1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017, 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from fluids.atmosphere import earthsun_distance, solar_irradiation, solar_position, sunrise_sunset
from fluids.numerics import assert_close, assert_close1d
try:
from datetime import datetime, timedelta
except:
pass
import pytest
try:
has_pvlib = True
except:
has_pvlib = False
try:
import pytz
except:
pass
from fluids.atmosphere import ATMOSPHERE_1976, airmass, hwm14, hwm93
def test_ATMOSPHERE_1976():
# Test values from 'Atmosphere to 86 Km by 2 Km (SI units)', from
# http://ckw.phys.ncku.edu.tw/public/pub/Notes/Languages/Fortran/FORSYTHE/www.pdas.com/m1.htm
# as provided in atmtabs.html in http://www.pdas.com/atmosdownload.html
H_1 = [-2000, 0, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 22000, 24000, 26000, 28000, 30000, 32000, 34000, 36000, 38000, 40000, 42000, 44000, 46000, 48000, 50000, 52000, 54000, 56000, 58000, 60000, 62000, 64000, 66000, 68000, 70000, 72000, 74000, 76000, 78000, 80000, 82000, 84000, 86000]
T_1 = [301.15, 288.15, 275.15, 262.17, 249.19, 236.22, 223.25, 216.65, 216.65, 216.65, 216.65, 216.65, 218.57, 220.56, 222.54, 224.53, 226.51, 228.49, 233.74, 239.28, 244.82, 250.35, 255.88, 261.4, 266.92, 270.65, 270.65, 269.03, 263.52, 258.02, 252.52, 247.02, 241.53, 236.04, 230.55, 225.07, 219.58, 214.26, 210.35, 206.45, 202.54, 198.64, 194.74, 190.84, 186.95]
P_1 = [127780, 101320, 79501, 61660, 47218, 35652, 26500, 19399, 14170, 10353, 7565.2, 5529.3, 4047.5, 2971.7, 2188.4, 1616.2, 1197, 889.06, 663.41, 498.52, 377.14, 287.14, 219.97, 169.5, 131.34, 102.3, 79.779, 62.215, 48.338, 37.362, 28.724, 21.959, 16.689, 12.606, 9.4609, 7.0529, 5.2209, 3.8363, 2.8009, 2.0333, 1.4674, 1.0525, 0.75009, 0.53104, 0.37338]
rho_1 = [1.4782, 1.225, 1.0066, 0.81935, 0.66011, 0.52579, 0.41351, 0.31194, 0.22786, 0.16647, 0.12165, 0.08891, 0.06451, 0.046938, 0.034257, 0.025076, 0.01841, 0.013555, 0.0098874, 0.0072579, 0.0053666, 0.0039957, 0.0029948, 0.0022589, 0.0017141, 0.0013167, 0.0010269, 0.00080562, 0.000639, 0.00050445, 0.00039626, 0.00030968, 0.00024071, 0.00018605, 0.00014296, 0.00010917, 0.000082829, 0.000062373, 0.000046385, 0.000034311, 0.000025239, 0.000018458, 0.000013418, 9.6939E-006, 6.9578E-006]
c_1 = [347.89, 340.29, 332.53, 324.59, 316.45, 308.11, 299.53, 295.07, 295.07, 295.07, 295.07, 295.07, 296.38, 297.72, 299.06, 300.39, 301.71, 303.02, 306.49, 310.1, 313.67, 317.19, 320.67, 324.12, 327.52, 329.8, 329.8, 328.81, 325.43, 322.01, 318.56, 315.07, 311.55, 307.99, 304.39, 300.75, 297.06, 293.44, 290.75, 288.04, 285.3, 282.54, 279.75, 276.94, 274.1]
mu_1 = [0.000018515, 0.000017894, 0.00001726, 0.000016612, 0.000015949, 0.000015271, 0.000014577, 0.000014216, 0.000014216, 0.000014216, 0.000014216, 0.000014216, 0.000014322, 0.00001443, 0.000014538, 0.000014646, 0.000014753, 0.000014859, 0.00001514, 0.000015433, 0.000015723, 0.000016009, 0.000016293, 0.000016573, 0.000016851, 0.000017037, 0.000017037, 0.000016956, 0.00001668, 0.000016402, 0.000016121, 0.000015837, 0.000015551, 0.000015262, 0.00001497, 0.000014675, 0.000014377, 0.000014085, 0.000013868, 0.00001365, 0.00001343, 0.000013208, 0.000012985, 0.00001276, 0.000012533]
Ts = [ATMOSPHERE_1976(Z).T for Z in H_1]
assert_close1d(Ts, T_1, atol=0.005)
Ps = [ATMOSPHERE_1976(Z).P for Z in H_1]
assert_close1d(Ps, P_1, rtol=5E-5)
rhos = [ATMOSPHERE_1976(Z).rho for Z in H_1]
assert_close1d(rhos, rho_1, rtol=5E-5)
cs = [ATMOSPHERE_1976(Z).v_sonic for Z in H_1]
assert_close1d(cs, c_1, rtol=5E-5)
mus = [ATMOSPHERE_1976(Z).mu for Z in H_1]
assert_close1d(mus, mu_1, rtol=5E-5)
assert_close(ATMOSPHERE_1976(1000, dT=1).T, 282.6510223716947)
# Check thermal conductivity with: http://www.aerospaceweb.org/design/scripts/atmosphere/
assert_close(ATMOSPHERE_1976(1000).k, 0.0248133634493)
# Other possible additions:
# mean air particle speed; mean collision frequency; mean free path; mole volume; total number density
delta_P = ATMOSPHERE_1976.pressure_integral(288.6, 84100.0, 147.0)
assert_close(delta_P, 1451.9583061008857)
def test_airmass():
m = airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 90)
assert_close(m, 10356.127665863998) # vs 10356
m = airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 60)
assert_close(m, 11954.138271601627) # vs 11954
m = airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 5)
assert_close(m, 106861.56335489497) # vs 106837
m = airmass(lambda Z : ATMOSPHERE_1976(Z).rho, .1)
assert_close(m, 379082.24065519444, rtol=1e-6) # vs 378596
# airmass(lambda Z : ATMOSPHERE_1976(Z).rho, .1, RI=1.0016977377367)
# As refractive index increases, the atmospheric mass increases drastically. An exception is being raised numerically, not sure why
# 7966284.95792788 - that's an 800x atmospheric increase.
hwm93_compiled = True
try:
# Just check if works
hwm93(5E5, 45.0, 50.0, 365.0)
except:
hwm93_compiled = False
hwm14_compiled = True
try:
hwm14(11000.0, latitude=-45.0, longitude=-85.0, day=150, seconds=12*3600.0, geomagnetic_disturbance_index=80.0)
except:
hwm14_compiled = False
@pytest.mark.f2py
@pytest.mark.skipif(not hwm93_compiled,
reason='hwm93 model is not built')
def test_hwm93():
# pass on systems without f2py for now
custom = hwm93(5E5, 45.0, 50.0, 365.0)
assert_close1d(custom, [-73.00312042236328, 0.1485661268234253])
# Test from pyhwm93
ans = hwm93(Z=150E3, latitude=65.0, longitude=-148.0, day=90.0, seconds=12*3600.0, f107=100., f107_avg=100., geomagnetic_disturbance_index=4.0)
assert_close1d(ans, [-110.16133880615234, -12.400712013244629])
@pytest.mark.f2py
@pytest.mark.skipif(not hwm14_compiled,
reason='hwm14 model is not built')
def test_hwm14():
# Data in checkhwm14.f90; all checks out.
# Disturbance wind model checks are not separately implemented.
# Height profile
HEIGHTS = [0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400]
HEIGHT_PROFILE_MER = [0.031, 2.965, -6.627, 2.238, -14.253, 37.403, 42.789, 20.278, 25.027, 34.297, 40.408, 44.436, 47.092, 48.843, 49.997, 50.758, 51.259]
HEIGHT_PROFILE_ZON = [6.271, 25.115, 96.343, 44.845, 31.59, 11.628, -33.319, -49.984, -68.588, -80.022, -87.56, -92.53, -95.806, -97.965, -99.389, -100.327, -100.946]
winds = [hwm14(alt*1000.0, latitude=-45.0, longitude=-85.0, day=150.0, seconds=12*3600.0, geomagnetic_disturbance_index=80.0) for alt in HEIGHTS]
winds = [[round(i, 3) for i in j] for j in winds]
MER_CALC = [i[0] for i in winds]
ZON_CALC = [i[1] for i in winds]
assert_close1d(MER_CALC, HEIGHT_PROFILE_MER)
assert_close1d(ZON_CALC, HEIGHT_PROFILE_ZON)
# Latitude profile
LATS = [-90, -80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
LAT_PROFILE_MER = [-124.197, -150.268, -124.54, -23.132, 31.377, 39.524, 56.305, 60.849, 58.117, 56.751, 51.048, 35.653, 14.832, 1.068, -2.749, -27.112, -91.199, -186.757, -166.717]
LAT_PROFILE_ZON = [177.174, 63.864, -71.971, -105.913, -28.176, 36.532, 32.79, 34.341, 72.676, 110.18, 111.472, 90.547, 77.736, 74.993, 41.972, -140.557, 3.833, 179.951, 235.447]
winds = [hwm14(250E3, latitude=LAT, longitude=30, day=305, seconds=18*3600, geomagnetic_disturbance_index=48) for LAT in LATS]
winds = [[round(i, 3) for i in j] for j in winds]
MER_CALC = [i[0] for i in winds]
ZON_CALC = [i[1] for i in winds]
assert_close1d(MER_CALC, LAT_PROFILE_MER)
assert_close1d(ZON_CALC, LAT_PROFILE_ZON)
# Time of day profile: Note the data is specified in terms of local time
TIMES_LT = [0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15, 16.5, 18, 19.5, 21, 22.5, 24]
TIMES = [(lt_hour+70/15.)*3600 for lt_hour in TIMES_LT]
TIME_PROFILE_MER = [6.564, 28.79, 22.316, -4.946, -23.175, -11.278, 17.57, 34.192, 26.875, 9.39, -1.362, -7.168, -21.035, -41.123, -46.702, -27.048, 6.566]
TIME_PROFILER_ZON = [-40.187, -54.899, -57.187, -47.936, -41.468, -43.648, -49.691, -44.868, -22.542, 2.052, 4.603, -24.13, -66.38, -83.942, -60.262, -36.616, -40.145]
winds = [hwm14(125E3, latitude=45, longitude=-70, day=75, seconds=TIME, geomagnetic_disturbance_index=30) for TIME in TIMES]
winds = [[round(i, 3) for i in j] for j in winds]
MER_CALC = [i[0] for i in winds]
ZON_CALC = [i[1] for i in winds]
assert_close1d(MER_CALC, TIME_PROFILE_MER)
assert_close1d(ZON_CALC, TIME_PROFILER_ZON)
# Longitude profile
LONGS = [-180, -160, -140, -120, -100, -80, -60, -40, -20, 0, 20, 40, 60, 80, 100, 120, 140, 160, 180]
LONG_PROFILE_MER = [-0.757, -0.592, 0.033, 0.885, 1.507, 1.545, 1.041, 0.421, 0.172, 0.463, 1.049, 1.502, 1.552, 1.232, 0.757, 0.288, -0.146, -0.538, -0.757]
LONG_PROFILE_ZON = [-16.835, -18.073, -20.107, -22.166, -22.9, -21.649, -19.089, -16.596, -14.992, -13.909, -12.395, -10.129, -7.991, -7.369, -8.869, -11.701, -14.359, -15.945, -16.835]
winds = [hwm14(40E3, latitude=-5, longitude=LONG, day=330, seconds=6*3600, geomagnetic_disturbance_index=4) for LONG in LONGS]
winds = [[round(i, 3) for i in j] for j in winds]
MER_CALC = [i[0] for i in winds]
ZON_CALC = [i[1] for i in winds]
assert_close1d(MER_CALC, LONG_PROFILE_MER)
assert_close1d(ZON_CALC, LONG_PROFILE_ZON)
# Day of year profile
DAYS = [0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360]
DAY_PROFILE_MER = [1.57, -5.43, -13.908, -22.489, -30.844, -39.415, -48.717, -58.582, -67.762, -74.124, -75.371, -70.021, -58.19, -41.813, -24.159, -8.838, 1.319, 5.064, 2.908]
DAY_PROFILE_ZON = [-42.143, -36.947, -29.927, -23.077, -17.698, -14.016, -11.35, -8.72, -5.53, -2.039, 0.608, 0.85, -2.529, -9.733, -19.666, -30.164, -38.684, -43.208, -42.951]
winds = [hwm14(200E3, latitude=-65, longitude=-135, day=DAY, seconds=21*3600, geomagnetic_disturbance_index=15) for DAY in DAYS]
winds = [[round(i, 3) for i in j] for j in winds]
MER_CALC = [i[0] for i in winds]
ZON_CALC = [i[1] for i in winds]
assert_close1d(MER_CALC, DAY_PROFILE_MER)
assert_close1d(ZON_CALC, DAY_PROFILE_ZON)
# Magnetic strength profile
APS = [0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260]
AP_PROFILE_MER = [18.63, 11.026, -0.395, -9.121, -13.965, -16.868, -18.476, -19.38, -19.82, -19.887, -19.685, -19.558, -19.558, -19.558]
AP_PROFILE_ZON = [-71.801, -69.031, -83.49, -96.899, -104.811, -109.891, -112.984, -114.991, -116.293, -116.99, -117.22, -117.212, -117.212, -117.212]
winds = [hwm14(350E3, latitude=38, longitude=125, day=280, seconds=21*3600, geomagnetic_disturbance_index=AP) for AP in APS]
winds = [[round(i, 3) for i in j] for j in winds]
MER_CALC = [i[0] for i in winds]
ZON_CALC = [i[1] for i in winds]
assert_close1d(MER_CALC, AP_PROFILE_MER)
assert_close1d(ZON_CALC, AP_PROFILE_ZON)
@pytest.mark.pytz
def test_solar_position():
pos = solar_position(pytz.timezone('Australia/Perth').localize(datetime(2020, 6, 6, 7, 10, 57)), -31.95265, 115.85742)
pos_expect = [90.89617025931763, 90.89617025931763, -0.8961702593176304, -0.8961702593176304, 63.60160176917509, 79.07112321438035]
assert_close1d(pos, pos_expect, rtol=1e-9)
pos = solar_position(pytz.timezone('Australia/Perth').localize(datetime(2020, 6, 6, 14, 30, 0)), -31.95265, 115.85742)
pos_expect = [63.40805686233129, 63.44000181582068, 26.591943137668704, 26.559998184179317, 325.1213762464115, 75.74674754854641]
assert_close1d(pos, pos_expect, rtol=1e-9)
pos = solar_position(datetime(2020, 6, 6, 14, 30, 0) - timedelta(hours=8), -31.95265, 115.85742)
pos_expect = [63.40805686233129, 63.44000181582068, 26.591943137668704, 26.559998184179317, 325.1213762464115, 75.74674754854641]
assert_close1d(pos, pos_expect, rtol=1e-9)
local_time = datetime(2018, 4, 15, 6, 43, 5)
local_time = pytz.timezone('America/Edmonton').localize(local_time)
assert_close(solar_position(local_time, 51.0486, -114.07)[0], 90.00054676987014, rtol=1e-9)
pos = solar_position(pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 20, 30, 28)), 51.0486, -114.07)
pos_expect = [89.9995695661236, 90.54103812161853, 0.00043043387640950836, -0.5410381216185247, 286.8313781904518, 6.631429525878048]
assert_close1d(pos, pos_expect, rtol=1e-9)
@pytest.mark.pytz
def test_earthsun_distance():
dt = earthsun_distance(datetime(2003, 10, 17, 13, 30, 30))
assert_close(dt, 149090925951.18338, rtol=1e-10)
dt = earthsun_distance(datetime(2013, 1, 1, 21, 21, 0, 0))
assert_close(dt, 147098127628.8943, rtol=1e-10)
dt = earthsun_distance(datetime(2013, 7, 5, 8, 44, 0, 0))
assert_close(dt, 152097326908.20578, rtol=1e-10)
assert_close(earthsun_distance(pytz.timezone('America/Edmonton').localize(datetime(2020, 6, 6, 10, 0, 0, 0))),
151817805599.67142, rtol=1e-10)
assert_close(earthsun_distance(datetime(2020, 6, 6, 10, 0, 0, 0)),
151812898579.44104, rtol=1e-10)
@pytest.mark.pytz
def test_solar_irradiation():
ans = solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07, linke_turbidity=3,
moment=datetime(2018, 4, 15, 19, 43, 5), surface_tilt=41.0,
surface_azimuth=180.0)
ans_expect = [1065.7622492480543, 945.2657257434173, 120.49652350463705, 95.31534254980346, 25.18118095483359]
assert_close1d(ans, ans_expect, rtol=1e-5)
@pytest.mark.pytz
def test_solar_irradiation_pytz():
import pytz
# Providing linke_turbidity always saves .1 seconds on unit testing from loading database
ans = solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07, linke_turbidity=3, moment=pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 13, 43, 5)), surface_tilt=41.0, surface_azimuth=180.0)
ans_expect = [1065.7622492480543, 945.2657257434173, 120.49652350463705, 95.31534254980346, 25.18118095483359]
assert_close1d(ans, ans_expect, rtol=1e-5)
@pytest.mark.pytz
def test_sunrise_sunset():
sunrise, sunset, transit = sunrise_sunset(datetime(2018, 4, 17, 13, 43, 5), 51.0486, -114.07)
sunrise_expected = datetime(2018, 4, 17, 12, 36, 55, 782660)
sunset_expected = datetime(2018, 4, 18, 2, 34, 4, 249326)
transit_expected = datetime(2018, 4, 17, 19, 35, 46, 686265)
assert sunrise == sunrise_expected
assert sunset == sunset_expected
assert transit == transit_expected
@pytest.mark.pytz
def test_sunrise_sunset_pytz():
calgary = pytz.timezone('America/Edmonton')
sunrise, sunset, transit = sunrise_sunset(calgary.localize(datetime(2018, 4, 17)), 51.0486, -114.07)
assert sunrise == calgary.localize(datetime(2018, 4, 16, 6, 39, 1, 570479))
assert sunset == calgary.localize(datetime(2018, 4, 16, 20, 32, 25, 778162))
assert transit == calgary.localize(datetime(2018, 4, 16, 13, 36, 0, 386341))
|