1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import os
from math import log10
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy.interpolate import RectBivariateSpline, UnivariateSpline, bisplev, bisplrep, splev, splrep
from scipy.optimize import fsolve, newton
from fluids import fluids_data_dir
from fluids.core import Engauge_2d_parser
from fluids.optional.pychebfun import chebfun, chebfun_to_poly
### Contractions
def test_contraction_conical_Miller_coefficients():
from fluids.fittings import contraction_conical_Miller_tck
path = os.path.join(fluids_data_dir, 'Miller 2E 1990 conical contractions K part 1.csv')
Kds, l_ratios, A_ratios = Engauge_2d_parser(open(path).readlines())
path = os.path.join(fluids_data_dir, 'Miller 2E 1990 conical contractions K part 2.csv')
Kd2, l_ratio2, A_ratio2 = Engauge_2d_parser(open(path).readlines())
Kds.extend(Kd2)
l_ratios.extend(l_ratio2)
A_ratios.extend(A_ratio2)
A_ratios = [[i+1.0 for i in j] for j in A_ratios]
# # The second set of data obviously looks terirble when plotted
# # Normally the data should be smoothed, but, well, the smoothing
# # function also requires smooth functions.
# for K, ls, As in zip(Kds, l_ratios, A_ratios):
# plt.loglog(ls, np.array(As)-1, label=str(K))
# plt.legend()
# plt.show()
all_zs = []
all_xs = []
all_ys = []
for z, xs, ys in zip(Kds, l_ratios, A_ratios):
for x, y in zip(xs, ys):
all_zs.append(z)
all_xs.append(x)
all_ys.append(y)
tck = bisplrep(np.log(all_xs), np.log(all_ys), all_zs, kx=3, ky=1, s=.0001)
[assert_allclose(i, j) for i, j in zip(contraction_conical_Miller_tck, tck)]
# err = 0.0
# n = 0
# for z, xs, ys in zip(Kds, l_ratios, A_ratios):
# for x, y in zip(xs, ys):
# predict = bisplev(log(x), log(y), tck)
# err += abs(predict - z)/z
# n += 1
# 5% relative error seems like the sweetspot
# print(err/n, n, err)
# import matplotlib.pyplot as plt
# ax = plt.gca()
# ax.set_xscale("log")
# ax.set_yscale("log")
# x = np.logspace(np.log10(.1), np.log10(10), 200)
# y = np.logspace(np.log10(1.1), np.log10(4), 200)
# X, Y = np.meshgrid(x, y, indexing='ij')
# func = np.vectorize(lambda x, y: max(min(bisplev(log(x), log(y), tck), .5), 0))
#
# Z = func(X.ravel(), Y.ravel())
# Z = [[func(xi, yi) for yi in y.tolist()] for xi in x]
#
# levels = [.001, .01, .03, .04, .05, .1, .2, .3, .4]
# plt.contourf(X, Y-1, Z, levels=levels, cmap='RdGy')
# plt.colorbar()
# plt.show()
@pytest.mark.slow
def test_contraction_abrupt_Miller_coefficients():
from fluids.fittings import tck_contraction_abrupt_Miller
curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 abrupt contraction K.csv')
text = open(curve_path).readlines()
zs, x_lists, y_lists = Engauge_2d_parser(text)
for xs, values in zip(x_lists, y_lists):
values[-1] = 0
low = 1e-8
for i in range(2):
low = low/10
values.insert(-1, low)
xs.insert(-1, 1-low)
xs[-1] = 1
inter_objs = []
for rd, As, Ks in zip(zs, x_lists, y_lists):
univar = UnivariateSpline(As, Ks, s=1e-5)
inter_objs.append(univar)
# make a rectangular grid
As = np.linspace(0, 1, 1000)
Ks_stored = []
for obj in inter_objs:
Ks_smoothed = obj(As)
Ks_smoothed[Ks_smoothed < 0] = 0 # Avoid zeros
Ks_stored.append(Ks_smoothed)
# Flatten the data to the form used in creating the spline
all_zs = []
all_xs = []
all_ys = []
for z, x, ys in zip(zs, As, Ks_stored):
for x, y in zip(As, ys):
all_zs.append(z)
all_xs.append(x)
all_ys.append(y)
tck_recalc = bisplrep(all_xs, all_zs, all_ys, s=5e-4)
[assert_allclose(i, j, rtol=1e-2) for i, j in zip(tck_contraction_abrupt_Miller, tck_recalc)]
# Plotting code
# print([i.tolist() for i in tck[:3]])
# for i, (rd, As, Ks) in enumerate(zip(zs, x_lists, y_lists)):
# plt.plot(As, Ks, '.')
# univar = inter_objs[i]
# As2 = np.linspace(0, 1, 1000)
# Ks_smoothed = univar(As2)
# plt.plot(As2, Ks_smoothed)
# # Compute with the spline
# Ks_new = bisplev(As2, rd, tck)
# plt.plot(As2, Ks_new)
# for rd in np.linspace(.1, 0, 100):
# As2 = np.linspace(0, 1, 1000)
# Ks_new = bisplev(As2, rd, tck)
# plt.plot(As2, Ks_new)
# plt.show()
### Diffusers
@pytest.mark.slow
def test_diffuser_conical_Miller_coefficients():
from fluids.fittings import tck_diffuser_conical_Miller
path = os.path.join(fluids_data_dir, 'Miller 2E 1990 conical diffuser Kd.csv')
Kds, l_ratios, A_ratios = Engauge_2d_parser(open(path).readlines())
# Fixup stupidity
A_ratios = [[i+1.0 for i in j] for j in A_ratios]
# for K, ls, As in zip(Kds, l_ratios, A_ratios):
# plt.loglog(ls, np.array(As)-1)
# plt.show()
interp_objs = []
for K, ls, As in zip(Kds, l_ratios, A_ratios):
univar = UnivariateSpline(np.log10(ls), np.log10(As), s=4e-5)
interp_objs.append(univar)
# Extrapolation to the left and right looks bad
# Extrapolation upwards looks bad too
ls_full = np.logspace(log10(0.1), log10(20.0))
ls_stored = []
As_stored = []
for i, (K, ls, As) in enumerate(zip(Kds, l_ratios, A_ratios)):
# plt.loglog(ls, As)
univar = interp_objs[i]
As_full = 10**univar(np.log10(ls_full))
# plt.loglog(ls_full, As_full)
# print(len(univar.get_coeffs()), len(univar.get_knots()))
ls_smoothed = np.logspace(log10(ls[0]), log10(ls[-1]), 100)
As_smoothed = 10**univar(np.log10(ls_smoothed))
# plt.loglog(ls_smoothed, As_smoothed)
ls_stored.append(ls_smoothed)
As_stored.append(As_smoothed)
# plt.show()
all_zs = []
all_xs = []
all_ys = []
for z, xs, ys in zip(Kds, ls_stored, As_stored):
for x, y in zip(xs, ys):
all_zs.append(z)
all_xs.append(x)
all_ys.append(y)
tck_recalc = bisplrep(np.log(all_xs), np.log(all_ys), all_zs, s=.002)
[assert_allclose(i, j, rtol=1e-2) for i, j in zip(tck_diffuser_conical_Miller, tck_recalc)]
# Plotting code to re-create the graph through solving for points
# print([len(i) for i in tck[0:3]])
#
# for K, ls in zip(Kds, ls_stored):
# def get_right_y(l, K_goal):
# try:
# def err(y_guess):
# if y_guess <= 1.1:
# y_guess = 1.1
# if y_guess > 4:
# y_guess = 4
# return bisplev(log(l), log(y_guess), tck) - K_goal
# # ans = newton(err, 1.3)
# ans = bisect(err, 1.1, 4)
#
# # if abs(err(ans)) > .1:
# # ans = None
# return ans
# except:
# return None
# As_needed = [get_right_y(l, K) for l in ls]
# plt.loglog(ls, As_needed, 'x')
# plt.show()
### Entrances
def test_entrance_distance_Miller_coefficients():
from fluids.fittings import entrance_distance_Miller_coeffs
t_ds = [0.006304, 0.007586, 0.009296, 0.011292, 0.013288, 0.015284, 0.019565, 0.022135, 0.024991, 0.02842, 0.032136, 0.036426, 0.040145, 0.043149, 0.048446, 0.054745, 0.061332, 0.067919, 0.075081, 0.081957, 0.089121, 0.096284, 0.099722, 0.106886, 0.110897, 0.118061, 0.125224, 0.132101, 0.139264, 0.147, 0.153877, 0.16104, 0.167917, 0.175081, 0.181957, 0.189121, 0.196284, 0.199723, 0.206886, 0.214049, 0.221213, 0.228376, 0.235539, 0.242416, 0.249579, 0.250726, 0.257889, 0.264766, 0.271929, 0.279093, 0.286256, 0.293419, 0.300009]
Ks = [1.00003, 0.97655, 0.94239, 0.90824, 0.87408, 0.83993, 0.78301, 0.75028, 0.71756, 0.68626, 0.65638, 0.62793, 0.6066, 0.59166, 0.57532, 0.56111, 0.54833, 0.5384, 0.53416, 0.53135, 0.53138, 0.53142, 0.53143, 0.53147, 0.53149, 0.53152, 0.53156, 0.53159, 0.53162, 0.53023, 0.53027, 0.5303, 0.53033, 0.53179, 0.5304, 0.53186, 0.53189, 0.53191, 0.53194, 0.53198, 0.53201, 0.53347, 0.53208, 0.53353, 0.53215, 0.53215, 0.53218, 0.53364, 0.53367, 0.53371, 0.53374, 0.53378, 0.5331]
# plt.plot(t_ds, Ks)
t_ds2 = np.linspace(t_ds[0], t_ds[-1], 1000)
# Ks_Rennels = [entrance_distance(Di=1, t=t) for t in t_ds2]
# plt.plot(t_ds2, Ks_Rennels)
# plt.show()
obj = UnivariateSpline(t_ds, Ks, s=3e-5)
# print(len(obj.get_coeffs()), len(obj.get_knots()))
# plt.plot(t_ds2, obj(t_ds2))
fun = chebfun(f=obj, domain=[0,.3], N=15)
coeffs = chebfun_to_poly(fun, text=False)
assert_allclose(coeffs, entrance_distance_Miller_coeffs)
def test_entrance_distance_45_Miller_coefficients():
from fluids.fittings import entrance_distance_45_Miller_coeffs
t_ds_re_entrant_45 = [0.006375, 0.007586, 0.009296, 0.011292, 0.013288, 0.015284, 0.019565, 0.022135, 0.024991, 0.02842, 0.032136, 0.036426, 0.040109, 0.043328, 0.046868, 0.048443, 0.053379, 0.053594, 0.059318, 0.059855, 0.065044, 0.068836, 0.070768, 0.07678, 0.082793, 0.088805, 0.089663, 0.095963, 0.104267, 0.110566, 0.116866, 0.123451, 0.129751, 0.136337, 0.142637, 0.146933, 0.153807, 0.160394, 0.167268, 0.174143, 0.181018, 0.187893, 0.194769, 0.199927, 0.20709, 0.213966, 0.221129, 0.228292, 0.235455, 0.242332, 0.249495, 0.250641, 0.257804, 0.264967, 0.27213, 0.279006, 0.286169, 0.293333, 0.299815]
Ks_re_entrant_45 = [1.0, 0.97655, 0.94239, 0.90824, 0.87408, 0.83993, 0.78301, 0.75028, 0.71756, 0.68626, 0.65638, 0.62793, 0.60642, 0.59113, 0.57033, 0.56535, 0.54225, 0.54403, 0.52128, 0.52003, 0.5028, 0.48752, 0.48147, 0.463, 0.44737, 0.42889, 0.4232, 0.41184, 0.39053, 0.3749, 0.3607, 0.34507, 0.33086, 0.31666, 0.30388, 0.29678, 0.28685, 0.27549, 0.26699, 0.25848, 0.25282, 0.24715, 0.24434, 0.24437, 0.24298, 0.24158, 0.2402, 0.24023, 0.23884, 0.23745, 0.23606, 0.23606, 0.2361, 0.23329, 0.23332, 0.23193, 0.23054, 0.23057, 0.22989]
# plt.plot(t_ds_re_entrant_45, Ks_re_entrant_45)
obj = UnivariateSpline(t_ds_re_entrant_45, Ks_re_entrant_45, s=1e-4)
t_ds_re_entrant_45_long = np.linspace(0, 0.3, 1000)
# plt.plot(t_ds_re_entrant_45_long, obj(t_ds_re_entrant_45_long))
fun = chebfun(f=obj, domain=[0,.3], N=15)
# plt.plot(t_ds_re_entrant_45_long, fun(t_ds_re_entrant_45_long), '--')
# plt.show()
coeffs = chebfun_to_poly(fun)
assert_allclose(coeffs, entrance_distance_45_Miller_coeffs)
def test_entrance_rounded_Miller_coefficients():
from fluids.fittings import entrance_rounded_Miller_coeffs
path = os.path.join(fluids_data_dir, 'Miller 2E 1990 entrances rounded beveled K.csv')
lines = open(path).readlines()
_, ratios, Ks = Engauge_2d_parser(lines)
ratios_45, ratios_30, ratios_round = ratios
Ks_45, Ks_30, Ks_round = Ks
# plt.plot(ratios_round, Ks_round)
t_ds2 = np.linspace(ratios_round[0], ratios_round[1], 1000)
# Ks_Rennels = [entrance_rounded(Di=1, rc=t) for t in t_ds2]
# plt.plot(t_ds2, Ks_Rennels)
obj = UnivariateSpline(ratios_round, Ks_round, s=6e-5)
# plt.plot(t_ds2, obj(t_ds2))
fun = chebfun(f=obj, domain=[0,.3], N=8)
# plt.plot(t_ds2, fun(t_ds2), '--')
# plt.show()
coeffs = chebfun_to_poly(fun)
assert_allclose(coeffs, entrance_rounded_Miller_coeffs)
### Bends
def test_bend_rounded_Crane_coefficients():
from fluids.fittings import bend_rounded_Crane_coeffs, bend_rounded_Crane_fds, bend_rounded_Crane_ratios
bend_rounded_Crane_obj = UnivariateSpline(bend_rounded_Crane_ratios, bend_rounded_Crane_fds, s=0)
fun = chebfun(f=bend_rounded_Crane_obj, domain=[1,20], N=10)
coeffs = chebfun_to_poly(fun)
assert_allclose(coeffs, bend_rounded_Crane_coeffs)
xs = np.linspace(1, 20, 2000)
diffs = (abs(fun(xs)-bend_rounded_Crane_obj(xs))/bend_rounded_Crane_obj(xs))
assert np.max(diffs) < .02
assert np.mean(diffs) < .002
@pytest.mark.slow
def test_bend_rounded_Miller_K_coefficients():
from fluids import fluids_data_dir
from fluids.core import Engauge_2d_parser
Kb_curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 smooth bends Kb.csv')
lines = open(Kb_curve_path).readlines()
all_zs, all_xs, all_ys = Engauge_2d_parser(lines, flat=True)
tck_recalc = bisplrep(all_xs, all_ys, all_zs, kx=3, ky=3, s=.001)
# Different platforms don't generate the same coefficients at all
# and that is OK
# [assert_allclose(i, j) for i, j in zip(tck_bend_rounded_Miller, tck_recalc)]
@pytest.mark.slow
def test_bend_rounded_Miller_Re_correction():
from fluids import fluids_data_dir
from fluids.core import Engauge_2d_parser
from fluids.fittings import tck_bend_rounded_Miller_C_Re
Re_curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 smooth bends Re correction.csv')
text = open(Re_curve_path).readlines()
rds, Re_lists, C_lists = Engauge_2d_parser(text)
inter_objs = []
for rd, Res, Cs in zip(rds, Re_lists, C_lists):
univar = UnivariateSpline(np.log10(Res), Cs) # Default smoothing is great!
inter_objs.append(univar)
for i, (rd, Res, Cs) in enumerate(zip(rds, Re_lists, C_lists)):
# plt.semilogx(Res, Cs)
univar = inter_objs[i]
Cs_smoothed = univar(np.log10(Res))
# plt.semilogx(Res, Cs_smoothed)
# print(univar.get_coeffs(), univar.get_knots())
# plt.show()
# make a rectangular grid
Res = np.logspace(np.log10(1E4), np.log10(1E8), 100)
Cs_stored = []
for obj in inter_objs:
Cs_smoothed = obj(np.log10(Res))
# plt.semilogx(Res, Cs_smoothed)
Cs_stored.append(Cs_smoothed)
# plt.show()
# Flatten the data to the form used in creating the spline
all_zs = []
all_xs = []
all_ys = []
for z, x, ys in zip(rds, Res, Cs_stored):
for x, y in zip(Res, ys):
all_zs.append(z)
all_xs.append(x)
all_ys.append(y)
tck_recalc = bisplrep(np.log10(all_xs), all_zs, all_ys)
[assert_allclose(i, j) for i, j in zip(tck_bend_rounded_Miller_C_Re, tck_recalc)]
spline_obj = lambda Re, r_D : bisplev(np.log10(Re), r_D, tck_recalc)
Res = np.logspace(np.log10(1E4), np.log10(1E8), 100)
for obj, r_d in zip(inter_objs, rds):
Cs_smoothed = obj(np.log10(Res))
# plt.semilogx(Res, Cs_smoothed)
# Cs_spline = spline_obj(Res, r_d)
# plt.semilogx(Res, Cs_spline, '--')
for r in np.linspace(1, 2, 10):
Cs_spline = spline_obj(Res, r)
# plt.semilogx(Res, Cs_spline, '-')
# plt.show()
from fluids.fittings import bend_rounded_Miller_C_Re, bend_rounded_Miller_C_Re_limit_1
ps = np.linspace(1, 2)
qs = [newton(lambda x: bend_rounded_Miller_C_Re(x, i)-1, 2e5) for i in ps]
rs = np.polyfit(ps, qs, 4).tolist()
assert_allclose(rs, bend_rounded_Miller_C_Re_limit_1)
@pytest.mark.slow
def test_bend_rounded_Miller_outlet_tangent_correction():
Re_curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 smooth bends outlet tangent length correction.csv')
text = open(Re_curve_path).readlines()
Kbs, length_ratio_lists, Co_lists = Engauge_2d_parser(text)
def BioScience_GeneralizedSubstrateDepletion_model(x_in):
'''Fit created using zunzun.com, comparing the non-linear,
non-logarithmic plot values with pixel positions on the graph.
0 0.00
1 311
2 493
4 721
6 872
10 1074
20 1365
30 1641
40 1661
'''
temp = 0.0
a = 1.0796070184265327E+03
b = 2.7557612059844967E+00
c = -2.1529870432577212E+01
d = 4.1229208061974096E-03
temp = (a * x_in) / (b + x_in) - (c * x_in) - d
return temp
def fix(y):
# Reverse the plot
# Convert input "y" to between 0 and 1661
y = y/30 # 0-1 linear
y *= 1641 # to max
err = lambda x: BioScience_GeneralizedSubstrateDepletion_model(x) - y
return float(fsolve(err, 1)[0])
for values in length_ratio_lists:
for i in range(len(values)):
x = min(values[i], 30) # Do not allow values over 30
values[i] = fix(x)
# Plotting code
# inter_objs = []
# for Kb, lrs, Cos in zip(Kbs, length_ratio_lists, Co_lists):
# univar = UnivariateSpline(lrs, Cos, s=4e-4) # Default smoothing is great!
# inter_objs.append(univar)
# for i, (Kb, lrs, Cos) in enumerate(zip(Kbs, length_ratio_lists, Co_lists)):
# plt.semilogx(lrs, Cos, 'x')
# univar = inter_objs[i]
# Cs_smoothed = univar(lrs)
# plt.semilogx(lrs, Cs_smoothed)
# plt.ylim([0.3, 3])
# plt.xlim([0.1, 30])
# plt.show()
# Code to literally write the code
min_vals = []
tcks = []
for Kb, lrs, Cos in zip(Kbs, length_ratio_lists, Co_lists):
univar = splrep(lrs, Cos, s=4e-4) # Default smoothing is great!
s = ('tck_bend_rounded_Miller_C_o_%s = ' %str(Kb).replace('.', '_'))
template = 'np.array(%s),\n'
t1 = template%str(univar[0].tolist())
t2 = template%str(univar[1].tolist())
s = s + f'[{t1}{t2}3]'
# print(s)
min_vals.append(float(splev(0.01, univar)))
tcks.append(univar)
# Check the fixed constants above the function
from fluids.fittings import tck_bend_rounded_Miller_C_os
for tck, tck_recalc in zip(tck_bend_rounded_Miller_C_os, tcks):
[assert_allclose(i, j) for i, j in zip(tck, tck_recalc)]
from fluids.fittings import bend_rounded_Miller_C_o_limit_0_01
assert_allclose(min_vals, bend_rounded_Miller_C_o_limit_0_01)
from fluids.fittings import bend_rounded_Miller_C_o_limits
max_ratios = [i[-1] for i in length_ratio_lists]
assert_allclose(max_ratios, bend_rounded_Miller_C_o_limits)
def test_bend_miter_Miller_coefficients():
from fluids.optional.pychebfun import chebfun, chebfun_to_poly
curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 Kb mitre bend.csv')
text = open(curve_path).readlines()
zs, x_lists, y_lists = Engauge_2d_parser(text)
x_raw, y_raw = x_lists[0], y_lists[0]
univar = UnivariateSpline(x_raw, y_raw, s=1e-4)
fun = chebfun(f=univar, domain=[0,120], N=15) # 15 max for many coeffs
recalc_coeffs = chebfun_to_poly(fun)
from fluids.fittings import bend_miter_Miller_coeffs
assert_allclose(bend_miter_Miller_coeffs, recalc_coeffs)
def test_diffuser_conical_Idelchik_coefficients():
from fluids.fittings import (
diffuser_conical_Idelchik_A_ratios,
diffuser_conical_Idelchik_angles,
diffuser_conical_Idelchik_data,
diffuser_conical_Idelchik_tck,
)
diffuser_conical_Idelchik_obj = RectBivariateSpline(np.array(diffuser_conical_Idelchik_A_ratios),
np.array(diffuser_conical_Idelchik_angles),
np.array(diffuser_conical_Idelchik_data),
kx=3, ky=1)
[assert_allclose(i, j) for i, j in zip(diffuser_conical_Idelchik_obj.tck, diffuser_conical_Idelchik_tck)]
def test_entrance_rounded_Idelchik_coeffs():
from fluids.fittings import entrance_rounded_Idelchik_tck, entrance_rounded_Ks_Idelchik, entrance_rounded_ratios_Idelchik
tck_refit = splrep(entrance_rounded_ratios_Idelchik, entrance_rounded_Ks_Idelchik, s=0, k=2)
[assert_allclose(i, j, rtol=1e-3) for i, j in zip(tck_refit, entrance_rounded_Idelchik_tck)]
#entrance_rounded_Idelchik = UnivariateSpline(entrance_rounded_ratios_Idelchik,
# entrance_rounded_Ks_Idelchik,
# s=0, k=2, ext=3)
#
def test_entrance_rounded_Harris_coeffs():
from fluids.fittings import entrance_rounded_Harris_tck, entrance_rounded_Ks_Harris, entrance_rounded_ratios_Harris
tck_refit = splrep(entrance_rounded_ratios_Harris, entrance_rounded_Ks_Harris, s=0, k=2)
[assert_allclose(i, j, rtol=1e-3) for i, j in zip(tck_refit, entrance_rounded_Harris_tck)]
#entrance_rounded_Harris = UnivariateSpline(entrance_rounded_ratios_Harris,
# entrance_rounded_Ks_Harris,
# s=0, k=2, ext=3)
def test_entrance_distance_Harris_coeffs():
from fluids.fittings import entrance_distance_Harris_Ks, entrance_distance_Harris_t_Di, entrance_distance_Harris_tck
tck_refit = splrep(entrance_distance_Harris_t_Di, entrance_distance_Harris_Ks, s=0, k=3)
[assert_allclose(i, j, rtol=1e-3) for i, j in zip(tck_refit, entrance_distance_Harris_tck)]
#entrance_distance_Harris_obj = UnivariateSpline(entrance_distance_Harris_t_Di,
# entrance_distance_Harris_Ks,
# s=0, k=3)
|