File: test_fittings_fits.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (522 lines) | stat: -rw-r--r-- 22,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

import os
from math import log10

import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy.interpolate import RectBivariateSpline, UnivariateSpline, bisplev, bisplrep, splev, splrep
from scipy.optimize import fsolve, newton

from fluids import fluids_data_dir
from fluids.core import Engauge_2d_parser
from fluids.optional.pychebfun import chebfun, chebfun_to_poly

### Contractions

def test_contraction_conical_Miller_coefficients():
    from fluids.fittings import contraction_conical_Miller_tck
    path = os.path.join(fluids_data_dir, 'Miller 2E 1990 conical contractions K part 1.csv')
    Kds, l_ratios, A_ratios = Engauge_2d_parser(open(path).readlines())
    path = os.path.join(fluids_data_dir, 'Miller 2E 1990 conical contractions K part 2.csv')
    Kd2, l_ratio2, A_ratio2 = Engauge_2d_parser(open(path).readlines())
    Kds.extend(Kd2)
    l_ratios.extend(l_ratio2)
    A_ratios.extend(A_ratio2)
    A_ratios = [[i+1.0 for i in j] for j in A_ratios]

    #    # The second set of data obviously looks terirble when plotted
    #    # Normally the data should be smoothed, but, well, the smoothing
    #    # function also requires smooth functions.
    #    for K, ls, As in zip(Kds, l_ratios, A_ratios):
    #        plt.loglog(ls, np.array(As)-1, label=str(K))
    #    plt.legend()
    #    plt.show()

    all_zs = []
    all_xs = []
    all_ys = []
    for z, xs, ys in zip(Kds, l_ratios, A_ratios):
        for x, y in zip(xs, ys):
            all_zs.append(z)
            all_xs.append(x)
            all_ys.append(y)

    tck = bisplrep(np.log(all_xs), np.log(all_ys), all_zs, kx=3, ky=1, s=.0001)
    [assert_allclose(i, j) for i, j in zip(contraction_conical_Miller_tck, tck)]

#    err = 0.0
#    n = 0
#    for z, xs, ys in zip(Kds, l_ratios, A_ratios):
#        for x, y in zip(xs, ys):
#            predict = bisplev(log(x), log(y), tck)
#            err += abs(predict - z)/z
#            n += 1
    # 5% relative error seems like the sweetspot
#    print(err/n, n, err)

#    import matplotlib.pyplot as plt
#    ax = plt.gca()
#    ax.set_xscale("log")
#    ax.set_yscale("log")
#    x = np.logspace(np.log10(.1), np.log10(10), 200)
#    y = np.logspace(np.log10(1.1), np.log10(4), 200)
#    X, Y = np.meshgrid(x, y, indexing='ij')
#    func = np.vectorize(lambda x, y: max(min(bisplev(log(x), log(y), tck), .5), 0))
#
#    Z = func(X.ravel(), Y.ravel())
#    Z = [[func(xi, yi) for yi in y.tolist()] for xi in x]
#
#    levels = [.001, .01, .03, .04, .05, .1, .2, .3, .4]
#    plt.contourf(X, Y-1, Z, levels=levels, cmap='RdGy')
#    plt.colorbar()
#    plt.show()

@pytest.mark.slow
def test_contraction_abrupt_Miller_coefficients():
    from fluids.fittings import tck_contraction_abrupt_Miller
    curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 abrupt contraction K.csv')
    text = open(curve_path).readlines()

    zs, x_lists, y_lists = Engauge_2d_parser(text)
    for xs, values in zip(x_lists, y_lists):
        values[-1] = 0
        low = 1e-8
        for i in range(2):
            low = low/10
            values.insert(-1, low)
            xs.insert(-1, 1-low)
        xs[-1] = 1

    inter_objs = []
    for rd, As, Ks in zip(zs, x_lists, y_lists):
        univar = UnivariateSpline(As, Ks, s=1e-5)
        inter_objs.append(univar)

    # make a rectangular grid
    As = np.linspace(0, 1, 1000)
    Ks_stored = []
    for obj in inter_objs:
        Ks_smoothed = obj(As)
        Ks_smoothed[Ks_smoothed < 0] = 0 # Avoid zeros
        Ks_stored.append(Ks_smoothed)

    # Flatten the data to the form used in creating the spline
    all_zs = []
    all_xs = []
    all_ys = []
    for z, x, ys in zip(zs, As, Ks_stored):
        for x, y in zip(As, ys):
            all_zs.append(z)
            all_xs.append(x)
            all_ys.append(y)
    tck_recalc = bisplrep(all_xs, all_zs, all_ys, s=5e-4)
    [assert_allclose(i, j, rtol=1e-2) for i, j in zip(tck_contraction_abrupt_Miller, tck_recalc)]

#   Plotting code
#     print([i.tolist() for i in tck[:3]])
#    for i, (rd, As, Ks) in enumerate(zip(zs, x_lists, y_lists)):
#        plt.plot(As, Ks, '.')
#        univar = inter_objs[i]
#        As2 = np.linspace(0, 1, 1000)
#        Ks_smoothed = univar(As2)
#        plt.plot(As2, Ks_smoothed)
#        # Compute with the spline
#        Ks_new = bisplev(As2, rd, tck)
#        plt.plot(As2, Ks_new)
#    for rd in np.linspace(.1, 0, 100):
#        As2 = np.linspace(0, 1, 1000)
#        Ks_new = bisplev(As2, rd, tck)
#        plt.plot(As2, Ks_new)
#    plt.show()

### Diffusers

@pytest.mark.slow
def test_diffuser_conical_Miller_coefficients():
    from fluids.fittings import tck_diffuser_conical_Miller
    path = os.path.join(fluids_data_dir, 'Miller 2E 1990 conical diffuser Kd.csv')
    Kds, l_ratios, A_ratios = Engauge_2d_parser(open(path).readlines())
    # Fixup stupidity
    A_ratios = [[i+1.0 for i in j] for j in A_ratios]
#    for K, ls, As in zip(Kds, l_ratios, A_ratios):
#        plt.loglog(ls, np.array(As)-1)
#    plt.show()

    interp_objs = []
    for K, ls, As in zip(Kds, l_ratios, A_ratios):
        univar = UnivariateSpline(np.log10(ls), np.log10(As), s=4e-5)
        interp_objs.append(univar)

    # Extrapolation to the left and right looks bad
    # Extrapolation upwards looks bad too
    ls_full = np.logspace(log10(0.1), log10(20.0))
    ls_stored = []
    As_stored = []
    for i, (K, ls, As) in enumerate(zip(Kds, l_ratios, A_ratios)):
#        plt.loglog(ls, As)
        univar = interp_objs[i]
        As_full = 10**univar(np.log10(ls_full))
    #     plt.loglog(ls_full, As_full)
    #     print(len(univar.get_coeffs()), len(univar.get_knots()))
        ls_smoothed = np.logspace(log10(ls[0]), log10(ls[-1]), 100)
        As_smoothed = 10**univar(np.log10(ls_smoothed))
    #     plt.loglog(ls_smoothed, As_smoothed)
        ls_stored.append(ls_smoothed)
        As_stored.append(As_smoothed)

    # plt.show()
    all_zs = []
    all_xs = []
    all_ys = []
    for z, xs, ys in zip(Kds, ls_stored, As_stored):
        for x, y in zip(xs, ys):
            all_zs.append(z)
            all_xs.append(x)
            all_ys.append(y)

    tck_recalc = bisplrep(np.log(all_xs), np.log(all_ys), all_zs, s=.002)
    [assert_allclose(i, j, rtol=1e-2) for i, j in zip(tck_diffuser_conical_Miller, tck_recalc)]

    # Plotting code to re-create the graph through solving for points
#    print([len(i) for i in tck[0:3]])
#
#    for K, ls in zip(Kds, ls_stored):
#        def get_right_y(l, K_goal):
#            try:
#                def err(y_guess):
#                    if y_guess <= 1.1:
#                        y_guess = 1.1
#                    if y_guess > 4:
#                        y_guess = 4
#                    return bisplev(log(l), log(y_guess), tck) - K_goal
#    #             ans = newton(err, 1.3)
#                ans = bisect(err, 1.1, 4)
#
#    #             if abs(err(ans)) > .1:
#    #                 ans = None
#                return ans
#            except:
#                return None
#        As_needed = [get_right_y(l, K) for l in ls]
#        plt.loglog(ls, As_needed, 'x')
#    plt.show()

### Entrances

def test_entrance_distance_Miller_coefficients():
    from fluids.fittings import entrance_distance_Miller_coeffs
    t_ds = [0.006304, 0.007586, 0.009296, 0.011292, 0.013288, 0.015284, 0.019565, 0.022135, 0.024991, 0.02842, 0.032136, 0.036426, 0.040145, 0.043149, 0.048446, 0.054745, 0.061332, 0.067919, 0.075081, 0.081957, 0.089121, 0.096284, 0.099722, 0.106886, 0.110897, 0.118061, 0.125224, 0.132101, 0.139264, 0.147, 0.153877, 0.16104, 0.167917, 0.175081, 0.181957, 0.189121, 0.196284, 0.199723, 0.206886, 0.214049, 0.221213, 0.228376, 0.235539, 0.242416, 0.249579, 0.250726, 0.257889, 0.264766, 0.271929, 0.279093, 0.286256, 0.293419, 0.300009]
    Ks = [1.00003, 0.97655, 0.94239, 0.90824, 0.87408, 0.83993, 0.78301, 0.75028, 0.71756, 0.68626, 0.65638, 0.62793, 0.6066, 0.59166, 0.57532, 0.56111, 0.54833, 0.5384, 0.53416, 0.53135, 0.53138, 0.53142, 0.53143, 0.53147, 0.53149, 0.53152, 0.53156, 0.53159, 0.53162, 0.53023, 0.53027, 0.5303, 0.53033, 0.53179, 0.5304, 0.53186, 0.53189, 0.53191, 0.53194, 0.53198, 0.53201, 0.53347, 0.53208, 0.53353, 0.53215, 0.53215, 0.53218, 0.53364, 0.53367, 0.53371, 0.53374, 0.53378, 0.5331]
    # plt.plot(t_ds, Ks)
    t_ds2 = np.linspace(t_ds[0], t_ds[-1], 1000)
#    Ks_Rennels = [entrance_distance(Di=1, t=t) for t in t_ds2]
    # plt.plot(t_ds2, Ks_Rennels)
    # plt.show()

    obj = UnivariateSpline(t_ds, Ks, s=3e-5)
    # print(len(obj.get_coeffs()), len(obj.get_knots()))
    # plt.plot(t_ds2, obj(t_ds2))

    fun = chebfun(f=obj, domain=[0,.3], N=15)
    coeffs = chebfun_to_poly(fun, text=False)
    assert_allclose(coeffs, entrance_distance_Miller_coeffs)

def test_entrance_distance_45_Miller_coefficients():
    from fluids.fittings import entrance_distance_45_Miller_coeffs
    t_ds_re_entrant_45 = [0.006375, 0.007586, 0.009296, 0.011292, 0.013288, 0.015284, 0.019565, 0.022135, 0.024991, 0.02842, 0.032136, 0.036426, 0.040109, 0.043328, 0.046868, 0.048443, 0.053379, 0.053594, 0.059318, 0.059855, 0.065044, 0.068836, 0.070768, 0.07678, 0.082793, 0.088805, 0.089663, 0.095963, 0.104267, 0.110566, 0.116866, 0.123451, 0.129751, 0.136337, 0.142637, 0.146933, 0.153807, 0.160394, 0.167268, 0.174143, 0.181018, 0.187893, 0.194769, 0.199927, 0.20709, 0.213966, 0.221129, 0.228292, 0.235455, 0.242332, 0.249495, 0.250641, 0.257804, 0.264967, 0.27213, 0.279006, 0.286169, 0.293333, 0.299815]
    Ks_re_entrant_45 = [1.0, 0.97655, 0.94239, 0.90824, 0.87408, 0.83993, 0.78301, 0.75028, 0.71756, 0.68626, 0.65638, 0.62793, 0.60642, 0.59113, 0.57033, 0.56535, 0.54225, 0.54403, 0.52128, 0.52003, 0.5028, 0.48752, 0.48147, 0.463, 0.44737, 0.42889, 0.4232, 0.41184, 0.39053, 0.3749, 0.3607, 0.34507, 0.33086, 0.31666, 0.30388, 0.29678, 0.28685, 0.27549, 0.26699, 0.25848, 0.25282, 0.24715, 0.24434, 0.24437, 0.24298, 0.24158, 0.2402, 0.24023, 0.23884, 0.23745, 0.23606, 0.23606, 0.2361, 0.23329, 0.23332, 0.23193, 0.23054, 0.23057, 0.22989]
#    plt.plot(t_ds_re_entrant_45, Ks_re_entrant_45)

    obj = UnivariateSpline(t_ds_re_entrant_45, Ks_re_entrant_45, s=1e-4)
    t_ds_re_entrant_45_long = np.linspace(0, 0.3, 1000)
#    plt.plot(t_ds_re_entrant_45_long, obj(t_ds_re_entrant_45_long))

    fun = chebfun(f=obj, domain=[0,.3], N=15)

#    plt.plot(t_ds_re_entrant_45_long, fun(t_ds_re_entrant_45_long), '--')
#    plt.show()

    coeffs = chebfun_to_poly(fun)
    assert_allclose(coeffs, entrance_distance_45_Miller_coeffs)

def test_entrance_rounded_Miller_coefficients():
    from fluids.fittings import entrance_rounded_Miller_coeffs
    path = os.path.join(fluids_data_dir, 'Miller 2E 1990 entrances rounded beveled K.csv')
    lines = open(path).readlines()
    _, ratios, Ks = Engauge_2d_parser(lines)
    ratios_45, ratios_30, ratios_round = ratios
    Ks_45, Ks_30, Ks_round = Ks

#    plt.plot(ratios_round, Ks_round)
    t_ds2 = np.linspace(ratios_round[0], ratios_round[1], 1000)
#    Ks_Rennels = [entrance_rounded(Di=1, rc=t) for t in t_ds2]
#    plt.plot(t_ds2, Ks_Rennels)
    obj = UnivariateSpline(ratios_round, Ks_round, s=6e-5)
#    plt.plot(t_ds2, obj(t_ds2))
    fun = chebfun(f=obj, domain=[0,.3], N=8)
#    plt.plot(t_ds2, fun(t_ds2), '--')
#    plt.show()
    coeffs = chebfun_to_poly(fun)
    assert_allclose(coeffs, entrance_rounded_Miller_coeffs)


### Bends

def test_bend_rounded_Crane_coefficients():
    from fluids.fittings import bend_rounded_Crane_coeffs, bend_rounded_Crane_fds, bend_rounded_Crane_ratios
    bend_rounded_Crane_obj = UnivariateSpline(bend_rounded_Crane_ratios, bend_rounded_Crane_fds, s=0)

    fun = chebfun(f=bend_rounded_Crane_obj, domain=[1,20], N=10)
    coeffs = chebfun_to_poly(fun)
    assert_allclose(coeffs, bend_rounded_Crane_coeffs)

    xs = np.linspace(1, 20, 2000)
    diffs = (abs(fun(xs)-bend_rounded_Crane_obj(xs))/bend_rounded_Crane_obj(xs))
    assert np.max(diffs) < .02
    assert np.mean(diffs) < .002

@pytest.mark.slow
def test_bend_rounded_Miller_K_coefficients():
    from fluids import fluids_data_dir
    from fluids.core import Engauge_2d_parser
    Kb_curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 smooth bends Kb.csv')
    lines = open(Kb_curve_path).readlines()
    all_zs, all_xs, all_ys = Engauge_2d_parser(lines, flat=True)

    tck_recalc = bisplrep(all_xs, all_ys, all_zs, kx=3, ky=3, s=.001)

    # Different platforms don't generate the same coefficients at all
    # and that is OK
    # [assert_allclose(i, j) for i, j in zip(tck_bend_rounded_Miller, tck_recalc)]


@pytest.mark.slow
def test_bend_rounded_Miller_Re_correction():
    from fluids import fluids_data_dir
    from fluids.core import Engauge_2d_parser
    from fluids.fittings import tck_bend_rounded_Miller_C_Re
    Re_curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 smooth bends Re correction.csv')
    text = open(Re_curve_path).readlines()
    rds, Re_lists, C_lists = Engauge_2d_parser(text)

    inter_objs = []
    for rd, Res, Cs in zip(rds, Re_lists, C_lists):
        univar = UnivariateSpline(np.log10(Res), Cs) # Default smoothing is great!
        inter_objs.append(univar)

    for i, (rd, Res, Cs) in enumerate(zip(rds, Re_lists, C_lists)):
    #     plt.semilogx(Res, Cs)
        univar = inter_objs[i]
        Cs_smoothed = univar(np.log10(Res))
    #     plt.semilogx(Res, Cs_smoothed)
    #     print(univar.get_coeffs(), univar.get_knots())
    # plt.show()

    # make a rectangular grid
    Res = np.logspace(np.log10(1E4), np.log10(1E8), 100)
    Cs_stored = []
    for obj in inter_objs:
        Cs_smoothed = obj(np.log10(Res))
#        plt.semilogx(Res, Cs_smoothed)
        Cs_stored.append(Cs_smoothed)
#    plt.show()

    # Flatten the data to the form used in creating the spline
    all_zs = []
    all_xs = []
    all_ys = []
    for z, x, ys in zip(rds, Res, Cs_stored):
        for x, y in zip(Res, ys):
            all_zs.append(z)
            all_xs.append(x)
            all_ys.append(y)

    tck_recalc = bisplrep(np.log10(all_xs), all_zs, all_ys)
    [assert_allclose(i, j) for i, j in zip(tck_bend_rounded_Miller_C_Re, tck_recalc)]

    spline_obj = lambda Re, r_D : bisplev(np.log10(Re), r_D, tck_recalc)
    Res = np.logspace(np.log10(1E4), np.log10(1E8), 100)
    for obj, r_d in zip(inter_objs, rds):
        Cs_smoothed = obj(np.log10(Res))
#        plt.semilogx(Res, Cs_smoothed)
    #     Cs_spline = spline_obj(Res, r_d)
    #     plt.semilogx(Res, Cs_spline, '--')
    for r in np.linspace(1, 2, 10):
        Cs_spline = spline_obj(Res, r)
#        plt.semilogx(Res, Cs_spline, '-')
#    plt.show()

    from fluids.fittings import bend_rounded_Miller_C_Re, bend_rounded_Miller_C_Re_limit_1
    ps = np.linspace(1, 2)
    qs = [newton(lambda x: bend_rounded_Miller_C_Re(x, i)-1, 2e5) for i in ps]
    rs = np.polyfit(ps, qs, 4).tolist()
    assert_allclose(rs, bend_rounded_Miller_C_Re_limit_1)


@pytest.mark.slow
def test_bend_rounded_Miller_outlet_tangent_correction():
    Re_curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 smooth bends outlet tangent length correction.csv')
    text = open(Re_curve_path).readlines()

    Kbs, length_ratio_lists, Co_lists = Engauge_2d_parser(text)

    def BioScience_GeneralizedSubstrateDepletion_model(x_in):
        '''Fit created using zunzun.com, comparing the non-linear,
        non-logarithmic plot values with pixel positions on the graph.

        0	0.00
        1	311
        2	493
        4	721
        6	872
        10	1074
        20	1365
        30	1641
        40	1661
        '''
        temp = 0.0
        a = 1.0796070184265327E+03
        b = 2.7557612059844967E+00
        c = -2.1529870432577212E+01
        d = 4.1229208061974096E-03
        temp = (a * x_in) / (b + x_in) - (c * x_in) - d
        return temp

    def fix(y):
        # Reverse the plot
        # Convert input "y" to between 0 and 1661
        y = y/30 # 0-1 linear
        y *= 1641 # to max
        err = lambda x: BioScience_GeneralizedSubstrateDepletion_model(x) - y
        return float(fsolve(err, 1)[0])

    for values in length_ratio_lists:
        for i in range(len(values)):
            x = min(values[i], 30) # Do not allow values over 30
            values[i] = fix(x)


#     Plotting code
#    inter_objs = []
#    for Kb, lrs, Cos in zip(Kbs, length_ratio_lists, Co_lists):
#        univar = UnivariateSpline(lrs, Cos, s=4e-4) # Default smoothing is great!
#        inter_objs.append(univar)
#    for i, (Kb, lrs, Cos) in enumerate(zip(Kbs, length_ratio_lists, Co_lists)):
#        plt.semilogx(lrs, Cos, 'x')
#        univar = inter_objs[i]
#        Cs_smoothed = univar(lrs)
#        plt.semilogx(lrs, Cs_smoothed)
    # plt.ylim([0.3, 3])
    # plt.xlim([0.1, 30])
    # plt.show()

#   Code to literally write the code
    min_vals = []
    tcks = []
    for Kb, lrs, Cos in zip(Kbs, length_ratio_lists, Co_lists):
        univar = splrep(lrs, Cos, s=4e-4) # Default smoothing is great!
        s = ('tck_bend_rounded_Miller_C_o_%s = ' %str(Kb).replace('.', '_'))
        template = 'np.array(%s),\n'
        t1 = template%str(univar[0].tolist())
        t2 = template%str(univar[1].tolist())
        s = s + f'[{t1}{t2}3]'
#        print(s)
        min_vals.append(float(splev(0.01, univar)))
        tcks.append(univar)

    # Check the fixed constants above the function
    from fluids.fittings import tck_bend_rounded_Miller_C_os
    for tck, tck_recalc in zip(tck_bend_rounded_Miller_C_os, tcks):
        [assert_allclose(i, j) for i, j in zip(tck, tck_recalc)]


    from fluids.fittings import bend_rounded_Miller_C_o_limit_0_01
    assert_allclose(min_vals, bend_rounded_Miller_C_o_limit_0_01)

    from fluids.fittings import bend_rounded_Miller_C_o_limits
    max_ratios = [i[-1] for i in length_ratio_lists]
    assert_allclose(max_ratios, bend_rounded_Miller_C_o_limits)


def test_bend_miter_Miller_coefficients():
    from fluids.optional.pychebfun import chebfun, chebfun_to_poly
    curve_path = os.path.join(fluids_data_dir, 'Miller 2E 1990 Kb mitre bend.csv')
    text = open(curve_path).readlines()
    zs, x_lists, y_lists = Engauge_2d_parser(text)
    x_raw, y_raw = x_lists[0], y_lists[0]
    univar = UnivariateSpline(x_raw, y_raw, s=1e-4)
    fun = chebfun(f=univar, domain=[0,120], N=15) # 15 max for many coeffs

    recalc_coeffs = chebfun_to_poly(fun)
    from fluids.fittings import bend_miter_Miller_coeffs
    assert_allclose(bend_miter_Miller_coeffs, recalc_coeffs)



def test_diffuser_conical_Idelchik_coefficients():
    from fluids.fittings import (
        diffuser_conical_Idelchik_A_ratios,
        diffuser_conical_Idelchik_angles,
        diffuser_conical_Idelchik_data,
        diffuser_conical_Idelchik_tck,
    )

    diffuser_conical_Idelchik_obj = RectBivariateSpline(np.array(diffuser_conical_Idelchik_A_ratios),
                                                    np.array(diffuser_conical_Idelchik_angles),
                                                    np.array(diffuser_conical_Idelchik_data),
                                                    kx=3, ky=1)


    [assert_allclose(i, j) for i, j in zip(diffuser_conical_Idelchik_obj.tck, diffuser_conical_Idelchik_tck)]


def test_entrance_rounded_Idelchik_coeffs():
    from fluids.fittings import entrance_rounded_Idelchik_tck, entrance_rounded_Ks_Idelchik, entrance_rounded_ratios_Idelchik

    tck_refit = splrep(entrance_rounded_ratios_Idelchik, entrance_rounded_Ks_Idelchik, s=0, k=2)
    [assert_allclose(i, j, rtol=1e-3) for i, j in zip(tck_refit, entrance_rounded_Idelchik_tck)]
    #entrance_rounded_Idelchik = UnivariateSpline(entrance_rounded_ratios_Idelchik,
#                                             entrance_rounded_Ks_Idelchik,
#                                             s=0, k=2, ext=3)
#
def test_entrance_rounded_Harris_coeffs():
    from fluids.fittings import entrance_rounded_Harris_tck, entrance_rounded_Ks_Harris, entrance_rounded_ratios_Harris

    tck_refit = splrep(entrance_rounded_ratios_Harris, entrance_rounded_Ks_Harris, s=0, k=2)
    [assert_allclose(i, j, rtol=1e-3) for i, j in zip(tck_refit, entrance_rounded_Harris_tck)]


#entrance_rounded_Harris = UnivariateSpline(entrance_rounded_ratios_Harris,
#                                           entrance_rounded_Ks_Harris,
#                                           s=0, k=2, ext=3)

def test_entrance_distance_Harris_coeffs():
    from fluids.fittings import entrance_distance_Harris_Ks, entrance_distance_Harris_t_Di, entrance_distance_Harris_tck

    tck_refit = splrep(entrance_distance_Harris_t_Di, entrance_distance_Harris_Ks, s=0, k=3)
    [assert_allclose(i, j, rtol=1e-3) for i, j in zip(tck_refit, entrance_distance_Harris_tck)]
#entrance_distance_Harris_obj = UnivariateSpline(entrance_distance_Harris_t_Di,
#                                                entrance_distance_Harris_Ks,
#                                                s=0, k=3)