1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import pytest
from fluids.control_valve import (
FF_critical_pressure_ratio_l,
Reynolds_factor,
Reynolds_valve,
cavitation_index,
control_valve_choke_P_g,
control_valve_choke_P_l,
control_valve_noise_g_2011,
control_valve_noise_l_2015,
is_choked_turbulent_g,
is_choked_turbulent_l,
loss_coefficient_piping,
size_control_valve_g,
size_control_valve_l,
)
from fluids.fittings import Cv_to_Kv
from fluids.numerics import assert_close, assert_close1d, isclose
def test_control_valve():
CI = cavitation_index(1E6, 8E5, 2E5)
assert_close(CI, 4.0)
FF = FF_critical_pressure_ratio_l(70100.0, 22120000.0)
assert_close(FF, 0.9442375225233299)
F = is_choked_turbulent_l(460.0, 680.0, 70.1, 0.9442375225233299, 0.9)
assert not F
T = is_choked_turbulent_l(460.0, 680.0, 70.1, 0.9442375225233299, 0.6)
assert T
with pytest.raises(Exception):
is_choked_turbulent_l(460.0, 680.0, 70.1, 0.9442375225233299)
# Example 4, compressible flow - small flow trim sized for gas flow:
assert False is is_choked_turbulent_g(0.536, 1.193, 0.8)
# Custom example
assert True is is_choked_turbulent_g(0.9, 1.193, 0.7)
with pytest.raises(Exception):
is_choked_turbulent_g(0.544, 0.929)
Rev = Reynolds_valve(3.26e-07, 360, 100.0, 0.6, 0.98, 238.05817216710483)
assert_close(Rev, 6596953.826574914)
Rev = Reynolds_valve(3.26e-07, 360, 150.0, 0.9, 0.46, 164.9954763704956)
assert_close(Rev, 2967024.346783506)
K = loss_coefficient_piping(0.05, 0.08, 0.1)
assert_close(K, 0.6580810546875)
### Reynolds factor (laminar)
# In Example 4, compressible flow with small flow trim sized for gas flow
# (Cv in the problem was converted to Kv here to make FR match with N32, N2):
f = Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=False)
assert_close(f, 0.7148753122302025)
# Custom, same as above but with full trim:
f = Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=True)
assert_close(f, 0.9875328782172637)
# Example 4 with Rev < 10:
f = Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=8., full_trim=False)
assert_close(f, 0.08339546213461975)
# Same, with full_trim
f = Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=8., full_trim=True)
assert_close(f, 43.619397389803986)
def test_control_valve_size_l():
### Control valve liquid
# From [1]_, matching example 1 for a globe, parabolic plug,
# flow-to-open valve.
Kv = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=220E3, Q=0.1, D1=0.15, D2=0.15, d=0.15, FL=0.9, Fd=0.46)
assert_close(Kv, 164.9954763704956)
# Same as above - diameters removed
Kv = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=220E3, Q=0.1)
assert_close(Kv, 164.9954763704956)
# From [1]_, matching example 2 for a ball, segmented ball,
# flow-to-open valve.
Kv = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.1, d=0.1, FL=0.6, Fd=0.98)
assert_close(Kv, 238.05817216710483)
# Modified example 1 with non-choked flow, with reducer and expander
Kv = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.09, d=0.08, FL=0.9, Fd=0.46)
assert_close(Kv, 177.44417090966715)
# Modified example 2 with non-choked flow, with reducer and expander
Kv = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.1, d=0.095, FL=0.6, Fd=0.98)
assert_close(Kv, 241.6812562245056)
# Same, test intermediate values
ans = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.1, d=0.095, FL=0.6, Fd=0.98, full_output=True)
del ans['choked']
del ans['FR']
ans_expect = {'FF': 0.9442375225233299,
'FLP': 0.5912597868996382,
'FP': 0.9969139124178094,
'Kv': 241.6812562245056,
'Rev': 6596962.21111206,
'laminar': False}
for k in ans_expect.keys():
assert_close(ans[k], ans_expect[k])
# Modified example 2 with laminar flow at 100x viscosity, 100th flow rate, and 1/10th diameters:
Kv = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-2, P1=680E3, P2=220E3, Q=0.001, D1=0.01, D2=0.01, d=0.01, FL=0.6, Fd=0.98)
assert_close(Kv, 3.0947562381723626)
# Last test, laminar full trim
Kv = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-2, P1=680E3, P2=220E3, Q=0.001, D1=0.01, D2=0.01, d=0.02, FL=0.6, Fd=0.98)
assert_close(Kv, 3.0947562381723626)
# TODO: find a test where the following is tested, or remove it as unnecessary.
# if C/FR >= Ci:
# Ci = iterate_piping_laminar(Ci)
# Efforts to make this happen have been unsuccessful.
# Test the ignore choked option
ans = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.1, d=0.1, FL=0.6, Fd=0.98, allow_choked=False, full_output=True)
assert_close(ans['Kv'], 164.9954763704956)
assert_close(ans['Rev'], 7805019.992655547)
assert ans['choked'] is True # Still true even though the choke is ignored
assert ans['FF']
assert ans['FLP'] is None
assert ans['FP'] is None
assert ans['FR'] is None
# Test the laminar switch
for Kv, boolean in zip((0.014547698964079439, 0.011190537664676491), (True, False)):
ans = size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4, P1=680E3, P2=670E3, Q=0.000001, D1=0.1, D2=0.1, d=0.1, FL=0.6, Fd=0.98, allow_laminar=boolean, full_output=True)
assert_close(ans['Kv'], Kv)
# Test for too many iterations, does not converge
kwargs = {'allow_laminar': True, 'allow_choked': True, 'Fd': 1.0, 'FL': 1.0, 'D1': 0.1, 'D2': 0.1,
'd': 0.09, 'full_output': True, 'P1': 1000000.0, 'mu': 0.0008512512422708317,
'rho': 995.4212225776154, 'Pc': 22048320.0, 'Q': 0.004018399356246507,
'Psat': 3537.075987237396, 'P2': 999990.0}
res = size_control_valve_l(**kwargs)
assert 'warning' in res
# Test 'choked' in results
kwargs = {'allow_laminar': True, 'allow_choked': True, 'Fd': 0.42, 'FL': 0.85,
'D1': 0.08, 'D2': 0.1, 'd': 0.05, 'full_output': True, 'P1': 680000.0,
'mu': 2.099826023627934e-05, 'T': 433.0, 'MW': 44.0095,
'gamma': 1.2567580165935908, 'Z': 0.9896087377962121, 'xT': 0.6,
'Q': 1.0632314140418966, 'P2': 313744.8065927219}
res = size_control_valve_g(**kwargs)
assert res['choked']
def test_control_valve_size_g():
# From [1]_, matching example 3 for non-choked gas flow with attached
# fittings and a rotary, eccentric plug, flow-to-open control valve:
Kv = size_control_valve_g(T=433., MW=44.01, mu=1.4665E-4, gamma=1.30, Z=0.988, P1=680E3, P2=310E3, Q=38/36., D1=0.08, D2=0.1, d=0.05, FL=0.85, Fd=0.42, xT=0.60)
assert_close(Kv, 72.58664545391052)
# From [1]_, roughly matching example 4 for a small flow trim sized tapered
# needle plug valve. Difference is 3% and explained by the difference in
# algorithms used.
Kv = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=1.3E5, Q=0.46/3600., D1=0.015, D2=0.015, d=0.015, FL=0.98, Fd=0.07, xT=0.8)
assert_close(Kv, 0.016498765335995726)
# Diameters removed
Kv = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=1.3E5, Q=0.46/3600., xT=0.8)
assert_close(Kv, 0.012691357950765944)
ans = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=1.3E5, Q=0.46/3600., xT=0.8, full_output=True)
assert ans['laminar'] is False
assert ans['choked'] is False
assert ans['FP'] is None
assert ans['FR'] is None
assert ans['xTP'] is None
assert ans['Rev'] is None
# Choked custom example
Kv = size_control_valve_g(T=433., MW=44.01, mu=1.4665E-4, gamma=1.30, Z=0.988, P1=680E3, P2=30E3, Q=38/36., D1=0.08, D2=0.1, d=0.05, FL=0.85, Fd=0.42, xT=0.60)
assert_close(Kv, 70.67468803987839)
# Laminar custom example
Kv = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=1.3E5, Q=0.46/3600., D1=0.015, D2=0.015, d=0.001, FL=0.98, Fd=0.07, xT=0.8)
assert_close(Kv, 0.016498765335995726)
# Laminar custom example with iteration
Kv = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=2.7E5, Q=0.1/3600., D1=0.015, D2=0.015, d=0.001, FL=0.98, Fd=0.07, xT=0.8)
assert_close(Kv, 0.989125783445497)
# test not allowing chokes
ans_choked = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=1e4, Q=0.46/3600., D1=0.015, D2=0.015, d=0.015, FL=0.98, Fd=0.07, xT=0.8, full_output=True, allow_choked=True)
ans = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=1e4, Q=0.46/3600., D1=0.015, D2=0.015, d=0.015, FL=0.98, Fd=0.07, xT=0.8, full_output=True, allow_choked=False)
assert not isclose(ans_choked['Kv'], ans['Kv'], rel_tol=1E-4)
# Test not allowing laminar
for Kv, boolean in zip((0.001179609179354541, 0.00090739167642657), (True, False)):
ans = size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0, P1=2.8E5, P2=1e4, Q=1e-5, D1=0.015, D2=0.015, d=0.015, FL=0.98, Fd=0.07, xT=0.8, full_output=True, allow_laminar=boolean)
assert_close(Kv, ans['Kv'])
assert ans['choked'] # Still true even though the choke is ignored
assert ans['xTP'] is None
assert ans['Y']
assert ans['FP'] is None
assert ans['FR'] is None
assert ans['Rev']
# Test a warning is issued and a solution is still returned when in an unending loop
# Ends with C ratio converged to 0.907207790871228
args = {'P1': 680000.0, 'full_output': True, 'allow_choked': True,
'Q': 0.24873053149856303, 'T': 433.0, 'Z': 0.9908749375670418,
'FL': 0.85, 'allow_laminar': True, 'd': 0.05, 'mu': 2.119519588834806e-05,
'MW': 44.0095, 'Fd': 0.42, 'gamma': 1.2431389717945152, 'D2': 0.1,
'xT': 0.6, 'D1': 0.08}
ans = size_control_valve_g(P2=678000., **args)
assert ans['warning']
# Test Kv does not reach infinity
kwargs = {'P2': 310000.0028935982, 'P1': 680000.0, 'full_output': True, 'allow_choked': True, 'T': 433.0, 'Z': 0.9896087377962123, 'FL': 0.85, 'allow_laminar': True, 'd': 0.05, 'mu': 2.119519588834806e-05, 'MW': 44.0095, 'Fd': 0.42, 'gamma': 1.2431389717945152, 'D2': 0.1, 'xT': 0.6, 'D1': 0.08}
size_control_valve_g(Q=1000000000.0, **kwargs)
def test_control_valve_choke_P_l():
P2 = control_valve_choke_P_l(69682.89291024722, 22048320.0, 0.6, 680000.0)
assert_close(P2, 458887.5306077305)
P1 = control_valve_choke_P_l(69682.89291024722, 22048320.0, 0.6, P2=P2)
assert_close(P1, 680000.0)
def test_control_valve_choke_P_g():
P2 = control_valve_choke_P_g(1.0, 1.3, 1E5)
assert_close(P2, 7142.857142857143)
P1 = control_valve_choke_P_g(1.0, 1.3, P2=P2)
assert_close(P1, 100000.0)
def test_control_valve_noise_l_2015():
m = 30 # kg/s
P1 = 1E6
P2 = 8E5
Psat = 2.32E3
rho = 997.0
c = 1400.0
Kv = Cv_to_Kv(90)
d = .1
Di =.1071
FL = 0.92
Fd = 0.42
rho_air = 1.293
c_air = 343.0
t_pipe = .0036
# Example 1
noise = control_valve_noise_l_2015(m, P1, P2, Psat, rho, c, Kv, d, Di, FL, Fd,
t_pipe, rho_pipe=7800.0, c_pipe=5000.0,
rho_air=rho_air, c_air=343.0, xFz=None, An=-4.6)
assert_close(noise, 65.47210071692108)
# Example 2
m = 40 # kg/s
P1 = 1E6
P2 = 6.5E5
noise = control_valve_noise_l_2015(m, P1, P2, Psat, rho, c, Kv, d, Di, FL, Fd,
t_pipe, rho_pipe=7800.0, c_pipe=5000.0,
rho_air=rho_air, c_air=343.0, xFz=None, An=-4.6)
assert_close(noise, 81.58199982219298)
# Example 3
m = 40 # kg/s
P1 = 1E6
P2 = 6.5E5
noise = control_valve_noise_l_2015(m, P1, P2, Psat, rho, c, Kv, d, Di, FL, Fd,
t_pipe, rho_pipe=7800.0, c_pipe=5000.0,
rho_air=rho_air, c_air=343.0, xFz=0.254340899267+0.1, An=-4.6)
assert_close(noise, 69.93930269695811)
def test_control_valve_noise_g_2011():
ans = control_valve_noise_g_2011(m=2.22, P1=1E6, P2=7.2E5, T1=450, rho=5.3,
gamma=1.22, MW=19.8, Kv=Cv_to_Kv(90.0),
d=0.1, Di=0.2031, FL=None, FLP=0.792, FP=0.98,
Fd=0.2959450058448346,
t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,
rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
assert_close(ans, 91.67631681476502)
ans = control_valve_noise_g_2011(m=2.29, P1=1E6, P2=6.9E5, T1=450, rho=5.3,
gamma=1.22, MW=19.8, Kv=Cv_to_Kv(90.0),
d=0.1, Di=0.2031, FL=None, FLP=0.792, FP=0.98,
Fd=0.2959450058448346,
t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,
rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
assert_close(ans, 92.80027236454005)
ans = control_valve_noise_g_2011(m=2.59, P1=1E6, P2=4.8E5, T1=450, rho=5.3,
gamma=1.22, MW=19.8, Kv=Cv_to_Kv(90.0),
d=0.1, Di=0.2031, FL=None, FLP=0.792, FP=0.98,
Fd=0.2959450058448346,
t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,
rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
assert_close(97.65988432967984, ans)
ans = control_valve_noise_g_2011(m=1.18, P1=1E6, P2=4.2E5, T1=450, rho=5.3,
gamma=1.22, MW=19.8, Kv=Cv_to_Kv(40.0),
d=0.2031, Di=0.2031, FL=None, FLP=0.792, FP=0.98,
Fd=0.2959450058448346,
t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,
rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
assert_close(94.16189978031449, ans)# should be 94
ans = control_valve_noise_g_2011(m=1.19, P1=1E6, P2=5E4, T1=450, rho=5.3,
gamma=1.22, MW=19.8, Kv=Cv_to_Kv(40.0),
d=0.2031, Di=0.2031, FL=None, FLP=0.792, FP=0.98,
Fd=0.2959450058448346,
t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,
rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
assert_close(ans, 97.48317214321824)
ans = control_valve_noise_g_2011(m=0.89, P1=1E6, P2=5E4, T1=450, rho=5.3,
gamma=1.22, MW=19.8, Kv=Cv_to_Kv(30.0),
d=0.1, Di=0.15, FL=None, FLP=0.792, FP=0.98,
Fd=0.2959450058448346,
t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,
rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
assert_close(ans, 93.38835049261132)
@pytest.mark.scipy
def test_opening_quick_data():
# Add some tolerance to tests after failures on arm64 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=976558
from scipy.interpolate import splrep
from fluids.control_valve import frac_CV_quick, opening_quick, opening_quick_tck
tck_recalc = splrep(opening_quick, frac_CV_quick, k=3, s=0)
[assert_close1d(i, j, atol=1e-10) for i, j in zip(opening_quick_tck[:-1], tck_recalc[:-1])]
@pytest.mark.scipy
def test_opening_equal_data():
# Add some tolerance to tests after failures on arm64 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=976558
from scipy.interpolate import splrep
from fluids.control_valve import frac_CV_equal, opening_equal, opening_equal_tck
tck_recalc = splrep(opening_equal, frac_CV_equal, k=3, s=0)
[assert_close1d(i, j, atol=1e-10) for i, j in zip(opening_equal_tck[:-1], tck_recalc[:-1])]
|