.
.. [3] Shoham, Ovadia. Mechanistic Modeling of Gas-Liquid Two-Phase Flow in
Pipes. Pap/Cdr edition. Richardson, TX: Society of Petroleum Engineers,
2006.
'''
# 0 - segregated; 1 - transition; 2 - intermittent; 3 - distributed
qg = x*m/rhog
ql = (1.0 - x)*m/rhol
A = 0.25*pi*D*D
Vsg = qg/A
Vsl = ql/A
Vm = Vsg + Vsl
Fr = Vm*Vm/(g*D)
lambda_L = Vsl/Vm # no slip liquid holdup
L1 = 316.0*lambda_L**0.302
L2 = 0.0009252*lambda_L**-2.4684
L3 = 0.1*lambda_L**-1.4516
L4 = 0.5*lambda_L**-6.738
if (lambda_L < 0.01 and Fr < L1) or (lambda_L >= 0.01 and Fr < L2):
regime = 0
elif (lambda_L >= 0.01 and L2 <= Fr <= L3):
regime = 1
elif (0.01 <= lambda_L < 0.4 and L3 < Fr <= L1) or (lambda_L >= 0.4 and L3 < Fr <= L4):
regime = 2
elif (lambda_L < 0.4 and Fr >= L1) or (lambda_L >= 0.4 and Fr > L4):
regime = 3
else:
raise ValueError('Outside regime ranges')
LV = Vsl*sqrt(sqrt(rhol/(g*sigma)))
if angle is None:
angle = 0.0
angle = deg2rad*angle
if regime != 1:
Hl = _Beggs_Brill_holdup(regime, lambda_L, Fr, angle, LV)
else:
A = (L3 - Fr)/(L3 - L2)
Hl = (A*_Beggs_Brill_holdup(0, lambda_L, Fr, angle, LV)
+ (1.0 - A)*_Beggs_Brill_holdup(2, lambda_L, Fr, angle, LV))
rhos = rhol*Hl + rhog*(1.0 - Hl)
mum = mul*lambda_L + mug*(1.0 - lambda_L)
rhom = rhol*lambda_L + rhog*(1.0 - lambda_L)
Rem = rhom*D/mum*Vm
fn = friction_factor(Re=Rem, eD=roughness/D)
x = lambda_L/(Hl*Hl)
if 1.0 < x < 1.2:
S = log(2.2*x - 1.2)
else:
logx = log(x)
# from horner(-0.0523 + 3.182*log(x) - 0.8725*log(x)**2 + 0.01853*log(x)**4, x)
S = logx/(logx*(logx*(0.01853*logx*logx - 0.8725) + 3.182) - 0.0523)
if S > 7.0:
S = 7.0 # Truncate S to avoid exp(S) overflowing
ftp = fn*exp(S)
dP_ele = g*sin(angle)*rhos*L
dP_fric = ftp*L/D*0.5*rhom*Vm*Vm
# rhos here is pretty clearly rhos according to Shoham
if P is None:
P = 101325.0
if not acceleration:
dP = dP_ele + dP_fric
else:
Ek = Vsg*Vm*rhos/P # Confirmed this expression is dimensionless
dP = (dP_ele + dP_fric)/(1.0 - Ek)
return dP
def Friedel(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Friedel correlation.
.. math::
\Delta P_{friction} = \Delta P_{lo} \phi_{lo}^2
.. math::
\phi_{lo}^2 = E + \frac{3.24FH}{Fr^{0.0454} We^{0.035}}
.. math::
H = \left(\frac{\rho_l}{\rho_g}\right)^{0.91}\left(\frac{\mu_g}{\mu_l}
\right)^{0.19}\left(1 - \frac{\mu_g}{\mu_l}\right)^{0.7}
.. math::
F = x^{0.78}(1 - x)^{0.224}
.. math::
E = (1-x)^2 + x^2\left(\frac{\rho_l f_{d,go}}{\rho_g f_{d,lo}}\right)
.. math::
Fr = \frac{G_{tp}^2}{gD\rho_H^2}
.. math::
We = \frac{G_{tp}^2 D}{\sigma \rho_H}
.. math::
\rho_H = \left(\frac{x}{\rho_g} + \frac{1-x}{\rho_l}\right)^{-1}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable to vertical upflow and horizontal flow. Known to work poorly
when mul/mug > 1000. Gives mean errors on the order of 40%. Tested on data
with diameters as small as 4 mm.
The power of 0.0454 is given as 0.045 in [2]_, [3]_, [4]_, and [5]_; [6]_
and [2]_ give 0.0454 and [2]_ also gives a similar correlation said to be
presented in [1]_, so it is believed this 0.0454 was the original power.
[6]_ also gives an expression for friction factor claimed to be presented
in [1]_; it is not used here.
Examples
--------
Example 4 in [6]_:
>>> Friedel(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
738.6500525002241
References
----------
.. [1] Friedel, L. "Improved Friction Pressure Drop Correlations for
Horizontal and Vertical Two-Phase Pipe Flow." , in: Proceedings,
European Two Phase Flow Group Meeting, Ispra, Italy, 1979: 485-481.
.. [2] Whalley, P. B. Boiling, Condensation, and Gas-Liquid Flow. Oxford:
Oxford University Press, 1987.
.. [3] Triplett, K. A., S. M. Ghiaasiaan, S. I. Abdel-Khalik, A. LeMouel,
and B. N. McCord. "Gas-liquid Two-Phase Flow in Microchannels: Part II:
Void Fraction and Pressure Drop.” International Journal of Multiphase
Flow 25, no. 3 (April 1999): 395-410. doi:10.1016/S0301-9322(98)00055-X.
.. [4] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
.. [5] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc
(2004). http://www.wlv.com/heat-transfer-databook/
.. [6] Ghiaasiaan, S. Mostafa. Two-Phase Flow, Boiling, and Condensation:
In Conventional and Miniature Systems. Cambridge University Press, 2007.
'''
# Liquid-only properties, for calculation of E, dP_lo
A = 0.25*pi*D*D
v_lo = m/(A*rhol)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only properties, for calculation of E
v_go = m/(rhog*A)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
F = x**0.78*(1-x)**0.224
H = (rhol/rhog)**0.91*(mug/mul)**0.19*(1.0 - mug/mul)**0.7
E = (1.0-x)*(1.0-x) + x*x*(rhol*fd_go/(rhog*fd_lo))
# Homogeneous properties, for Froude/Weber numbers
voidage_h = homogeneous(x, rhol, rhog)
rho_h = rhol*(1.0-voidage_h) + rhog*voidage_h
Q_h = m/rho_h
v_h = Q_h/A
Fr = Froude(V=v_h, L=D, squared=True) # checked with (m/(pi/4*D**2))**2/g/D/rho_h**2
We = Weber(V=v_h, L=D, rho=rho_h, sigma=sigma) # checked with (m/(pi/4*D**2))**2*D/sigma/rho_h
phi_lo2 = E + 3.24*F*H/(Fr**0.0454*We**0.035)
return phi_lo2*dP_lo
def Gronnerud(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Gronnerud correlation as
presented in [2]_, [3]_, and [4]_.
.. math::
\Delta P_{friction} = \Delta P_{gd} \phi_{lo}^2
.. math::
\phi_{gd} = 1 + \left(\frac{dP}{dL}\right)_{Fr}\left[
\frac{\frac{\rho_l}{\rho_g}}{\left(\frac{\mu_l}{\mu_g}\right)^{0.25}}
-1\right]
.. math::
\left(\frac{dP}{dL}\right)_{Fr} = f_{Fr}\left[x+4(x^{1.8}-x^{10}
f_{Fr}^{0.5})\right]
.. math::
f_{Fr} = Fr_l^{0.3} + 0.0055\left(\ln \frac{1}{Fr_l}\right)^2
.. math::
Fr_l = \frac{G_{tp}^2}{gD\rho_l^2}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Developed for evaporators. Applicable from 0 < x < 1.
In the model, if `Fr_l` is more than 1, `f_Fr` is set to 1.
Examples
--------
>>> Gronnerud(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... D=0.05, roughness=0.0, L=1.0)
384.12541144474085
References
----------
.. [1] Gronnerud, R. "Investigation of Liquid Hold-Up, Flow Resistance and
Heat Transfer in Circulation Type Evaporators. 4. Two-Phase Flow
Resistance in Boiling Refrigerants." Proc. Freudenstadt Meet., IIR/C.
R. Réun. Freudenstadt, IIF. 1972-1: 127-138. 1972.
.. [2] ASHRAE Handbook: Fundamentals. American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Incorporated, 2013.
.. [3] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
.. [4] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc
(2004). http://www.wlv.com/heat-transfer-databook/
'''
G = m/(0.25*pi*D*D)
V = G/rhol
Frl = Froude(V=V, L=D, squared=True)
if Frl >= 1:
f_Fr = 1.0
else:
term = (log(1./Frl))
f_Fr = Frl**0.3 + 0.0055*term*term
dP_dL_Fr = f_Fr*(x + 4.0*(x**1.8 - x**10.0*sqrt(f_Fr)))
phi_gd = 1.0 + dP_dL_Fr*((rhol/rhog)/sqrt(sqrt(mul/mug)) - 1.0)
# Liquid-only properties, for calculation of E, dP_lo
v_lo = m/(rhol*(0.25*pi*D*D))
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
return phi_gd*dP_lo
def Chisholm(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0,
rough_correction=False):
r'''Calculates two-phase pressure drop with the Chisholm (1973) correlation
from [1]_, also in [2]_ and [3]_.
.. math::
\frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2
.. math::
\phi_{ch}^2 = 1 + (\Gamma^2 -1)\left\{B x^{(2-n)/2} (1-x)^{(2-n)/2}
+ x^{2-n} \right\}
.. math::
\Gamma ^2 = \frac{\left(\frac{\Delta P}{L}\right)_{go}}{\left(\frac{
\Delta P}{L}\right)_{lo}}
For Gamma < 9.5:
.. math::
B = \frac{55}{G_{tp}^{0.5}} \text{ for } G_{tp} > 1900
.. math::
B = \frac{2400}{G_{tp}} \text{ for } 500 < G_{tp} < 1900
.. math::
B = 4.8 \text{ for } G_{tp} < 500
For 9.5 < Gamma < 28:
.. math::
B = \frac{520}{\Gamma G_{tp}^{0.5}} \text{ for } G_{tp} < 600
.. math::
B = \frac{21}{\Gamma} \text{ for } G_{tp} > 600
For Gamma > 28:
.. math::
B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}}
If `rough_correction` is True, the following correction to B is applied:
.. math::
\frac{B_{rough}}{B_{smooth}} = \left[0.5\left\{1+ \left(\frac{\mu_g}
{\mu_l}\right)^2 + 10^{-600\epsilon/D}\right\}\right]^{\frac{0.25-n}
{0.25}}
.. math::
n = \frac{\ln \frac{f_{d,lo}}{f_{d,go}}}{\ln \frac{Re_{go}}{Re_{lo}}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
rough_correction : bool, optional
Whether or not to use the roughness correction proposed in the 1968
version of the correlation
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable for 0 < x < 1. n = 0.25, the exponent in the Blassius equation.
Originally developed for smooth pipes, a roughness correction is included
as well from the Chisholm's 1968 work [4]_. Neither [2]_ nor [3]_ have any
mention of the correction however.
Examples
--------
>>> Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
1084.148992292
References
----------
.. [1] Chisholm, D. "Pressure Gradients due to Friction during the Flow of
Evaporating Two-Phase Mixtures in Smooth Tubes and Channels."
International Journal of Heat and Mass Transfer 16, no. 2 (February
1973): 347-58. doi:10.1016/0017-9310(73)90063-X.
.. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
.. [3] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc
(2004). http://www.wlv.com/heat-transfer-databook/
.. [4] Chisholm, D. "Research Note: Influence of Pipe Surface Roughness on
Friction Pressure Gradient during Two-Phase Flow." Journal of Mechanical
Engineering Science 20, no. 6 (December 1, 1978): 353-354.
doi:10.1243/JMES_JOUR_1978_020_061_02.
'''
A = 0.25*pi*D*D
G_tp = m/A
n = 0.25 # Blasius friction factor exponent
# Liquid-only properties, for calculation of dP_lo
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only properties, for calculation of dP_go
v_go = m/(rhog*A)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
dP_go = fd_go*L/D*(0.5*rhog*v_go*v_go)
Gamma = sqrt(dP_go/dP_lo)
if Gamma <= 9.5:
if G_tp <= 500.0:
B = 4.8
elif G_tp < 1900.0:
B = 2400./G_tp
else:
B = 55.0/sqrt(G_tp)
elif Gamma <= 28.0:
if G_tp <= 600.0:
B = 520./sqrt(G_tp)/Gamma
else:
B = 21./Gamma
else:
B = 15000./(Gamma*Gamma*sqrt(G_tp))
if rough_correction:
n = log(fd_lo/fd_go)/log(Re_go/Re_lo)
mu_ratio = mug/mul
B_ratio = (0.5*(1.0 + mu_ratio*mu_ratio + 10**(-600.0*roughness/D)))**((0.25-n)*4.0)
B = B*B_ratio
phi2_ch = 1.0 + (Gamma*Gamma-1.0)*(B*x**((2-n)*0.5)*(1.0-x)**((2.0-n)*0.5) + x**(2.0-n))
return phi2_ch*dP_lo
def Baroczy_Chisholm(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Baroczy (1966) model.
It was presented in graphical form originally; Chisholm (1973) made the
correlation non-graphical. The model is also shown in [3]_.
.. math::
\frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2
.. math::
\phi_{ch}^2 = 1 + (\Gamma^2 -1)\left\{B x^{(2-n)/2} (1-x)^{(2-n)/2}
+ x^{2-n} \right\}
.. math::
\Gamma ^2 = \frac{\left(\frac{\Delta P}{L}\right)_{go}}{\left(\frac{
\Delta P}{L}\right)_{lo}}
For Gamma < 9.5:
.. math::
B = \frac{55}{G_{tp}^{0.5}}
For 9.5 < Gamma < 28:
.. math::
B = \frac{520}{\Gamma G_{tp}^{0.5}}
For Gamma > 28:
.. math::
B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable for 0 < x < 1. n = 0.25, the exponent in the Blassius equation.
The `Chisholm_1973` function should be used in preference to this.
Examples
--------
>>> Baroczy_Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
1084.148992292
References
----------
.. [1] Baroczy, C. J. "A systematic correlation for two-phase pressure
drop." In Chem. Eng. Progr., Symp. Ser., 62: No. 64, 232-49 (1966).
.. [2] Chisholm, D. "Pressure Gradients due to Friction during the Flow of
Evaporating Two-Phase Mixtures in Smooth Tubes and Channels."
International Journal of Heat and Mass Transfer 16, no. 2 (February
1973): 347-58. doi:10.1016/0017-9310(73)90063-X.
.. [3] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
'''
A = 0.25*pi*D*D
G_tp = m/A
n = 0.25 # Blasius friction factor exponent
# Liquid-only properties, for calculation of dP_lo
v_lo = m/(A*rhol)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only properties, for calculation of dP_go
v_go = m/(A*rhog)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
dP_go = fd_go*L/D*(0.5*rhog*v_go*v_go)
Gamma = sqrt(dP_go/dP_lo)
if Gamma <= 9.5:
B = 55.0/sqrt(G_tp)
elif Gamma <= 28:
B = 520./(sqrt(G_tp)*Gamma)
else:
B = 15000./(sqrt(G_tp)*(Gamma*Gamma))
phi2_ch = 1.0 + (Gamma*Gamma-1.0)*(B*x**((2.0-n)*0.5)*(1.0-x)**((2.0-n)*0.5) + x**(2.0-n))
return phi2_ch*dP_lo
def Muller_Steinhagen_Heck(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Muller-Steinhagen and Heck
(1986) correlation from [1]_, also in [2]_ and [3]_.
.. math::
\Delta P_{tp} = G_{MSH}(1-x)^{1/3} + \Delta P_{go}x^3
.. math::
G_{MSH} = \Delta P_{lo} + 2\left[\Delta P_{go} - \Delta P_{lo}\right]x
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable for 0 < x < 1. Developed to be easily integrated. The
contribution of each term to the overall pressure drop can be
understood in this model.
Examples
--------
>>> Muller_Steinhagen_Heck(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
793.446545743
References
----------
.. [1] Müller-Steinhagen, H, and K Heck. "A Simple Friction Pressure Drop
Correlation for Two-Phase Flow in Pipes." Chemical Engineering and
Processing: Process Intensification 20, no. 6 (November 1, 1986):
297-308. doi:10.1016/0255-2701(86)80008-3.
.. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
.. [3] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc
(2004). http://www.wlv.com/heat-transfer-databook/
'''
A = 0.25*pi*D*D
# Liquid-only properties, for calculation of dP_lo
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only properties, for calculation of dP_go
v_go = m/(rhog*A)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
dP_go = fd_go*L/D*(0.5*rhog*v_go*v_go)
G_MSH = dP_lo + 2.0*(dP_go - dP_lo)*x
return G_MSH*cbrt(1.0-x)+ dP_go*x*x*x
def Lombardi_Pedrocchi(m, x, rhol, rhog, sigma, D, L=1.0):
r'''Calculates two-phase pressure drop with the Lombardi-Pedrocchi (1972)
correlation from [1]_ as shown in [2]_ and [3]_.
.. math::
\Delta P_{tp} = \frac{0.83 G_{tp}^{1.4} \sigma^{0.4} L}{D^{1.2}
\rho_{h}^{0.866}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
This is a purely empirical method. [3]_ presents a review of this and other
correlations. It did not perform best, but there were also correlations
worse than it.
Examples
--------
>>> Lombardi_Pedrocchi(m=0.6, x=0.1, rhol=915., rhog=2.67, sigma=0.045,
... D=0.05, L=1.0)
1567.328374498781
References
----------
.. [1] Lombardi, C., and E. Pedrocchi. "Pressure Drop Correlation in Two-
Phase Flow." Energ. Nucl. (Milan) 19: No. 2, 91-99, January 1, 1972.
.. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
.. [3] Turgut, Oğuz Emrah, Mustafa Turhan Çoban, and Mustafa Asker.
"Comparison of Flow Boiling Pressure Drop Correlations for Smooth
Macrotubes." Heat Transfer Engineering 37, no. 6 (April 12, 2016):
487-506. doi:10.1080/01457632.2015.1060733.
'''
voidage_h = homogeneous(x, rhol, rhog)
rho_h = rhol*(1.0-voidage_h) + rhog*voidage_h
G_tp = m/(0.25*pi*D*D)
return 0.83*G_tp**1.4*sigma**0.4*L/(D**1.2*rho_h**0.866)
def Theissing(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Theissing (1980)
correlation as shown in [2]_ and [3]_.
.. math::
\Delta P_{{tp}} = \left[ {\Delta P_{{lo}}^{{1/{n\epsilon}}} \left({1 -
x} \right)^{{1/\epsilon}} + \Delta P_{{go}}^{{1/
{(n\epsilon)}}} x^{{1/\epsilon}}} \right]^{n\epsilon}
.. math::
\epsilon = 3 - 2\left({\frac{{2\sqrt {{{\rho_{{l}}}/
{\rho_{{g}}}}}}}{{1 + {{\rho_{{l}}}/{\rho_{{g}}}}}}}
\right)^{{{0.7}/n}}
.. math::
n = \frac{{n_1 + n_2 \left({{{\Delta P_{{g}}}/{\Delta
P_{{l}}}}} \right)^{0.1}}}{{1 + \left({{{\Delta P_{{g}}} /
{\Delta P_{{l}}}}} \right)^{0.1}}}
.. math::
n_1 = \frac{{\ln \left({{{\Delta P_{{l}}}/
{\Delta P_{{lo}}}}} \right)}}{{\ln \left({1 - x} \right)}}
.. math::
n_2 = \frac{\ln \left({\Delta P_{{g}} / \Delta P_{{go}}}
\right)}{{\ln x}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable for 0 < x < 1. Notable, as it can be used for two-phase liquid-
liquid flow as well as liquid-gas flow.
Examples
--------
>>> Theissing(m=0.6, x=.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... D=0.05, roughness=0.0, L=1.0)
497.6156370699538
References
----------
.. [1] Theissing, Peter. "Eine Allgemeingültige Methode Zur Berechnung Des
Reibungsdruckverlustes Der Mehrphasenströmung (A Generally Valid Method
for Calculating Frictional Pressure Drop on Multiphase Flow)." Chemie
Ingenieur Technik 52, no. 4 (January 1, 1980): 344-345.
doi:10.1002/cite.330520414.
.. [2] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
.. [3] Greco, A., and G. P. Vanoli. "Experimental Two-Phase Pressure
Gradients during Evaporation of Pure and Mixed Refrigerants in a Smooth
Horizontal Tube. Comparison with Correlations." Heat and Mass Transfer
42, no. 8 (April 6, 2006): 709-725. doi:10.1007/s00231-005-0020-7.
'''
A = 0.25*pi*D*D
# Liquid-only flow
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only flow
v_go = m/(rhog*A)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
dP_go = fd_go*L/D*(0.5*rhog*v_go*v_go)
# Handle x = 0, x=1:
if x == 0:
return dP_lo
elif x == 1:
return dP_go
# Actual Liquid flow
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
fd_l = friction_factor(Re=Re_l, eD=roughness/D)
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
# Actual gas flow
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
fd_g = friction_factor(Re=Re_g, eD=roughness/D)
dP_g = fd_g*L/D*(0.5*rhog*v_g*v_g)
# The model
n1 = log(dP_l/dP_lo)/log(1.-x)
n2 = log(dP_g/dP_go)/log(x)
ratio = (dP_g/dP_l)**0.1
n = (n1 + n2*ratio)/(1.0 + ratio)
epsilon = 3.0 - 2.0*(2.0*sqrt(rhol/rhog)/(1.+rhol/rhog))**(0.7/n)
dP = (dP_lo**(1./(n*epsilon))*(1.0-x)**(1./epsilon)
+ dP_go**(1./(n*epsilon))*x**(1./epsilon))**(n*epsilon)
return dP
def Jung_Radermacher(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Jung-Radermacher (1989)
correlation, also shown in [2]_ and [3]_.
.. math::
\frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{tp}^2
.. math::
\phi_{tp}^2 = 12.82X_{tt}^{-1.47}(1-x)^{1.8}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable for 0 < x < 1. Developed for the annular flow regime in
turbulent-turbulent flow.
Examples
--------
>>> Jung_Radermacher(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
552.0686123725568
References
----------
.. [1] Jung, D. S., and R. Radermacher. "Prediction of Pressure Drop during
Horizontal Annular Flow Boiling of Pure and Mixed Refrigerants."
International Journal of Heat and Mass Transfer 32, no. 12 (December 1,
1989): 2435-46. doi:10.1016/0017-9310(89)90203-2.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Filip, Alina, Florin Băltăreţu, and Radu-Mircea Damian. "Comparison
of Two-Phase Pressure Drop Models for Condensing Flows in Horizontal
Tubes." Mathematical Modelling in Civil Engineering 10, no. 4 (2015):
19-27. doi:10.2478/mmce-2014-0019.
'''
A = 0.25*pi*D*D
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
Xtt = Lockhart_Martinelli_Xtt(x, rhol, rhog, mul, mug)
phi_tp2 = 12.82*Xtt**-1.47*(1.-x)**1.8
return phi_tp2*dP_lo
def Tran(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Tran (2000) correlation,
also shown in [2]_ and [3]_.
.. math::
\Delta P = dP_{lo} \phi_{lo}^2
.. math::
\phi_{lo}^2 = 1 + (4.3\Gamma^2-1)[\text{Co} \cdot x^{0.875}
(1-x)^{0.875}+x^{1.75}]
.. math::
\Gamma ^2 = \frac{\left(\frac{\Delta P}{L}\right)_{go}}{\left(\frac
{\Delta P}{L}\right)_{lo}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Developed for boiling refrigerants in channels with hydraulic diameters of
2.4 mm to 2.92 mm.
Examples
--------
>>> Tran(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
423.2563312951
References
----------
.. [1] Tran, T. N, M. -C Chyu, M. W Wambsganss, and D. M France. "Two-Phase
Pressure Drop of Refrigerants during Flow Boiling in Small Channels: An
Experimental Investigation and Correlation Development." International
Journal of Multiphase Flow 26, no. 11 (November 1, 2000): 1739-54.
doi:10.1016/S0301-9322(99)00119-6.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Choi, Kwang-Il, A. S. Pamitran, Chun-Young Oh, and Jong-Taek Oh.
"Two-Phase Pressure Drop of R-410A in Horizontal Smooth Minichannels."
International Journal of Refrigeration 31, no. 1 (January 2008): 119-29.
doi:10.1016/j.ijrefrig.2007.06.006.
'''
A = 0.25*pi*D*D
# Liquid-only properties, for calculation of dP_lo
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only properties, for calculation of dP_go
v_go = m/(rhog*A)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
dP_go = fd_go*L/D*(0.5*rhog*v_go*v_go)
Gamma2 = dP_go/dP_lo
Co = Confinement(D=D, rhol=rhol, rhog=rhog, sigma=sigma)
phi_lo2 = 1.0 + (4.3*Gamma2 - 1.0)*(Co*x**0.875*(1.0-x)**0.875 + x**1.75)
return dP_lo*phi_lo2
def Chen_Friedel(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Chen modification of the
Friedel correlation, as given in [1]_ and also shown in [2]_ and [3]_.
.. math::
\Delta P = \Delta P_{Friedel}\Omega
For Bo < 2.5:
.. math::
\Omega = \frac{0.0333Re_{lo}^{0.45}}{Re_g^{0.09}(1 + 0.4\exp(-Bo))}
For Bo >= 2.5:
.. math::
\Omega = \frac{We^{0.2}}{2.5 + 0.06Bo}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable ONLY to mini/microchannels; yields drastically too low
pressure drops for larger channels. For more details, see the `Friedel`
correlation.
It is not explicitly stated in [1]_ how to calculate the liquid mixture
density for use in calculation of Weber number; the homogeneous model is
assumed as it is used in the Friedel model.
The bond number used here is 1/4 the normal value, i.e.:
.. math::
Bo = \frac{g(\rho_l-\rho_g)D^2}{4\sigma}
Examples
--------
>>> Chen_Friedel(m=.0005, x=0.9, rhol=950., rhog=1.4, mul=1E-3, mug=1E-5,
... sigma=0.02, D=0.003, roughness=0.0, L=1.0)
6249.247540
References
----------
.. [1] Chen, Ing Youn, Kai-Shing Yang, Yu-Juei Chang, and Chi-Chung Wang.
"Two-Phase Pressure Drop of Air-water and R-410A in Small Horizontal
Tubes." International Journal of Multiphase Flow 27, no. 7 (July 2001):
1293-99. doi:10.1016/S0301-9322(01)00004-0.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Choi, Kwang-Il, A. S. Pamitran, Chun-Young Oh, and Jong-Taek Oh.
"Two-Phase Pressure Drop of R-410A in Horizontal Smooth Minichannels."
International Journal of Refrigeration 31, no. 1 (January 2008): 119-29.
doi:10.1016/j.ijrefrig.2007.06.006.
'''
A = 0.25*pi*D*D
# Liquid-only properties, for calculation of E, dP_lo
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only properties, for calculation of E
v_go = m/(rhog*A)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
F = x**0.78*(1.0-x)**0.224
H = (rhol/rhog)**0.91*(mug/mul)**0.19*(1 - mug/mul)**0.7
E = (1.0-x)*(1.0-x) + x*x*(rhol*fd_go/(rhog*fd_lo))
# Homogeneous properties, for Froude/Weber numbers
rho_h = 1./(x/rhog + (1.0-x)/rhol)
Q_h = m/rho_h
v_h = Q_h/A
Fr = Froude(V=v_h, L=D, squared=True) # checked with (m/(pi/4*D**2))**2/g/D/rho_h**2
We = Weber(V=v_h, L=D, rho=rho_h, sigma=sigma) # checked with (m/(pi/4*D**2))**2*D/sigma/rho_h
phi_lo2 = E + 3.24*F*H/(Fr**0.0454*We**0.035)
dP = phi_lo2*dP_lo
# Chen modification; Weber number is the same as above
# Weber is same
Bo = Bond(rhol=rhol, rhog=rhog, sigma=sigma, L=D)/4 # Custom definition
if Bo < 2.5:
# Actual gas flow, needed for this case only.
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
Omega = 0.0333*Re_lo**0.45/(Re_g**0.09*(1.0 + 0.5*exp(-Bo)))
else:
Omega = We**0.2/(2.5 + 0.06*Bo)
return dP*Omega
def Zhang_Webb(m, x, rhol, mul, P, Pc, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Zhang-Webb (2001)
correlation as shown in [1]_ and also given in [2]_.
.. math::
\phi_{lo}^2 = (1-x)^2 + 2.87x^2\left(\frac{P}{P_c}\right)^{-1}
+ 1.68x^{0.8}(1-x)^{0.25}\left(\frac{P}{P_c}\right)^{-1.64}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
P : float
Pressure of fluid, [Pa]
Pc : float
Critical pressure of fluid, [Pa]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Applicable for 0 < x < 1. Corresponding-states method developed with
R-134A, R-22 and R-404A in tubes of hydraulic diameters of 2.13 mm,
6.25 mm, and 3.25 mm. For the author's 119 data points, the mean deviation
was 11.5%. Recommended for reduced pressures larger than 0.2 and tubes of
diameter 1-7 mm.
Does not require known properties for the gas phase.
Examples
--------
>>> Zhang_Webb(m=0.6, x=0.1, rhol=915., mul=180E-6, P=2E5, Pc=4055000,
... D=0.05, roughness=0.0, L=1.0)
712.0999804205617
References
----------
.. [1] Zhang, Ming, and Ralph L. Webb. "Correlation of Two-Phase Friction
for Refrigerants in Small-Diameter Tubes." Experimental Thermal and
Fluid Science 25, no. 3-4 (October 2001): 131-39.
doi:10.1016/S0894-1777(01)00066-8.
.. [2] Choi, Kwang-Il, A. S. Pamitran, Chun-Young Oh, and Jong-Taek Oh.
"Two-Phase Pressure Drop of R-410A in Horizontal Smooth Minichannels."
International Journal of Refrigeration 31, no. 1 (January 2008): 119-29.
doi:10.1016/j.ijrefrig.2007.06.006.
'''
# Liquid-only properties, for calculation of dP_lo
A = 0.25*pi*D*D
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
Pr = 0.5 if (Pc is None or P is None) else P/Pc
phi_lo2 = (1.0-x)*(1.0-x) + 2.87*x*x/Pr + 1.68*x**0.8*sqrt(sqrt(1-x))*Pr**-1.64
return dP_lo*phi_lo2
def Bankoff(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Bankoff (1960) correlation,
as shown in [2]_, [3]_, and [4]_.
.. math::
\Delta P_{tp} = \phi_{l}^{7/4} \Delta P_{l}
.. math::
\phi_l = \frac{1}{1-x}\left[1 - \gamma\left(1 - \frac{\rho_g}{\rho_l}
\right)\right]^{3/7}\left[1 + x\left(\frac{\rho_l}{\rho_g} - 1\right)
\right]
.. math::
\gamma = \frac{0.71 + 2.35\left(\frac{\rho_g}{\rho_l}\right)}
{1 + \frac{1-x}{x} \cdot \frac{\rho_g}{\rho_l}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
This correlation is not actually shown in [1]_. Its origin is unknown.
The author recommends against using this.
Examples
--------
>>> Bankoff(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... D=0.05, roughness=0.0, L=1.0)
4746.0594424533965
References
----------
.. [1] Bankoff, S. G. "A Variable Density Single-Fluid Model for Two-Phase
Flow With Particular Reference to Steam-Water Flow." Journal of Heat
Transfer 82, no. 4 (November 1, 1960): 265-72. doi:10.1115/1.3679930.
.. [2] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc
(2004). http://www.wlv.com/heat-transfer-databook/
.. [3] Moreno Quibén, Jesús. "Experimental and Analytical Study of Two-
Phase Pressure Drops during Evaporation in Horizontal Tubes," 2005.
doi:10.5075/epfl-thesis-3337.
.. [4] Mekisso, Henock Mateos. "Comparison of Frictional Pressure Drop
Correlations for Isothermal Two-Phase Horizontal Flow." Thesis, Oklahoma
State University, 2013. https://shareok.org/handle/11244/11109.
'''
A = 0.25*pi*D*D
# Liquid-only properties, for calculation of dP_lo
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
gamma = (0.71 + 2.35*rhog/rhol)/(1. + (1.-x)/x*rhog/rhol)
phi_Bf = 1./(1.-x)*(1.0 - gamma*(1.0 - rhog/rhol))**(3.0/7.)*(1. + x*(rhol/rhog -1.))
return dP_lo*phi_Bf**(7/4.)
def Xu_Fang(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Xu and Fang (2013)
correlation. Developed after a comprehensive review of available
correlations, likely meaning it is quite accurate.
.. math::
\Delta P = \Delta P_{lo} \phi_{lo}^2
.. math::
\phi_{lo}^2 = Y^2x^3 + (1-x^{2.59})^{0.632}[1 + 2x^{1.17}(Y^2-1)
+ 0.00775x^{-0.475} Fr_{tp}^{0.535} We_{tp}^{0.188}]
.. math::
Y^2 = \frac{\Delta P_{go}}{\Delta P_{lo}}
.. math::
Fr_{tp} = \frac{G_{tp}^2}{gD\rho_{tp}^2}
.. math::
We_{tp} = \frac{G_{tp}^2 D}{\sigma \rho_{tp}}
.. math::
\frac{1}{\rho_{tp}} = \frac{1-x}{\rho_l} + \frac{x}{\rho_g}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Examples
--------
>>> Xu_Fang(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
604.059563211
References
----------
.. [1] Xu, Yu, and Xiande Fang. "A New Correlation of Two-Phase Frictional
Pressure Drop for Condensing Flow in Pipes." Nuclear Engineering and
Design 263 (October 2013): 87-96. doi:10.1016/j.nucengdes.2013.04.017.
'''
A = 0.25*pi*D*D
# Liquid-only properties, for calculation of E, dP_lo
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
fd_lo = friction_factor(Re=Re_lo, eD=roughness/D)
dP_lo = fd_lo*L/D*(0.5*rhol*v_lo*v_lo)
# Gas-only properties, for calculation of E
v_go = m/(rhog*A)
Re_go = Reynolds(V=v_go, rho=rhog, mu=mug, D=D)
fd_go = friction_factor(Re=Re_go, eD=roughness/D)
dP_go = fd_go*L/D*(0.5*rhog*v_go*v_go)
# Homogeneous properties, for Froude/Weber numbers
voidage_h = homogeneous(x, rhol, rhog)
rho_h = rhol*(1.0-voidage_h) + rhog*voidage_h
Q_h = m/rho_h
v_h = Q_h/A
Fr = Froude(V=v_h, L=D, squared=True)
We = Weber(V=v_h, L=D, rho=rho_h, sigma=sigma)
Y2 = dP_go/dP_lo
phi_lo2 = Y2*x*x*x + (1.0-x**2.59)**0.632*(1.0 + 2.0*x**1.17*(Y2-1.0)
+ 0.00775*x**-0.475*Fr**0.535*We**0.188)
return phi_lo2*dP_lo
def Yu_France(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Yu, France, Wambsganss,
and Hull (2002) correlation given in [1]_ and reviewed in [2]_ and [3]_.
.. math::
\Delta P = \Delta P_{l} \phi_{l}^2
.. math::
\phi_l^2 = X^{-1.9}
.. math::
X = 18.65\left(\frac{\rho_g}{\rho_l}\right)^{0.5}\left(\frac{1-x}{x}
\right)\frac{Re_{g}^{0.1}}{Re_l^{0.5}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Examples
--------
>>> Yu_France(m=0.6, x=.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... D=0.05, roughness=0.0, L=1.0)
1146.9833225539571
References
----------
.. [1] Yu, W., D. M. France, M. W. Wambsganss, and J. R. Hull. "Two-Phase
Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in
a Small-Diameter Horizontal Tube." International Journal of Multiphase
Flow 28, no. 6 (June 2002): 927-41. doi:10.1016/S0301-9322(02)00019-8.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Xu, Yu, Xiande Fang, Xianghui Su, Zhanru Zhou, and Weiwei Chen.
"Evaluation of Frictional Pressure Drop Correlations for Two-Phase Flow
in Pipes." Nuclear Engineering and Design, SI : CFD4NRS-3, 253 (December
2012): 86-97. doi:10.1016/j.nucengdes.2012.08.007.
'''
A = 0.25*pi*D*D
# Actual Liquid flow
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
fd_l = friction_factor(Re=Re_l, eD=roughness/D)
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
# Actual gas flow
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
X = 18.65*sqrt(rhog/rhol)*(1.0-x)/x*Re_g**0.1/sqrt(Re_l)
phi_l2 = X**-1.9
return phi_l2*dP_l
def Wang_Chiang_Lu(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Wang, Chiang, and Lu (1997)
correlation given in [1]_ and reviewed in [2]_ and [3]_.
.. math::
\Delta P = \Delta P_{g} \phi_g^2
.. math::
\phi_g^2 = 1 + 9.397X^{0.62} + 0.564X^{2.45} \text{ for } G >= 200 kg/m^2/s
.. math::
\phi_g^2 = 1 + CX + X^2 \text{ for lower mass fluxes}
.. math::
C = 0.000004566X^{0.128}Re_{lo}^{0.938}\left(\frac{\rho_l}{\rho_g}
\right)^{-2.15}\left(\frac{\mu_l}{\mu_g}\right)^{5.1}
.. math::
X^2 = \frac{\Delta P_l}{\Delta P_g}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Examples
--------
>>> Wang_Chiang_Lu(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
448.2998197863
References
----------
.. [1] Wang, Chi-Chuan, Ching-Shan Chiang, and Ding-Chong Lu. "Visual
Observation of Two-Phase Flow Pattern of R-22, R-134a, and R-407C in a
6.5-Mm Smooth Tube." Experimental Thermal and Fluid Science 15, no. 4
(November 1, 1997): 395-405. doi:10.1016/S0894-1777(97)00007-1.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Xu, Yu, Xiande Fang, Xianghui Su, Zhanru Zhou, and Weiwei Chen.
"Evaluation of Frictional Pressure Drop Correlations for Two-Phase Flow
in Pipes." Nuclear Engineering and Design, SI : CFD4NRS-3, 253 (December
2012): 86-97. doi:10.1016/j.nucengdes.2012.08.007.
'''
A = 0.25*pi*D*D
G_tp = m/A
# Actual Liquid flow
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
fd_l = friction_factor(Re=Re_l, eD=roughness/D)
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
# Actual gas flow
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
fd_g = friction_factor(Re=Re_g, eD=roughness/D)
dP_g = fd_g*L/D*(0.5*rhog*v_g*v_g)
X = sqrt(dP_l/dP_g)
if G_tp >= 200.0:
phi_g2 = 1.0 + 9.397*X**0.62 + 0.564*X**2.45
else:
# Liquid-only flow; Re_lo is oddly needed
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
C = 0.000004566*X**0.128*Re_lo**0.938*(rhol/rhog)**-2.15*(mul/mug)**5.1
phi_g2 = 1 + C*X + X*X
return dP_g*phi_g2
def Hwang_Kim(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Hwang and Kim (2006)
correlation as in [1]_, also presented in [2]_ and [3]_.
.. math::
\Delta P = \Delta P_{l} \phi_{l}^2
.. math::
C = 0.227 Re_{lo}^{0.452} X^{-0.32} Co^{-0.82}
.. math::
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
.. math::
X^2 = \frac{\Delta P_l}{\Delta P_g}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Developed with data for microtubes of diameter 0.244 mm and 0.792 mm only.
Not likely to be suitable to larger diameters.
Examples
--------
>>> Hwang_Kim(m=0.0005, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.003, roughness=0.0, L=1.0)
798.302774184557
References
----------
.. [1] Hwang, Yun Wook, and Min Soo Kim. "The Pressure Drop in Microtubes
and the Correlation Development." International Journal of Heat and
Mass Transfer 49, no. 11-12 (June 2006): 1804-12.
doi:10.1016/j.ijheatmasstransfer.2005.10.040.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Xu, Yu, Xiande Fang, Xianghui Su, Zhanru Zhou, and Weiwei Chen.
"Evaluation of Frictional Pressure Drop Correlations for Two-Phase Flow
in Pipes." Nuclear Engineering and Design, SI : CFD4NRS-3, 253 (December
2012): 86-97. doi:10.1016/j.nucengdes.2012.08.007.
'''
A = 0.25*pi*D*D
# Liquid-only flow
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
# Actual Liquid flow
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
fd_l = friction_factor(Re=Re_l, eD=roughness/D)
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
# Actual gas flow
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
fd_g = friction_factor(Re=Re_g, eD=roughness/D)
dP_g = fd_g*L/D*(0.5*rhog*v_g*v_g)
# Actual model
X = sqrt(dP_l/dP_g)
Co = Confinement(D=D, rhol=rhol, rhog=rhog, sigma=sigma)
C = 0.227*Re_lo**0.452*X**-0.320*Co**-0.820
phi_l2 = 1 + C/X + 1./(X*X)
return dP_l*phi_l2
def Zhang_Hibiki_Mishima(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0,
L=1.0, flowtype='adiabatic vapor'):
r'''Calculates two-phase pressure drop with the Zhang, Hibiki, Mishima and
(2010) correlation as in [1]_, also presented in [2]_ and [3]_.
.. math::
\Delta P = \Delta P_{l} \phi_{l}^2
.. math::
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
.. math::
X^2 = \frac{\Delta P_l}{\Delta P_g}
For adiabatic liquid-vapor two-phase flow:
.. math::
C = 21[1 - \exp(-0.142/Co)]
For adiabatic liquid-gas two-phase flow:
.. math::
C = 21[1 - \exp(-0.674/Co)]
For flow boiling:
.. math::
C = 21[1 - \exp(-0.358/Co)]
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
flowtype : str
One of 'adiabatic vapor', 'adiabatic gas', or 'flow boiling'
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Seems fairly reliable.
Examples
--------
>>> Zhang_Hibiki_Mishima(m=0.0005, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, sigma=0.0487, D=0.003, roughness=0.0, L=1.0)
444.9718476894804
References
----------
.. [1] Zhang, W., T. Hibiki, and K. Mishima. "Correlations of Two-Phase
Frictional Pressure Drop and Void Fraction in Mini-Channel."
International Journal of Heat and Mass Transfer 53, no. 1-3 (January 15,
2010): 453-65. doi:10.1016/j.ijheatmasstransfer.2009.09.011.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Xu, Yu, Xiande Fang, Xianghui Su, Zhanru Zhou, and Weiwei Chen.
"Evaluation of Frictional Pressure Drop Correlations for Two-Phase Flow
in Pipes." Nuclear Engineering and Design, SI : CFD4NRS-3, 253 (December
2012): 86-97. doi:10.1016/j.nucengdes.2012.08.007.
'''
# Actual Liquid flow
A = 0.25*pi*D*D
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
fd_l = friction_factor(Re=Re_l, eD=roughness/D)
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
# Actual gas flow
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
fd_g = friction_factor(Re=Re_g, eD=roughness/D)
dP_g = fd_g*L/D*(0.5*rhog*v_g*v_g)
# Actual model
X = sqrt(dP_l/dP_g)
Co = Confinement(D=D, rhol=rhol, rhog=rhog, sigma=sigma)
if flowtype == 'adiabatic vapor':
C = 21*(1 - exp(-0.142/Co))
elif flowtype == 'adiabatic gas':
C = 21*(1 - exp(-0.674/Co))
elif flowtype == 'flow boiling':
C = 21*(1 - exp(-0.358/Co))
else:
raise ValueError("Only flow types 'adiabatic vapor', 'adiabatic gas, \
and 'flow boiling' are recognized.")
phi_l2 = 1 + C/X + 1./(X*X)
return dP_l*phi_l2
def Mishima_Hibiki(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0):
r'''Calculates two-phase pressure drop with the Mishima and Hibiki (1996)
correlation as in [1]_, also presented in [2]_ and [3]_.
.. math::
\Delta P = \Delta P_{l} \phi_{l}^2
.. math::
C = 21[1 - \exp(-319D)]
.. math::
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
.. math::
X^2 = \frac{\Delta P_l}{\Delta P_g}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Examples
--------
>>> Mishima_Hibiki(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
732.4268200606
References
----------
.. [1] Mishima, K., and T. Hibiki. "Some Characteristics of Air-Water Two-
Phase Flow in Small Diameter Vertical Tubes." International Journal of
Multiphase Flow 22, no. 4 (August 1, 1996): 703-12.
doi:10.1016/0301-9322(96)00010-9.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [3] Xu, Yu, Xiande Fang, Xianghui Su, Zhanru Zhou, and Weiwei Chen.
"Evaluation of Frictional Pressure Drop Correlations for Two-Phase Flow
in Pipes." Nuclear Engineering and Design, SI : CFD4NRS-3, 253 (December
2012): 86-97. doi:10.1016/j.nucengdes.2012.08.007.
'''
A = 0.25*pi*D*D
# Actual Liquid flow
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
fd_l = friction_factor(Re=Re_l, eD=roughness/D)
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
# Actual gas flow
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
fd_g = friction_factor(Re=Re_g, eD=roughness/D)
dP_g = fd_g*L/D*(0.5*rhog*v_g*v_g)
# Actual model
X = sqrt(dP_l/dP_g)
C = 21*(1.0 - exp(-0.319E3*D))
phi_l2 = 1.0 + C/X + 1./(X*X)
return dP_l*phi_l2
def friction_factor_Kim_Mudawar(Re):
if Re < 2000:
return 64./Re
elif Re < 20000:
return 0.316/sqrt(sqrt(Re))
else:
return 0.184*Re**-0.2
def Kim_Mudawar(m, x, rhol, rhog, mul, mug, sigma, D, L=1.0):
r'''Calculates two-phase pressure drop with the Kim and Mudawar (2012)
correlation as in [1]_, also presented in [2]_.
.. math::
\Delta P = \Delta P_{l} \phi_{l}^2
.. math::
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
.. math::
X^2 = \frac{\Delta P_l}{\Delta P_g}
For turbulent liquid, turbulent gas:
.. math::
C = 0.39Re_{lo}^{0.03} Su_{go}^{0.10}\left(\frac{\rho_l}{\rho_g}
\right)^{0.35}
For turbulent liquid, laminar gas:
.. math::
C = 8.7\times 10^{-4} Re_{lo}^{0.17} Su_{go}^{0.50}\left(\frac{\rho_l}
{\rho_g}\right)^{0.14}
For laminar liquid, turbulent gas:
.. math::
C = 0.0015 Re_{lo}^{0.59} Su_{go}^{0.19}\left(\frac{\rho_l}{\rho_g}
\right)^{0.36}
For laminar liquid, laminar gas:
.. math::
C = 3.5\times 10^{-5} Re_{lo}^{0.44} Su_{go}^{0.50}\left(\frac{\rho_l}
{\rho_g}\right)^{0.48}
This model has its own friction factor calculations, to be consistent with
its Reynolds number transition. As their model was regressed with these
equations, more error is obtained when using any other friction factor
calculation. The laminar equation 64/Re is used up to Re=2000, then the
Blasius equation with a coefficient of 0.316, and above Re = 20000,
.. math::
f_d = \frac{0.184}{Re^{0.2}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
L : float, optional
Length of pipe, [m]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
The critical Reynolds number in this model is 2000, with a Reynolds number
definition using actual liquid and gas flows. This model also requires
liquid-only Reynolds number to be calculated.
No attempt to incorporate roughness into the model was made in [1]_.
The model was developed with hydraulic diameter from 0.0695 to 6.22 mm,
mass velocities 4 to 8528 kg/m^2/s, flow qualities from 0 to 1, reduced
pressures from 0.0052 to 0.91, superficial liquid Reynolds numbers up to
79202, superficial gas Reynolds numbers up to 253810, liquid-only Reynolds
numbers up to 89798, 7115 data points from 36 sources and working fluids
air, CO2, N2, water, ethanol, R12, R22, R134a, R236ea, R245fa, R404A, R407C,
propane, methane, and ammonia.
Examples
--------
>>> Kim_Mudawar(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.05, L=1.0)
840.41377967
References
----------
.. [1] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
'''
A = 0.25*pi*D*D
# Actual Liquid flow
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
fd_l = friction_factor_Kim_Mudawar(Re=Re_l)
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
# Actual gas flow
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
fd_g = friction_factor_Kim_Mudawar(Re=Re_g)
dP_g = fd_g*L/D*(0.5*rhog*v_g*v_g)
# Liquid-only flow
v_lo = m/(rhol*A)
Re_lo = Reynolds(V=v_lo, rho=rhol, mu=mul, D=D)
Su = Suratman(L=D, rho=rhog, mu=mug, sigma=sigma)
X = sqrt(dP_l/dP_g)
Re_c = 2000.0 # Transition Reynolds number
if Re_l < Re_c and Re_g < Re_c:
C = 3.5E-5*Re_lo**0.44*sqrt(Su)*(rhol/rhog)**0.48
elif Re_l < Re_c and Re_g >= Re_c:
C = 0.0015*Re_lo**0.59*Su**0.19*(rhol/rhog)**0.36
elif Re_l >= Re_c and Re_g < Re_c:
C = 8.7E-4*Re_lo**0.17*sqrt(Su)*(rhol/rhog)**0.14
else: # Turbulent case
C = 0.39*Re_lo**0.03*Su**0.10*(rhol/rhog)**0.35
phi_l2 = 1 + C/X + 1./(X*X)
return dP_l*phi_l2
def Lockhart_Martinelli(m, x, rhol, rhog, mul, mug, D, L=1.0, Re_c=2000.0):
r'''Calculates two-phase pressure drop with the Lockhart and Martinelli
(1949) correlation as presented in non-graphical form by Chisholm (1967).
.. math::
\Delta P = \Delta P_{l} \phi_{l}^2
.. math::
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
.. math::
X^2 = \frac{\Delta P_l}{\Delta P_g}
+---------+---------+--+
|Liquid |Gas |C |
+=========+=========+==+
|Turbulent|Turbulent|20|
+---------+---------+--+
|Laminar |Turbulent|12|
+---------+---------+--+
|Turbulent|Laminar |10|
+---------+---------+--+
|Laminar |Laminar |5 |
+---------+---------+--+
This model has its own friction factor calculations, to be consistent with
its Reynolds number transition and the procedure specified in the original
work. The equation 64/Re is used up to Re_c, and above it the Blasius
equation is used as follows:
.. math::
f_d = \frac{0.184}{Re^{0.2}}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
L : float, optional
Length of pipe, [m]
Re_c : float, optional
Transition Reynolds number, used to decide which friction factor
equation to use and which C value to use from the table above.
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Notes
-----
Developed for horizontal flow. Very popular. Many implementations of this
model assume turbulent-turbulent flow.
The original model proposed that the transition Reynolds number was 1000
for laminar flow, and 2000 for turbulent flow; it proposed no model
for Re_l < 1000 and Re_g between 1000 and 2000 and also Re_g < 1000 and
Re_l between 1000 and 2000.
No correction is available in this model for rough pipe.
[3]_ examined the original data in [1]_ again, and fit more curves to the
data, separating them into different flow regimes. There were 229 datum
in the turbulent-turbulent regime, 9 in the turbulent-laminar regime, 339
in the laminar-turbulent regime, and 42 in the laminar-laminar regime.
Errors from [3]_'s curves were 13.4%, 3.5%, 14.3%, and 12.0% for the above
regimes, respectively. [2]_'s fits provide further error.
Examples
--------
>>> Lockhart_Martinelli(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, L=1.0)
716.469565488
References
----------
.. [1] Lockhart, R. W. & Martinelli, R. C. (1949), "Proposed correlation of
data for isothermal two-phase, two-component flow in pipes", Chemical
Engineering Progress 45 (1), 39-48.
.. [2] Chisholm, D."A Theoretical Basis for the Lockhart-Martinelli
Correlation for Two-Phase Flow." International Journal of Heat and Mass
Transfer 10, no. 12 (December 1967): 1767-78.
doi:10.1016/0017-9310(67)90047-6.
.. [3] Cui, Xiaozhou, and John J. J. Chen."A Re-Examination of the Data of
Lockhart-Martinelli." International Journal of Multiphase Flow 36, no.
10 (October 2010): 836-46. doi:10.1016/j.ijmultiphaseflow.2010.06.001.
.. [4] Kim, Sung-Min, and Issam Mudawar. "Universal Approach to Predicting
Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/
Micro-Channel Flows." International Journal of Heat and Mass Transfer
55, no. 11-12 (May 2012): 3246-61.
doi:10.1016/j.ijheatmasstransfer.2012.02.047.
'''
A = 0.25*pi*D*D
v_l = m*(1.0-x)/(rhol*A)
Re_l = Reynolds(V=v_l, rho=rhol, mu=mul, D=D)
v_g = m*x/(rhog*A)
Re_g = Reynolds(V=v_g, rho=rhog, mu=mug, D=D)
if Re_l < Re_c and Re_g < Re_c:
C = 5.0
elif Re_l < Re_c and Re_g >= Re_c:
# Liquid laminar, gas turbulent
C = 12.0
elif Re_l >= Re_c and Re_g < Re_c:
# Liquid turbulent, gas laminar
C = 10.0
else: # Turbulent case
C = 20.0
# Frictoin factor as in the original model
x_only_liquid_tol = 1e-30
x_only_vapor_tol = 1e-13
fd_g = 64./Re_g if Re_g < Re_c else 0.184*Re_g**-0.2
dP_g = fd_g*L/D*(0.5*rhog*v_g**2)
if x > 1.0 - x_only_vapor_tol:
return dP_g
fd_l = 64./Re_l if Re_l < Re_c else 0.184*Re_l**-0.2
dP_l = fd_l*L/D*(0.5*rhol*v_l*v_l)
if x < x_only_liquid_tol:
return dP_l
X = sqrt(dP_l/dP_g)
phi_l2 = 1 + C/X + 1./(X*X)
return dP_l*phi_l2
two_phase_correlations = {
# 0 index, args are: m, x, rhol, mul, P, Pc, D, roughness=0.0, L=1
'Zhang_Webb': (Zhang_Webb, 0),
# 1 index, args are: m, x, rhol, rhog, mul, mug, D, L=1
'Lockhart_Martinelli': (Lockhart_Martinelli, 1),
# 2 index, args are: m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1
'Bankoff': (Bankoff, 2),
'Baroczy_Chisholm': (Baroczy_Chisholm, 2),
'Chisholm': (Chisholm, 2),
'Gronnerud': (Gronnerud, 2),
'Jung_Radermacher': (Jung_Radermacher, 2),
'Muller_Steinhagen_Heck': (Muller_Steinhagen_Heck, 2),
'Theissing': (Theissing, 2),
'Wang_Chiang_Lu': (Wang_Chiang_Lu, 2),
'Yu_France': (Yu_France, 2),
# 3 index, args are: m, x, rhol, rhog, mul, mug, sigma, D, L=1
'Kim_Mudawar': (Kim_Mudawar, 3),
# 4 index, args are: m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1
'Friedel': (Friedel, 4),
'Hwang_Kim': (Hwang_Kim, 4),
'Mishima_Hibiki': (Mishima_Hibiki, 4),
'Tran': (Tran, 4),
'Xu_Fang': (Xu_Fang, 4),
'Zhang_Hibiki_Mishima': (Zhang_Hibiki_Mishima, 4),
'Chen_Friedel': (Chen_Friedel, 4),
# 5 index: args are m, x, rhol, rhog, sigma, D, L=1
'Lombardi_Pedrocchi': (Lombardi_Pedrocchi, 5),
# Misc indexes:
'Chisholm rough': (Chisholm, 101),
'Zhang_Hibiki_Mishima adiabatic gas': (Zhang_Hibiki_Mishima, 102),
'Zhang_Hibiki_Mishima flow boiling': (Zhang_Hibiki_Mishima, 103),
'Beggs-Brill': (Beggs_Brill, 104)
}
_unknown_msg_two_phase = f"Unknown method; available methods are {list(two_phase_correlations.keys())}"
def two_phase_dP_methods(m, x, rhol, D, L=1.0, rhog=None, mul=None, mug=None,
sigma=None, P=None, Pc=None, roughness=0.0, angle=0,
check_ranges=False):
r'''This function returns a list of names of correlations for two-phase
liquid-gas pressure drop for flow inside channels.
24 calculation methods are available, with varying input requirements.
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
D : float
Diameter of pipe, [m]
L : float, optional
Length of pipe, [m]
rhog : float, optional
Gas density, [kg/m^3]
mul : float, optional
Viscosity of liquid, [Pa*s]
mug : float, optional
Viscosity of gas, [Pa*s]
sigma : float, optional
Surface tension, [N/m]
P : float, optional
Pressure of fluid, [Pa]
Pc : float, optional
Critical pressure of fluid, [Pa]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
angle : float, optional
The angle of the pipe with respect to the horizontal, [degrees]
check_ranges : bool, optional
Added for Future use only
Returns
-------
methods : list
List of methods which can be used to calculate two-phase pressure drop
with the given inputs.
Examples
--------
>>> len(two_phase_dP_methods(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, sigma=0.0487, D=0.05, L=1.0, angle=30.0, roughness=1e-4, P=1e5, Pc=1e6))
24
'''
usable_indices = []
if rhog is not None and sigma is not None:
usable_indices.append(5)
if rhog is not None and sigma is not None and mul is not None and mug is not None:
usable_indices.extend([4, 3, 102, 103]) # Differs only in the addition of roughness
if rhog is not None and mul is not None and mug is not None:
usable_indices.extend([1,2, 101]) # Differs only in the addition of roughness
if mul is not None and P is not None and Pc is not None:
usable_indices.append(0)
if (rhog is not None and mul is not None and mug is not None
and sigma is not None and P is not None and angle is not None):
usable_indices.append(104)
return [key for key, value in two_phase_correlations.items() if value[1] in usable_indices]
def two_phase_dP(m, x, rhol, D, L=1.0, rhog=None, mul=None, mug=None, sigma=None,
P=None, Pc=None, roughness=0.0, angle=None, Method=None):
r'''This function handles calculation of two-phase liquid-gas pressure drop
for flow inside channels. 23 calculation methods are available, with
varying input requirements. A correlation will be automatically selected if
none is specified. The full list of correlation can be obtained with the
`AvailableMethods` flag.
If no correlation is selected, the following rules are used, with the
earlier options attempted first:
* If rhog, mul, mug, and sigma are specified, use the Kim_Mudawar model
* If rhog, mul, and mug are specified, use the Chisholm model
* If mul, P, and Pc are specified, use the Zhang_Webb model
* If rhog and sigma are specified, use the Lombardi_Pedrocchi model
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
D : float
Diameter of pipe, [m]
L : float, optional
Length of pipe, [m]
rhog : float, optional
Gas density, [kg/m^3]
mul : float, optional
Viscosity of liquid, [Pa*s]
mug : float, optional
Viscosity of gas, [Pa*s]
sigma : float, optional
Surface tension, [N/m]
P : float, optional
Pressure of fluid, [Pa]
Pc : float, optional
Critical pressure of fluid, [Pa]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
angle : float, optional
The angle of the pipe with respect to the horizontal, [degrees]
Returns
-------
dP : float
Pressure drop of the two-phase flow, [Pa]
Other Parameters
----------------
Method : string, optional
A string of the function name to use, as in the dictionary
two_phase_correlations.
Notes
-----
These functions may be integrated over, with properties recalculated as
the fluid's quality changes.
This model considers only the frictional pressure drop, not that due to
gravity or acceleration.
Examples
--------
>>> two_phase_dP(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.05, L=1.0)
840.4137796786
'''
if Method is None:
if rhog is not None and mul is not None and mug is not None and sigma is not None:
Method2 = 'Kim_Mudawar' # Kim_Mudawar preferred
elif rhog is not None and mul is not None and mug is not None:
Method2 = 'Chisholm' # Second choice, indexes 1 or 2
elif mul is not None and P is not None and Pc is not None:
Method2 = 'Zhang_Webb' # Not a good choice
elif rhog is not None and sigma is not None:
Method2 = 'Lombardi_Pedrocchi' # Last try
else:
raise ValueError('All possible methods require more information \
than provided; provide more inputs!')
else:
Method2 = Method
if Method2 == "Zhang_Webb":
return Zhang_Webb(m=m, x=x, rhol=rhol, mul=mul, P=P, Pc=Pc, D=D, roughness=roughness, L=L)
elif Method2 == "Lockhart_Martinelli":
return Lockhart_Martinelli(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, L=L)
elif Method2 == "Bankoff":
return Bankoff(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Baroczy_Chisholm":
return Baroczy_Chisholm(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Chisholm":
return Chisholm(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Gronnerud":
return Gronnerud(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Jung_Radermacher":
return Jung_Radermacher(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Muller_Steinhagen_Heck":
return Muller_Steinhagen_Heck(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Theissing":
return Theissing(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Wang_Chiang_Lu":
return Wang_Chiang_Lu(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Yu_France":
return Yu_France(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D, roughness=roughness, L=L)
elif Method2 == "Kim_Mudawar":
return Kim_Mudawar(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, L=L)
elif Method2 == "Friedel":
return Friedel(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, roughness=roughness, L=L)
elif Method2 == "Hwang_Kim":
return Hwang_Kim(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, roughness=roughness, L=L)
elif Method2 == "Mishima_Hibiki":
return Mishima_Hibiki(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, roughness=roughness, L=L)
elif Method2 == "Tran":
return Tran(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, roughness=roughness, L=L)
elif Method2 == "Xu_Fang":
return Xu_Fang(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, roughness=roughness, L=L)
elif Method2 == "Zhang_Hibiki_Mishima":
return Zhang_Hibiki_Mishima(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, roughness=roughness, L=L)
elif Method2 == "Chen_Friedel":
return Chen_Friedel(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, sigma=sigma, D=D, roughness=roughness, L=L)
elif Method2 == "Lombardi_Pedrocchi":
return Lombardi_Pedrocchi(m=m, x=x, rhol=rhol, rhog=rhog, sigma=sigma, D=D, L=L)
elif Method2 == "Chisholm rough":
return Chisholm(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug, D=D,
L=L, roughness=roughness, rough_correction=True)
elif Method2 == "Zhang_Hibiki_Mishima adiabatic gas":
return Zhang_Hibiki_Mishima(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug,
sigma=sigma, D=D, L=L, roughness=roughness,
flowtype='adiabatic gas')
elif Method2 == "Zhang_Hibiki_Mishima flow boiling":
return Zhang_Hibiki_Mishima(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug,
sigma=sigma, D=D, L=L, roughness=roughness,
flowtype='flow boiling')
elif Method2 == "Beggs-Brill":
return Beggs_Brill(m=m, x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug,
sigma=sigma, P=P, D=D, angle=angle, L=L,
roughness=roughness, acceleration=False, g=g)
else:
raise ValueError(_unknown_msg_two_phase)
def two_phase_dP_acceleration(m, D, xi, xo, alpha_i, alpha_o, rho_li, rho_gi,
rho_lo=None, rho_go=None):
r'''This function handles calculation of two-phase liquid-gas pressure drop
due to acceleration for flow inside channels. This is a discrete
calculation for a segment with a known difference in quality (and ideally
known inlet and outlet pressures so density dependence can be included).
.. math::
\Delta P_{acc} = G^2\left\{\left[\frac{(1-x_o)^2}{\rho_{l,o}
(1-\alpha_o)} + \frac{x_o^2}{\rho_{g,o}\alpha_o} \right]
- \left[\frac{(1-x_i)^2}{\rho_{l,i}(1-\alpha_i)}
+ \frac{x_i^2}{\rho_{g,i}\alpha_i} \right]\right\}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
D : float
Diameter of pipe, [m]
xi : float
Quality of fluid at inlet, [-]
xo : float
Quality of fluid at outlet, [-]
alpha_i : float
Void fraction at inlet (area of gas / total area of channel), [-]
alpha_o : float
Void fraction at outlet (area of gas / total area of channel), [-]
rho_li : float
Liquid phase density at inlet, [kg/m^3]
rho_gi : float
Gas phase density at inlet, [kg/m^3]
rho_lo : float, optional
Liquid phase density at outlet, [kg/m^3]
rho_go : float, optional
Gas phase density at outlet, [kg/m^3]
Returns
-------
dP : float
Acceleration component of pressure drop for two-phase flow, [Pa]
Notes
-----
The use of different gas and liquid phase densities at the inlet and outlet
is optional; the outlet densities conditions will be assumed to be those of
the inlet if they are not specified.
There is a continuous variant of this method which can be integrated over,
at the expense of a speed. The differential form of this is as follows
([1]_, [3]_):
.. math::
- \left(\frac{d P}{dz}\right)_{acc} = G^2 \frac{d}{dz} \left[\frac{
(1-x)^2}{\rho_l(1-\alpha)} + \frac{x^2}{\rho_g\alpha}\right]
Examples
--------
>>> two_phase_dP_acceleration(m=1, D=0.1, xi=0.372, xo=0.557, rho_li=827.1,
... rho_gi=3.919, alpha_i=0.992, alpha_o=0.996)
706.8560377214725
References
----------
.. [1] Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat
Transfer, 3E. New York: McGraw-Hill, 1998.
.. [2] Awad, M. M., and Y. S. Muzychka. "Effective Property Models for
Homogeneous Two-Phase Flows." Experimental Thermal and Fluid Science 33,
no. 1 (October 1, 2008): 106-13.
doi:10.1016/j.expthermflusci.2008.07.006.
.. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
'''
G = 4.0*m/(pi*D*D)
if rho_lo is None:
rho_lo = rho_li
if rho_go is None:
rho_go = rho_gi
in_term = (1.-xi)*(1.-xi)/(rho_li*(1.-alpha_i)) + xi*xi/(rho_gi*alpha_i)
out_term = (1.-xo)*(1.-xo)/(rho_lo*(1.-alpha_o)) + xo*xo/(rho_go*alpha_o)
return G*G*(out_term - in_term)
def two_phase_dP_dz_acceleration(m, D, x, rhol, rhog, dv_dP_l, dv_dP_g, dx_dP,
dP_dL, dA_dL):
r'''This function handles calculation of two-phase liquid-gas pressure drop
due to acceleration for flow inside channels. This is a continuous
calculation, providing the differential in pressure per unit length and
should be called as part of an integration routine ([1]_, [2]_, [3]_).
.. math::
-\left(\frac{\partial P}{\partial L}\right)_{A} = G^2
\left(\left(\frac{1}{\rho_g} - \frac{1}{\rho_l}\right)\frac{\partial P}
{\partial L}\frac{\partial x}{\partial P} +
\frac{\partial P}{\partial L}\left[x \frac{\partial (1/\rho_g)}
{\partial P} + (1-x) \frac{\partial (1/\rho_l)}{\partial P}
\right] \right) - \frac{G^2}{\rho_{hom}}\frac{1}{A}\frac{\partial A}
{\partial L}
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
D : float
Diameter of pipe, [m]
x : float
Quality of fluid [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
dv_dP_l : float
Derivative of mass specific volume of the liquid phase with respect to
pressure, [m^3/(kg*Pa)]
dv_dP_g : float
Derivative of mass specific volume of the gas phase with respect to
pressure, [m^3/(kg*Pa)]
dx_dP : float
Derivative of mass quality of the two-phase fluid with respect to
pressure (numerical derivatives may be convenient for this), [1/Pa]
dP_dL : float
Pressure drop per unit length of pipe, [Pa/m]
dA_dL : float
Change in area of pipe per unit length of pipe, [m^2/m]
Returns
-------
dP_dz : float
Acceleration component of pressure drop for two-phase flow, [Pa/m]
Notes
-----
This calculation has the `homogeneous` model built in to it as its
derivation is shown in [1]_. The discrete calculation is more flexible as
different void fractions may be used.
Examples
--------
>>> two_phase_dP_dz_acceleration(m=1, D=0.1, x=0.372, rhol=827.1,
... rhog=3.919, dv_dP_l=-5e-12, dv_dP_g=-4e-7, dx_dP=-2e-7, dP_dL=120.0,
... dA_dL=0.0001)
20.137876617489034
References
----------
.. [1] Shoham, Ovadia. Mechanistic Modeling of Gas-Liquid Two-Phase Flow in
Pipes. Pap/Cdr edition. Richardson, TX: Society of Petroleum Engineers,
2006.
.. [2] Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat
Transfer, 3E. New York: McGraw-Hill, 1998.
.. [3] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
'''
A = 0.25*pi*D*D
G = m/A
t1 = (1.0/rhog - 1.0/rhol)*dP_dL*dx_dP + dP_dL*(x*dv_dP_g + (1.0 - x)*dv_dP_l)
voidage_h = homogeneous(x, rhol, rhog)
rho_h = rhol*(1.0 - voidage_h) + rhog*voidage_h
return -G*G*(t1 - dA_dL/(rho_h*A))
def two_phase_dP_gravitational(angle, z, alpha_i, rho_li, rho_gi,
alpha_o=None, rho_lo=None, rho_go=None, g=g):
r'''This function handles calculation of two-phase liquid-gas pressure drop
due to gravitation for flow inside channels. This is a discrete
calculation for a segment with a known difference in elevation (and ideally
known inlet and outlet pressures so density dependence can be included).
.. math::
- \Delta P_{grav} = g \sin \theta z \left\{\frac{ [\alpha_o\rho_{g,o}
+ (1-\alpha_o)\rho_{l,o}] + [\alpha_i\rho_{g,i} + (1-\alpha_i)\rho_{l,i}]}
{2}\right\}
Parameters
----------
angle : float
The angle of the pipe with respect to the horizontal, [degrees]
z : float
The total length of the pipe, [m]
alpha_i : float
Void fraction at inlet (area of gas / total area of channel), [-]
rho_li : float
Liquid phase density at inlet, [kg/m^3]
rho_gi : float
Gas phase density at inlet, [kg/m^3]
alpha_o : float, optional
Void fraction at outlet (area of gas / total area of channel), [-]
rho_lo : float, optional
Liquid phase density at outlet, [kg/m^3]
rho_go : float, optional
Gas phase density at outlet, [kg/m^3]
g : float, optional
Acceleration due to gravity, [m/s^2]
Returns
-------
dP : float
Gravitational component of pressure drop for two-phase flow, [Pa]
Notes
-----
The use of different gas and liquid phase densities and void fraction
at the inlet and outlet is optional; the outlet densities and void fraction
will be assumed to be those of the inlet if they are not specified. This
does not add much accuracy.
There is a continuous variant of this method which can be integrated over,
at the expense of a speed. The differential form of this is as follows
([1]_, [2]_):
.. math::
-\left(\frac{dP}{dz} \right)_{grav} = [\alpha\rho_g + (1-\alpha)
\rho_l]g \sin \theta
Examples
--------
Example calculation, page 13-2 from [3]_:
>>> two_phase_dP_gravitational(angle=90, z=2, alpha_i=0.9685, rho_li=1518.,
... rho_gi=2.6)
987.237416829999
The same calculation, but using average inlet and outlet conditions:
>>> two_phase_dP_gravitational(angle=90, z=2, alpha_i=0.9685, rho_li=1518.,
... rho_gi=2.6, alpha_o=0.968, rho_lo=1517.9, rho_go=2.59)
994.5416058829999
References
----------
.. [1] Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat
Transfer, 3E. New York: McGraw-Hill, 1998.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
.. [3] Thome, John R. "Engineering Data Book III." Wolverine Tube Inc
(2004). http://www.wlv.com/heat-transfer-databook/
'''
if rho_lo is None:
rho_lo = rho_li
if rho_go is None:
rho_go = rho_gi
if alpha_o is None:
alpha_o = alpha_i
angle = radians(angle)
in_term = alpha_i*rho_gi + (1. - alpha_i)*rho_li
out_term = alpha_o*rho_go + (1. - alpha_o)*rho_lo
return g*z*sin(angle)*(out_term + in_term)*0.5
def two_phase_dP_dz_gravitational(angle, alpha, rhol, rhog, g=g):
r'''This function handles calculation of two-phase liquid-gas pressure drop
due to gravitation for flow inside channels. This is a differential
calculation for a segment with an infinitesimal difference in elevation for
use in performing integration over a pipe as shown in [1]_ and [2]_.
.. math::
-\left(\frac{dP}{dz} \right)_{grav} = [\alpha\rho_g + (1-\alpha)
\rho_l]g \sin \theta
Parameters
----------
angle : float
The angle of the pipe with respect to the horizontal, [degrees]
alpha : float
Void fraction (area of gas / total area of channel), [-]
rhol : float
Liquid phase density, [kg/m^3]
rhog : float
Gas phase density, [kg/m^3]
g : float, optional
Acceleration due to gravity, [m/s^2]
Returns
-------
dP_dz : float
Gravitational component of pressure drop for two-phase flow, [Pa/m]
Notes
-----
Examples
--------
>>> two_phase_dP_dz_gravitational(angle=90, alpha=0.9685, rhol=1518,
... rhog=2.6)
493.6187084149995
References
----------
.. [1] Rohsenow, Warren and James Hartnett and Young Cho. Handbook of Heat
Transfer, 3E. New York: McGraw-Hill, 1998.
.. [2] Kim, Sung-Min, and Issam Mudawar. "Review of Databases and
Predictive Methods for Pressure Drop in Adiabatic, Condensing and
Boiling Mini/Micro-Channel Flows." International Journal of Heat and
Mass Transfer 77 (October 2014): 74-97.
doi:10.1016/j.ijheatmasstransfer.2014.04.035.
'''
angle = radians(angle)
return g*sin(angle)*(alpha*rhog + (1. - alpha)*rhol)
Dukler_XA_tck = implementation_optimize_tck([[-2.4791105294648372, -2.4791105294648372, -2.4791105294648372,
-2.4791105294648372, 0.14360803483759585, 1.7199938263676038,
1.7199938263676038, 1.7199938263676038, 1.7199938263676038],
[0.21299880246561081, 0.16299733301915248, -0.042340970712679615,
-1.9967836909384598, -2.9917366639619414, 0.0, 0.0, 0.0, 0.0],
3])
Dukler_XC_tck = implementation_optimize_tck([[-1.8323873272724698, -1.8323873272724698, -1.8323873272724698,
-1.8323873272724698, -0.15428198203334137, 1.7031193462360779,
1.7031193462360779, 1.7031193462360779, 1.7031193462360779],
[0.2827776229531682, 0.6207113329042158, 1.0609541626742232,
0.44917638072891825, 0.014664597632360495, 0.0, 0.0, 0.0, 0.0],
3])
Dukler_XD_tck = implementation_optimize_tck([[0.2532652936901574, 0.2532652936901574, 0.2532652936901574,
0.2532652936901574, 3.5567847823070253, 3.5567847823070253,
3.5567847823070253, 3.5567847823070253],
[0.09054274779541564, -0.05102629221303253, -0.23907463153703945,
-0.7757156285450911, 0.0, 0.0, 0.0, 0.0],
3])
XA_interp_obj = lambda x: 10**float(splev(log10(x), Dukler_XA_tck))
XC_interp_obj = lambda x: 10**float(splev(log10(x), Dukler_XC_tck))
XD_interp_obj = lambda x: 10**float(splev(log10(x), Dukler_XD_tck))
def Taitel_Dukler_regime(m, x, rhol, rhog, mul, mug, D, angle, roughness=0.0,
g=g):
r'''Classifies the regime of a two-phase flow according to Taitel and
Dukler (1976) ([1]_, [2]_).
The flow regimes in this method are 'annular', 'bubbly', 'intermittent',
'stratified wavy', and 'stratified smooth'.
The four dimensionless parameters used are 'X', 'T', 'F', and 'K'.
.. math::
X = \left[\frac{(dP/dL)_{l,s,f}}{(dP/dL)_{g,s,f}}\right]^{0.5}
.. math::
T = \left[\frac{(dP/dL)_{l,s,f}}{(\rho_l-\rho_g)g\cos\theta}\right]^{0.5}
.. math::
F = \sqrt{\frac{\rho_g}{(\rho_l-\rho_g)}} \frac{v_{g,s}}{\sqrt{D g \cos\theta}}
.. math::
K = F\left[\frac{D v_{l,s}}{\nu_l} \right]^{0.5} = F \sqrt{Re_{l,s}}
Note that 'l' refers to liquid, 'g' gas, 'f' friction-only, and 's'
superficial (i.e. if only the mass flow of that phase were flowing in the
pipe).
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Mass quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
D : float
Diameter of pipe, [m]
angle : float
The angle of the pipe with respect to the horizontal, [degrees]
roughness : float, optional
Roughness of pipe for use in calculating friction factor, [m]
g : float, optional
Acceleration due to gravity, [m/s^2]
Returns
-------
regime : str
One of 'annular', 'bubbly', 'intermittent', 'stratified wavy',
'stratified smooth', [-]
X : float
`X` dimensionless group used in the calculation, [-]
T : float
`T` dimensionless group used in the calculation, [-]
F : float
`F` dimensionless group used in the calculation, [-]
K : float
`K` dimensionless group used in the calculation, [-]
Notes
-----
The original friction factor used in this model is that of Blasius.
Examples
--------
>>> Taitel_Dukler_regime(m=0.6, x=0.112, rhol=915.12, rhog=2.67,
... mul=180E-6, mug=14E-6, D=0.05, roughness=0.0, angle=0)[0]
'annular'
References
----------
.. [1] Taitel, Yemada, and A. E. Dukler. "A Model for Predicting Flow
Regime Transitions in Horizontal and near Horizontal Gas-Liquid Flow."
AIChE Journal 22, no. 1 (January 1, 1976): 47-55.
doi:10.1002/aic.690220105.
.. [2] Brill, James P., and Howard Dale Beggs. Two-Phase Flow in Pipes,
1994.
.. [3] Shoham, Ovadia. Mechanistic Modeling of Gas-Liquid Two-Phase Flow in
Pipes. Pap/Cdr edition. Richardson, TX: Society of Petroleum Engineers,
2006.
'''
angle = radians(angle)
A = 0.25*pi*D*D
# Liquid-superficial properties, for calculation of dP_ls, dP_ls
# Paper and Brill Beggs 1991 confirms not v_lo but v_sg
v_ls = m*(1.0 - x)/(rhol*A)
Re_ls = Reynolds(V=v_ls, rho=rhol, mu=mul, D=D)
fd_ls = friction_factor(Re=Re_ls, eD=roughness/D)
dP_ls = fd_ls/D*(0.5*rhol*v_ls*v_ls)
# Gas-superficial properties, for calculation of dP_gs
v_gs = m*x/(rhog*A)
Re_gs = Reynolds(V=v_gs, rho=rhog, mu=mug, D=D)
fd_gs = friction_factor(Re=Re_gs, eD=roughness/D)
dP_gs = fd_gs/D*(0.5*rhog*v_gs*v_gs)
X = sqrt(dP_ls/dP_gs)
F = sqrt(rhog/(rhol-rhog))*v_gs/sqrt(D*g*cos(angle))
# Paper only uses kinematic viscosity
nul = mul/rhol
T = sqrt(dP_ls/((rhol-rhog)*g*cos(angle)))
K = sqrt(rhog*v_gs*v_gs*v_ls/((rhol-rhog)*g*nul*cos(angle)))
F_A_at_X = XA_interp_obj(X)
X_B_transition = 1.7917 # Roughly
if F >= F_A_at_X and X <= X_B_transition:
regime = 'annular'
elif F >= F_A_at_X:
T_D_at_X = XD_interp_obj(X)
if T >= T_D_at_X:
regime = 'bubbly'
else:
regime = 'intermittent'
else:
K_C_at_X = XC_interp_obj(X)
if K >= K_C_at_X:
regime = 'stratified wavy'
else:
regime = 'stratified smooth'
return regime, X, T, F, K
def Mandhane_Gregory_Aziz_regime(m, x, rhol, rhog, mul, mug, sigma, D):
r'''Classifies the regime of a two-phase flow according to Mandhane,
Gregory, and Azis (1974) flow map.
The flow regimes in this method are 'elongated bubble', 'stratified',
'annular mist', 'slug', 'dispersed bubble', and 'wave'.
The parameters used are just the superficial liquid and gas velocity (i.e.
if only the mass flow of that phase were flowing in the pipe).
Parameters
----------
m : float
Mass flow rate of fluid, [kg/s]
x : float
Mass quality of fluid, [-]
rhol : float
Liquid density, [kg/m^3]
rhog : float
Gas density, [kg/m^3]
mul : float
Viscosity of liquid, [Pa*s]
mug : float
Viscosity of gas, [Pa*s]
sigma : float
Surface tension, [N/m]
D : float
Diameter of pipe, [m]
Returns
-------
regime : str
One of 'elongated bubble', 'stratified', 'annular mist', 'slug',
'dispersed bubble', or 'wave', [-]
v_gs : float
The superficial gas velocity in the pipe (x axis coordinate), [ft/s]
v_ls : float
The superficial liquid velocity in the pipe (x axis coordinate), [ft/s]
Notes
-----
[1]_ contains a Fortran implementation of this model, which this has been
validated against. This is a very fast flow map as all transitions were
spelled out with clean transitions.
Examples
--------
>>> Mandhane_Gregory_Aziz_regime(m=0.6, x=0.112, rhol=915.12, rhog=2.67,
... mul=180E-6, mug=14E-6, sigma=0.065, D=0.05)
('slug', 0.9728397701853173, 42.05456634236875)
References
----------
.. [1] Mandhane, J. M., G. A. Gregory, and K. Aziz. "A Flow Pattern Map for
Gas-liquid Flow in Horizontal Pipes." International Journal of
Multiphase Flow 1, no. 4 (October 30, 1974): 537-53.
doi:10.1016/0301-9322(74)90006-8.
'''
A = 0.25*pi*D*D
Vsl = m*(1.0 - x)/(rhol*A)
Vsg = m*x/(rhog*A)
# Convert to imperial units
Vsl, Vsg = Vsl/0.3048, Vsg/0.3048
# X1 = (rhog/0.0808)**0.333 * (rhol*72.4/62.4/sigma)**0.25 * (mug/0.018)**0.2
# Y1 = (rhol*72.4/62.4/sigma)**0.25 * (mul/1.)**0.2
X1 = (rhog/1.294292)**0.333 * sqrt(sqrt(rhol*0.0724/(999.552*sigma))) * (mug*1.8E5)**0.2
Y1 = sqrt(sqrt(rhol*0.0724/999.552/sigma)) * (mul*1E3)**0.2
if Vsl < 14.0*Y1:
if Vsl <= 0.1:
Y1345 = 14.0*(Vsl/0.1)**-0.368
elif Vsl <= 0.2:
Y1345 = 14.0*(Vsl/0.1)**-0.415
elif Vsl <= 1.15:
Y1345 = 10.5*(Vsl/0.2)**-0.816
elif Vsl <= 4.8:
Y1345 = 2.5
else:
Y1345 = 2.5*(Vsl/4.8)**0.248
if Vsl <= 0.1:
Y456 = 70.0*(Vsl/0.01)**-0.0675
elif Vsl <= 0.3:
Y456 = 60.0*(Vsl/0.1)**-0.415
elif Vsl <= 0.56:
Y456 = 38.0*(Vsl/0.3)**0.0813
elif Vsl <= 1.0:
Y456 = 40.0*(Vsl/0.56)**0.385
elif Vsl <= 2.5:
Y456 = 50.0*(Vsl/1.)**0.756
else:
Y456 = 100.0*(Vsl/2.5)**0.463
Y45 = 0.3*Y1
Y31 = 0.5/Y1
Y1345 = Y1345*X1
Y456 = Y456*X1
if Vsg <= Y1345 and Vsl >= Y31:
regime = 'elongated bubble'
elif Vsg <= Y1345 and Vsl <= Y31:
regime = 'stratified'
elif Vsg >= Y1345 and Vsg <= Y456 and Vsl > Y45:
regime = 'slug'
elif Vsg >= Y1345 and Vsg <= Y456 and Vsl <= Y45:
regime = 'wave'
else:
regime = 'annular mist'
elif Vsg <= (230.*(Vsl/14.)**0.206)*X1:
regime = 'dispersed bubble'
else:
regime = 'annular mist'
return regime, Vsl, Vsg
Mandhane_Gregory_Aziz_regimes = {'elongated bubble': 1, 'stratified': 2,
'slug':3, 'wave': 4,
'annular mist': 5, 'dispersed bubble': 6}
|