1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from math import log, log10
import pytest
from fluids.constants import inch
from fluids.flow_meter import (
AS_CAST_VENTURI_TUBE,
CONCENTRIC_ORIFICE,
CONE_METER,
HOLLINGSHEAD_CONE,
HOLLINGSHEAD_ORIFICE,
HOLLINGSHEAD_VENTURI_SHARP,
HOLLINGSHEAD_VENTURI_SMOOTH,
HOLLINGSHEAD_WEDGE,
ISA_1932_NOZZLE,
ISO_5167_ORIFICE,
ISO_15377_CONICAL_ORIFICE,
ISO_15377_ECCENTRIC_ORIFICE,
ISO_15377_QUARTER_CIRCLE_ORIFICE,
LONG_RADIUS_NOZZLE,
MACHINED_CONVERGENT_VENTURI_TUBE,
MILLER_CONICAL_ORIFICE,
MILLER_ECCENTRIC_ORIFICE,
MILLER_ORIFICE,
MILLER_QUARTER_CIRCLE_ORIFICE,
MILLER_SEGMENTAL_ORIFICE,
ORIFICE_CORNER_TAPS,
ORIFICE_D_AND_D_2_TAPS,
ORIFICE_FLANGE_TAPS,
ORIFICE_PIPE_TAPS,
ORIFICE_VENA_CONTRACTA_TAPS,
ROUGH_WELDED_CONVERGENT_VENTURI_TUBE,
TAPS_OPPOSITE,
TAPS_SIDE,
VENTURI_NOZZLE,
WEDGE_METER,
C_eccentric_orifice_ISO_15377_1998,
C_ISA_1932_nozzle,
C_long_radius_nozzle,
C_Miller_1996,
C_quarter_circle_orifice_ISO_15377_1998,
C_Reader_Harris_Gallagher,
C_Reader_Harris_Gallagher_wet_venturi_tube,
C_venturi_nozzle,
C_wedge_meter_ISO_5167_6_2017,
C_wedge_meter_Miller,
K_to_discharge_coefficient,
cone_meter_expansibility_Stewart,
diameter_ratio_cone_meter,
diameter_ratio_wedge_meter,
differential_pressure_meter_beta,
differential_pressure_meter_C_epsilon,
differential_pressure_meter_dP,
differential_pressure_meter_solver,
discharge_coefficient_to_K,
dP_cone_meter,
dP_orifice,
dP_Reader_Harris_Gallagher_wet_venturi_tube,
dP_venturi_tube,
dP_wedge_meter,
flow_coefficient,
flow_meter_discharge,
nozzle_expansibility,
orifice_expansibility,
orifice_expansibility_1989,
velocity_of_approach_factor,
)
from fluids.numerics import assert_close, assert_close1d, assert_close2d, isclose, logspace, secant
def test_flow_meter_discharge():
m = flow_meter_discharge(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, rho=1.1646, C=0.5988, expansibility=0.9975)
assert_close(m, 0.01120390943807026)
def test_orifice_expansibility():
epsilon = orifice_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
assert_close(epsilon, 0.9974739057343425)
# Tested against a value in the standard
def test_orifice_expansibility_1989():
# No actual sample points
epsilon = orifice_expansibility_1989(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
assert_close(epsilon, 0.9970510687411718)
def test_C_Reader_Harris_Gallagher():
C = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='corner' )
assert_close(C, 0.6000085121444034)
C = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='D' )
assert_close(C, 0.5988219225153976)
C = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='flange' )
assert_close(C, 0.5990042535666878)
#
#def test_Reader_Harris_Gallagher_discharge():
# m = Reader_Harris_Gallagher_discharge(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, taps='D')
# assert_close(m, 7.702338035732167)
with pytest.raises(Exception):
C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps='NOTALOCATION')
# Test continuity at the low-diameter function
kwargs = dict(Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='corner')
C1 = C_Reader_Harris_Gallagher(D=0.07112, **kwargs)
C2 = C_Reader_Harris_Gallagher(D=0.07112-1e-13, **kwargs)
assert_close(C1, C2)
def test_C_Miller_1996():
C_flange_ISO = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps='flange')
C_corner_ISO = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps='corner')
C_D_D2_ISO = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps=ORIFICE_D_AND_D_2_TAPS)
C_flange = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
C_flange_2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='orifice', taps=ORIFICE_FLANGE_TAPS)
assert C_flange == C_flange_2
assert_close(C_flange, 0.599065557156788, rtol=1e-12)
assert_close(C_flange, C_flange_ISO, rtol=2e-4)
C_flange_small_ISO = C_Reader_Harris_Gallagher(D=0.04, Do=0.02, rho=1.165, mu=1.85E-5, m=0.2, taps='flange')
C_flange_small = C_Miller_1996(D=0.04, Do=0.02, rho=1.165, mu=1.85E-5, m=0.2, subtype=MILLER_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
assert_close(C_flange_small, 0.6035249226284967, rtol=1e-12)
assert_close(C_flange_small_ISO, C_flange_small, rtol=1e-2)
C_corner = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_CORNER_TAPS)
assert_close(C_corner, 0.5991255880475622, rtol=1e-12)
assert_close(C_corner, C_corner_ISO, rtol=2e-3)
C_D_D2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_D_AND_D_2_TAPS)
assert_close(C_D_D2, 0.5836056345693277, rtol=1e-12)
assert_close(C_D_D2, C_D_D2_ISO, rtol=3e-2)
C_pipe = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_PIPE_TAPS)
assert_close(C_pipe, 0.6338716097225481, rtol=1e-12)
C_flange_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
C_flange_small2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='segmental orifice', taps=ORIFICE_FLANGE_TAPS)
assert C_flange_small == C_flange_small
C_flange_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
assert_close(C_flange_small, 0.6343546437000684, rtol=1e-12)
assert_close(C_flange_large, 0.6301688962913937, rtol=1e-12)
C_vc_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS)
C_vc_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS)
assert_close(C_vc_small, 0.6341386019820933, rtol=1e-12)
assert_close(C_vc_large, 0.6301688962913937, rtol=1e-12)
C_flange_opp_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_OPPOSITE)
C_flange_opp_small2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='eccentric orifice', taps='flange', tap_position=TAPS_OPPOSITE)
assert_close(C_flange_opp_small, 0.6096299230744815, rtol=1e-12)
C_flange_opp_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_OPPOSITE)
assert_close(C_flange_opp_large, 0.6196903510975135, rtol=1e-12)
C_flange_side_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_SIDE)
C_flange_side_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_SIDE)
assert_close(C_flange_side_small, 0.6086231594104639, rtol=1e-12)
assert_close(C_flange_side_large, 0.6227796822413327, rtol=1e-12)
C_vc_opp_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_OPPOSITE)
assert_close(C_vc_opp_small, 0.6108105171632562, rtol=1e-12)
C_vc_opp_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_OPPOSITE)
assert_close(C_vc_opp_large, 0.6190713098741648, rtol=1e-12)
C_vc_side_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_SIDE)
C_vc_side_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_SIDE)
assert_close(C_vc_side_small, 0.6089351556538237, rtol=1e-12)
assert_close(C_vc_side_large, 0.6214809940486437, rtol=1e-12)
# Error testing
with pytest.raises(ValueError):
C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps='NOTATAP')
with pytest.raises(ValueError):
C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps='NOTATAP')
with pytest.raises(ValueError):
C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position='NOTAPOSITION')
with pytest.raises(ValueError):
C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_SEGMENTAL_ORIFICE, taps='BADTAP')
with pytest.raises(ValueError):
C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='BADTYPE')
# Conical
C_high = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_CONICAL_ORIFICE)
assert C_high == 0.73
C_low = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.0001, subtype=MILLER_CONICAL_ORIFICE)
assert C_low == 0.734
C_low2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.0001, subtype='conical orifice')
assert C_low2 == C_low
# Quarter circle
C_circ = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_QUARTER_CIRCLE_ORIFICE)
assert_close(C_circ, 0.7750496225919683)
C_circ2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='quarter circle orifice')
assert C_circ == C_circ2
def test_differential_pressure_meter_discharge():
# Orifice
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ISO_5167_ORIFICE, taps='D')
assert_close(m, 7.702338035732167)
# Nozzle meters
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
assert_close(m, 11.86828167015467)
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
assert_close(m, 11.370262314304702)
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
assert_close(m, 11.471786198133566)
# Venturi tubes
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
assert_close(m, 11.867774156238344)
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
assert_close(m, 12.000442363269464)
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
assert_close(m, 11.879834902332082)
# Cone meter
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
assert_close(m, 9.997923896460703)
# wedge meter
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
assert_close(m, 8.941980099523539)
with pytest.raises(ValueError):
differential_pressure_meter_solver(D=.07366, m=7.702338, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
def test_differential_pressure_meter_diameter():
# ISO 5167 orifice
D2 = differential_pressure_meter_solver(D=0.07366, m=7.702338035732167, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ISO_5167_ORIFICE, taps='D')
assert_close(D2, 0.05)
# Nozzle meters
D2 = differential_pressure_meter_solver(D=0.07366, m= 11.86828167015467, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
assert_close(D2, 0.05)
D2 = differential_pressure_meter_solver(D=0.07366, m=11.370262314304702, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
assert_close(D2, 0.05)
D2 = differential_pressure_meter_solver(D=0.07366, m=11.471786198133566, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
assert_close(D2, 0.05)
# Venturi tubes
D2 = differential_pressure_meter_solver(D=0.07366, m=11.867774156238344, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
assert_close(D2, 0.05)
D2 = differential_pressure_meter_solver(D=0.07366, m=12.000442363269464, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
assert_close(D2, 0.05)
D2 = differential_pressure_meter_solver(D=0.07366, m=11.879834902332082, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
assert_close(D2, 0.05)
# Cone meter
D2 = differential_pressure_meter_solver(D=0.07366, m=9.997923896460703, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
assert_close(D2, 0.05)
# wedge meter
D2 = differential_pressure_meter_solver(D=0.07366, m=8.941980099523539, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
assert_close(D2, 0.05)
def test_differential_pressure_meter_P2():
P2 = differential_pressure_meter_solver(D=0.07366, m=7.702338035732167, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ISO_5167_ORIFICE, taps='D')
assert_close(P2, 183000.0)
# Nozzle meters
P2 = differential_pressure_meter_solver(D=0.07366, m= 11.86828167015467, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
assert_close(P2, 183000.0)
P2 = differential_pressure_meter_solver(D=0.07366, m=11.370262314304702, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
assert_close(P2, 183000.0)
P2 = differential_pressure_meter_solver(D=0.07366, m=11.471786198133566, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
assert_close(P2, 183000.0)
# Venturi tubes
P2 = differential_pressure_meter_solver(D=0.07366, m=11.867774156238344, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
assert_close(P2, 183000.0)
P2 = differential_pressure_meter_solver(D=0.07366, m=12.000442363269464, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
assert_close(P2, 183000.0)
P2 = differential_pressure_meter_solver(D=0.07366, m=11.879834902332082, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
assert_close(P2, 183000.0)
# Cone meter
P2 = differential_pressure_meter_solver(D=0.07366, m=9.997923896460703, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
assert_close(P2, 183000.0)
# Wedge meter
P2 = differential_pressure_meter_solver(D=0.07366, m=8.941980099523539, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
assert_close(P2, 183000.0)
def test_differential_pressure_meter_P1():
P1 = differential_pressure_meter_solver(D=0.07366, m=7.702338035732167, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ISO_5167_ORIFICE, taps='D')
assert_close(P1, 200000)
# Nozzle meters
P1 = differential_pressure_meter_solver(D=0.07366, m=11.86828167015467, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
assert_close(P1, 200000)
P1 = differential_pressure_meter_solver(D=0.07366, m=11.370262314304702, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
assert_close(P1, 200000)
P1 = differential_pressure_meter_solver(D=0.07366, m=11.471786198133566, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
assert_close(P1, 200000)
# Venturi tubes
P1 = differential_pressure_meter_solver(D=0.07366, m=11.867774156238344, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
assert_close(P1, 200000)
P1 = differential_pressure_meter_solver(D=0.07366, m=12.000442363269464, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
assert_close(P1, 200000)
P1 = differential_pressure_meter_solver(D=0.07366, m=11.879834902332082, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
assert_close(P1, 200000)
# Cone meter
P1 = differential_pressure_meter_solver(D=0.07366, m=9.997923896460703, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
assert_close(P1, 200000)
# Wedge meter
P1 = differential_pressure_meter_solver(D=0.07366, m=8.941980099523539, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
assert_close(P1, 200000)
def test_differential_pressure_meter_solver_limits():
# ISO 5167 orifice - How low can P out go?
P_out = differential_pressure_meter_solver(D=0.07366, m=7.702338, P1=200000.0, D2=0.0345, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
assert_close(P_out, 37914.15989971644)
# same point
D2_recalc = differential_pressure_meter_solver(D=0.07366, m=7.702338, P1=200000.0, P2=37914.15989971644, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
assert_close(D2_recalc, 0.0345)
P1_recalc = differential_pressure_meter_solver(D=0.07366, m=7.702338, P2=37914.15989971644, D2=0.0345, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
assert_close(P1_recalc, 200000.0)
m_recalc = differential_pressure_meter_solver(D=0.07366, P1=200000, P2=37914.15989971644, D2=0.0345, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
assert_close(m_recalc, 7.702338)
def test_differential_pressure_meter_solver_misc():
# Test for types
m_expect = 7.918128618951788
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011,
k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
assert_close(m, m_expect)
P1 = differential_pressure_meter_solver(m=7.918128618951788, D=0.07366, D2=0.05, P2=183000.0, rho=999.1, mu=0.0011,
k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
assert_close(P1, 200000)
P2 = differential_pressure_meter_solver(m=7.918128618951788, D=0.07366, D2=0.05, P1=200000.0, rho=999.1, mu=0.0011,
k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
assert_close(P2, 183000)
D2 = differential_pressure_meter_solver(m=7.918128618951788, D=0.07366, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011,
k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
assert_close(D2, 0.05)
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=1.2, mu=0.00011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
assert_close(m, 0.2695835697819371)
m_expect = 7.9299168920313425
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D', epsilon_specified=1)
assert_close(m, m_expect)
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, meter_type='ISO 5167 orifice', taps='D', epsilon_specified=1)
assert_close(m, m_expect)
def test_unspecified_meter_C_specified():
for t in ('unspecified meter', 'ISO 5167 orifice'):
m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
meter_type=t, taps='D', C_specified=0.6)
assert_close(m, 7.512945567976503)
D2 = differential_pressure_meter_solver(D=0.07366, m=7.512945567976503, D2=None, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
meter_type=t, taps='D', C_specified=0.6)
assert_close(D2, 0.05)
P1 = differential_pressure_meter_solver(D=0.07366, D2=0.05, m=7.512945567976503,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
meter_type=t, taps='D', C_specified=0.6)
assert_close(P1, 200000.0)
P2 = differential_pressure_meter_solver(D=0.07366, D2=0.05, m=7.512945567976503,
P1=200000.0, rho=999.1, mu=0.0011, k=1.33,
meter_type=t, taps='D', C_specified=0.6)
assert_close(P2, 183000.0)
with pytest.raises(ValueError):
differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
meter_type='unspecified meter', taps='D', C_specified=None)
def test_C_eccentric_orifice_ISO_15377_1998():
C = C_eccentric_orifice_ISO_15377_1998(.2, .075)
assert_close(C, 0.6351923828125)
# Does not perfectly match - like error in ISO.
D = 1.0
betas = [1e-2*i for i in range(46, 85, 1)]
Cs_expect = [0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.628, 0.628, 0.628, 0.628, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.628, 0.628, 0.627, 0.626, 0.625, 0.624, 0.623, 0.621, 0.620, 0.618, 0.616, 0.613, 0.611, 0.608, 0.605, 0.601, 0.597]
Cs_calc = [C_eccentric_orifice_ISO_15377_1998(D=D, Do=beta_i) for beta_i in betas]
for Ci, Cj in zip(Cs_expect, Cs_calc):
assert isclose(Ci, Cj, rel_tol=1.02e-3)
def test_C_quarter_circle_orifice_ISO_15377_1998():
C = C_quarter_circle_orifice_ISO_15377_1998(.2, .075)
assert_close(C, 0.7785148437500001, rtol=1e-12)
betas = [0.245, 0.250, 0.260, 0.270, 0.280, 0.290, 0.300, 0.310, 0.320, 0.330, 0.340, 0.350, 0.360, 0.370, 0.380, 0.390, 0.400, 0.410, 0.420, 0.430, 0.440, 0.450, 0.460, 0.470, 0.480, 0.490, 0.500, 0.510, 0.520, 0.530, 0.540, 0.550, 0.560, 0.570, 0.580, 0.590, 0.600]
Cs_expect = [0.772, 0.772, 0.772, 0.773, 0.773, 0.773, 0.774, 0.774, 0.775, 0.775, 0.776, 0.776, 0.777, 0.778, 0.779, 0.780, 0.781, 0.783, 0.784, 0.786, 0.787, 0.789, 0.791, 0.794, 0.796, 0.799, 0.802, 0.805, 0.808, 0.812, 0.816, 0.820, 0.824, 0.829, 0.834, 0.839, 0.844]
for Do, C_expect in zip(betas, Cs_expect):
C = C_quarter_circle_orifice_ISO_15377_1998(D=1, Do=Do)
assert (round(C, 3) == C_expect)
def test_K_to_discharge_coefficient():
C = K_to_discharge_coefficient(D=0.07366, Do=0.05, K=5.2314291729754)
assert_close(C, 0.6151200000000001)
def test_discharge_coefficient_to_K():
K = discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512)
assert_close(K, 5.2314291729754)
def test_dP_orifice():
dP = dP_orifice(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0, C=0.61512)
assert_close(dP, 9069.474705745388)
def test_velocity_of_approach_factor():
factor = velocity_of_approach_factor(D=0.0739, Do=0.0222)
assert_close(factor, 1.0040970074165514)
def test_flow_coefficient():
factor = flow_coefficient(D=0.0739, Do=0.0222, C=0.6)
assert_close(factor, 0.6024582044499308)
def test_nozzle_expansibility():
epsilon = nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
assert_close(epsilon, 0.9945702344566746)
assert_close(nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=1e5, k=1.4), 1, rtol=1e-14)
assert_close(nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1), 0.9924074233062772, rtol=1e-13)
def test_C_long_radius_nozzle():
C = C_long_radius_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
assert_close(C, 0.9805503704679863)
def test_C_ISA_1932_nozzle():
C = C_ISA_1932_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
assert_close(C, 0.9635849973250495)
def test_C_venturi_nozzle():
C = C_venturi_nozzle(D=0.07391, Do=0.0422)
assert_close(C, 0.9698996454169576)
def test_diameter_ratio_cone_meter():
beta = diameter_ratio_cone_meter(D=0.2575, Dc=0.184)
assert_close(beta, 0.6995709873957624)
# Example in 1 matches exactly;
beta = diameter_ratio_cone_meter(D=10.137*inch, Dc=7.244*inch)
assert_close(beta, 0.6995232442563669)
def test_diameter_ratio_wedge_meter():
beta = diameter_ratio_wedge_meter(D=6.065*inch, H=1.82*inch)
assert_close(beta, 0.5024062047655528)
beta = diameter_ratio_wedge_meter(D=7.981*inch, H=3.192*inch)
assert_close(beta, 0.6111198863284705)
beta = diameter_ratio_wedge_meter(D=7.981*inch, H=2.394*inch)
assert_close(beta, 0.5022667856496335)
def test_cone_meter_expansibility_Stewart():
eps = cone_meter_expansibility_Stewart(D=1, Dc=0.8930285549745876, P1=1E6, P2=1E6*.85, k=1.2)
assert_close(eps, 0.91530745625)
def test_wedge_meter_expansibility():
data = [[1.0000, 0.9871, 0.9741, 0.9610, 0.9478, 0.9345, 0.9007, 0.8662, 0.8308],
[1.0000, 0.9863, 0.9726, 0.9588, 0.9449, 0.9310, 0.8957, 0.8599, 0.8234],
[1.0000, 0.9848, 0.9696, 0.9544, 0.9393, 0.9241, 0.8860, 0.8479, 0.8094],
[1.0000, 0.9820, 0.9643, 0.9467, 0.9292, 0.9119, 0.8692, 0.8272, 0.7857],
[1.0000, 0.9771, 0.9547, 0.9329, 0.9117, 0.8909, 0.8408, 0.7930, 0.7472]]
h_ds = [0.2, 0.3, 0.4, 0.5, 0.6]
pressure_ratios = [1.0, 0.98, 0.96, 0.94, 0.92, 0.9, 0.85, 0.8, 0.75]
calculated = []
for i, h_d in enumerate(h_ds):
row = []
beta = diameter_ratio_wedge_meter(D=1, H=h_d)
for j, p_ratio in enumerate(pressure_ratios):
ans = nozzle_expansibility(D=1, Do=h_d, P1=1E5, P2=1E5*p_ratio, k=1.2, beta=beta)
row.append(ans)
calculated.append(row)
assert_close2d(data, calculated, rtol=1e-4)
def test_dP_wedge_meter():
dP = dP_wedge_meter(1, .7, 1E6, 9.5E5)
assert_close(dP, 20344.849697483587)
def test_dP_cone_meter():
dP = dP_cone_meter(1, .7, 1E6, 9.5E5)
assert_close(dP, 25470.093437973323)
def test_C_wedge_meter_Miller():
# Large bore
D = 0.15239999999999998
C = C_wedge_meter_Miller(D=D, H=0.3*D)
assert_close(C, 0.7267069372687651)
# Tiny bore
C = C_wedge_meter_Miller(D=.6*inch, H=0.3*.6*inch)
assert_close(C, 0.8683022107124251)
# Medium bore
C = C_wedge_meter_Miller(D=1.3*inch, H=0.3*1.3*inch)
assert_close(C, 1.15113726440674)
def test_C_wedge_meter_ISO_5167_6_2017():
C = C_wedge_meter_ISO_5167_6_2017(D=0.1524, H=0.3*0.1524)
assert_close(C, 0.724792059539853)
def test_dP_venturi_tube():
dP = dP_venturi_tube(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0)
assert_close(dP, 1788.5717754177406)
def test_C_Reader_Harris_Gallagher_wet_venturi_tube():
# Example 1
# Works don't change anything
C = C_Reader_Harris_Gallagher_wet_venturi_tube(mg=5.31926, ml=5.31926/2, rhog=50.0, rhol=800., D=.1, Do=.06, H=1)
assert_close(C, 0.9754210845876333)
# From ISO 5167-4:2003, 5.6,
# epsilon = 0.994236
# nozzle_expansibility, orifice_expansibility
epsilon = nozzle_expansibility(D=.1, Do=.06, P1=60E5, P2=59.5E5, k=1.3)
assert_close(epsilon, 0.994236, rtol=0, atol=.0000001)
# Example 2
# Had to solve backwards to get ml, but C checks out perfectly
C = C_Reader_Harris_Gallagher_wet_venturi_tube(ml=0.434947009566078, mg=6.3817, rhog=50.0, rhol=1000., D=.1, Do=.06, H=1.35)
# Don't know what the ml is
# 0,976 992 is C
assert_close(C, 0.9769937323602329)
def test_dP_Reader_Harris_Gallagher_wet_venturi_tube():
dP = dP_Reader_Harris_Gallagher_wet_venturi_tube(ml=5.31926/2, mg=5.31926, rhog=50.0, rhol=800., D=.1, Do=.06, H=1.0, P1=6E6, P2=6E6-5E4)
assert_close(dP, 16957.43843129572)
def test_differential_pressure_meter_dP():
for m in [AS_CAST_VENTURI_TUBE, MACHINED_CONVERGENT_VENTURI_TUBE, ROUGH_WELDED_CONVERGENT_VENTURI_TUBE, HOLLINGSHEAD_VENTURI_SMOOTH, HOLLINGSHEAD_VENTURI_SHARP]:
dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, meter_type=m)
assert_close(dP, 1788.5717754177406)
dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, C=0.61512, meter_type=ISO_5167_ORIFICE)
assert_close(dP, 9069.474705745388)
dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, C=0.61512, meter_type=LONG_RADIUS_NOZZLE)
assert_close(dP, 9069.474705745388)
dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, C=0.61512, meter_type=ISA_1932_NOZZLE)
assert_close(dP, 9069.474705745388)
for m in (CONE_METER, HOLLINGSHEAD_CONE):
dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, meter_type=m)
assert_close(dP, 8380.848307054845)
for m in (WEDGE_METER, HOLLINGSHEAD_WEDGE):
dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, meter_type=m)
assert_close(dP, 7112.927753356824)
with pytest.raises(Exception):
differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, meter_type=VENTURI_NOZZLE)
with pytest.raises(ValueError):
differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, meter_type='NOTAMETER')
def test_differential_pressure_meter_beta():
beta = differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=LONG_RADIUS_NOZZLE)
assert_close(beta, 0.7145631067961165)
beta = differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=WEDGE_METER)
assert_close(beta, 0.8743896375172885)
beta = differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=CONE_METER)
assert_close(beta, 0.6995709873957624)
with pytest.raises(ValueError):
differential_pressure_meter_beta(D=0.07366, D2=0.05, meter_type='NOTAMETER')
assert_close(differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=HOLLINGSHEAD_CONE),
differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=CONE_METER))
assert_close(differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=HOLLINGSHEAD_WEDGE),
differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=WEDGE_METER))
def test_cone_meter_expansibility_Stewart_full():
err = lambda Dc, beta : diameter_ratio_cone_meter(D=1, Dc=Dc) - beta
solve_Dc = lambda beta : float(secant(err, .7, args=(beta,)))
# Accidentally missed the beta ratio 0.75, oops
vals = [[1.0000, 0.9887, 0.9774, 0.9661, 0.9548, 0.9435, 0.9153, 0.8871, 0.8588],
[1.0000, 0.9885, 0.9769, 0.9654, 0.9538, 0.9423, 0.9134, 0.8846, 0.8557],
[1.0000, 0.9881, 0.9762, 0.9644, 0.9525, 0.9406, 0.9109, 0.8812, 0.8515],
[1.0000, 0.9877, 0.9754, 0.9630, 0.9507, 0.9384, 0.9076, 0.8768, 0.8460],
[1.0000, 0.9871, 0.9742, 0.9613, 0.9485, 0.9356, 0.9033, 0.8711, 0.8389],
[1.0000, 0.9864, 0.9728, 0.9592, 0.9456, 0.9320, 0.8980, 0.8640, 0.8300]]
pressure_ratios = [1, 0.98, 0.96, 0.94, 0.92, 0.9, 0.85, 0.8, 0.75]
betas = [.45, .5, .55, .6, .65, .7, .75]
k = 1.2
for i, beta in enumerate(betas[:-1]):
Dc = solve_Dc(beta)
for j, pr in enumerate(pressure_ratios):
eps = cone_meter_expansibility_Stewart(D=1, Dc=Dc, P1=1E5, P2=pr*1E5, k=1.2)
eps = round(eps, 4)
assert eps == vals[i][j]
def test_C_ISA_1932_nozzle_full():
Cs = [[0.9616, 0.9692, 0.9750, 0.9773, 0.9789, 0.9813, 0.9820, 0.9821, 0.9822],
[0.9604, 0.9682, 0.9741, 0.9764, 0.9781, 0.9805, 0.9812, 0.9813, 0.9814],
[0.9592, 0.9672, 0.9731, 0.9755, 0.9773, 0.9797, 0.9804, 0.9805, 0.9806],
[0.9579, 0.9661, 0.9722, 0.9746, 0.9763, 0.9788, 0.9795, 0.9797, 0.9797],
[0.9567, 0.9650, 0.9711, 0.9736, 0.9754, 0.9779, 0.9786, 0.9787, 0.9788],
[0.9554, 0.9638, 0.9700, 0.9726, 0.9743, 0.9769, 0.9776, 0.9777, 0.9778],
[0.9542, 0.9626, 0.9689, 0.9715, 0.9733, 0.9758, 0.9766, 0.9767, 0.9768],
[0.9529, 0.9614, 0.9678, 0.9703, 0.9721, 0.9747, 0.9754, 0.9756, 0.9757],
[0.9516, 0.9602, 0.9665, 0.9691, 0.9709, 0.9735, 0.9743, 0.9744, 0.9745],
[0.9503, 0.9589, 0.9653, 0.9678, 0.9696, 0.9722, 0.9730, 0.9731, 0.9732],
[0.9490, 0.9576, 0.9639, 0.9665, 0.9683, 0.9709, 0.9717, 0.9718, 0.9719],
[0.9477, 0.9562, 0.9626, 0.9651, 0.9669, 0.9695, 0.9702, 0.9704, 0.9705],
[0.9464, 0.9548, 0.9611, 0.9637, 0.9655, 0.9680, 0.9688, 0.9689, 0.9690],
[0.9451, 0.9534, 0.9596, 0.9621, 0.9639, 0.9664, 0.9672, 0.9673, 0.9674],
[0.9438, 0.9520, 0.9581, 0.9606, 0.9623, 0.9648, 0.9655, 0.9656, 0.9657],
[0.9424, 0.9505, 0.9565, 0.9589, 0.9606, 0.9630, 0.9638, 0.9639, 0.9640],
[0.9411, 0.9490, 0.9548, 0.9572, 0.9588, 0.9612, 0.9619, 0.9620, 0.9621],
[0.9398, 0.9474, 0.9531, 0.9554, 0.9570, 0.9593, 0.9600, 0.9601, 0.9602],
[0.9385, 0.9458, 0.9513, 0.9535, 0.9550, 0.9573, 0.9579, 0.9580, 0.9581],
[0.9371, 0.9442, 0.9494, 0.9515, 0.9530, 0.9551, 0.9558, 0.9559, 0.9560],
[0.9358, 0.9425, 0.9475, 0.9495, 0.9509, 0.9529, 0.9535, 0.9536, 0.9537],
[0.9345, 0.9408, 0.9455, 0.9473, 0.9487, 0.9506, 0.9511, 0.9512, 0.9513],
[0.9332, 0.9390, 0.9434, 0.9451, 0.9464, 0.9481, 0.9487, 0.9487, 0.9488],
[0.9319, 0.9372, 0.9412, 0.9428, 0.9440, 0.9456, 0.9460, 0.9461, 0.9462],
[0.9306, 0.9354, 0.9390, 0.9404, 0.9414, 0.9429, 0.9433, 0.9434, 0.9435],
[0.9293, 0.9335, 0.9367, 0.9379, 0.9388, 0.9401, 0.9405, 0.9405, 0.9406],
[0.9280, 0.9316, 0.9343, 0.9353, 0.9361, 0.9372, 0.9375, 0.9375, 0.9376],
[0.9268, 0.9296, 0.9318, 0.9326, 0.9332, 0.9341, 0.9344, 0.9344, 0.9344],
[0.9255, 0.9276, 0.9292, 0.9298, 0.9303, 0.9309, 0.9311, 0.9311, 0.9312],
[0.9243, 0.9256, 0.9265, 0.9269, 0.9272, 0.9276, 0.9277, 0.9277, 0.9278],
[0.9231, 0.9235, 0.9238, 0.9239, 0.9240, 0.9241, 0.9242, 0.9242, 0.9242],
[0.9219, 0.9213, 0.9209, 0.9208, 0.9207, 0.9205, 0.9205, 0.9205, 0.9205],
[0.9207, 0.9192, 0.9180, 0.9176, 0.9172, 0.9168, 0.9166, 0.9166, 0.9166],
[0.9195, 0.9169, 0.9150, 0.9142, 0.9136, 0.9128, 0.9126, 0.9126, 0.9125],
[0.9184, 0.9147, 0.9118, 0.9107, 0.9099, 0.9088, 0.9084, 0.9084, 0.9083],
[0.9173, 0.9123, 0.9086, 0.9071, 0.9060, 0.9045, 0.9041, 0.9040, 0.9040],
[0.9162, 0.9100, 0.9053, 0.9034, 0.9020, 0.9001, 0.8996, 0.8995, 0.8994]]
def C_ISA_1932_nozzle(D, Do, Re_D):
beta = Do/D
C = (0.9900 - 0.2262*beta**4.1
- (0.00175*beta**2 - 0.0033*beta**4.15)*(1E6/Re_D)**1.15)
return C
Rd_values = [2E4, 3E4, 5E4, 7E4, 1E5, 3E5, 1E6, 2E6, 1E7]
betas = [i/100. for i in range(44, 81)]
for i in range(len(betas)):
Cs_expect = Cs[i]
beta = betas[i]
Cs_calc = [round(C_ISA_1932_nozzle(D=1, Do=beta, Re_D=i), 4) for i in Rd_values]
assert_close1d(Cs_expect, Cs_calc, atol=1E-4)
# There were three typos in there in the values for beta of 0.77 or 0.78.
# values: 0.9215, 0.9412, 0.9803
def test_C_long_radius_nozzle_full():
Cs = [[0.9673, 0.9759, 0.9834, 0.9873, 0.9900, 0.9924, 0.9936, 0.9952, 0.9956],
[0.9659, 0.9748, 0.9828, 0.9868, 0.9897, 0.9922, 0.9934, 0.9951, 0.9955],
[0.9645, 0.9739, 0.9822, 0.9864, 0.9893, 0.9920, 0.9933, 0.9951, 0.9955],
[0.9632, 0.9730, 0.9816, 0.9860, 0.9891, 0.9918, 0.9932, 0.9950, 0.9954],
[0.9619, 0.9721, 0.9810, 0.9856, 0.9888, 0.9916, 0.9930, 0.9950, 0.9954],
[0.9607, 0.9712, 0.9805, 0.9852, 0.9885, 0.9914, 0.9929, 0.9949, 0.9954],
[0.9596, 0.9704, 0.9800, 0.9848, 0.9882, 0.9913, 0.9928, 0.9948, 0.9953],
[0.9584, 0.9696, 0.9795, 0.9845, 0.9880, 0.9911, 0.9927, 0.9948, 0.9953],
[0.9573, 0.9688, 0.9790, 0.9841, 0.9877, 0.9910, 0.9926, 0.9947, 0.9953],
[0.9562, 0.9680, 0.9785, 0.9838, 0.9875, 0.9908, 0.9925, 0.9947, 0.9952],
[0.9552, 0.9673, 0.9780, 0.9834, 0.9873, 0.9907, 0.9924, 0.9947, 0.9952],
[0.9542, 0.9666, 0.9776, 0.9831, 0.9870, 0.9905, 0.9923, 0.9946, 0.9952],
[0.9532, 0.9659, 0.9771, 0.9828, 0.9868, 0.9904, 0.9922, 0.9946, 0.9951],
[0.9523, 0.9652, 0.9767, 0.9825, 0.9866, 0.9902, 0.9921, 0.9945, 0.9951],
[0.9513, 0.9645, 0.9763, 0.9822, 0.9864, 0.9901, 0.9920, 0.9945, 0.9951],
[0.9503, 0.9639, 0.9759, 0.9819, 0.9862, 0.9900, 0.9919, 0.9944, 0.9950],
[0.9499, 0.9635, 0.9756, 0.9818, 0.9861, 0.9899, 0.9918, 0.9944, 0.9950],
[0.9494, 0.9632, 0.9754, 0.9816, 0.9860, 0.9898, 0.9918, 0.9944, 0.9950],
[0.9490, 0.9629, 0.9752, 0.9815, 0.9859, 0.9898, 0.9917, 0.9944, 0.9950],
[0.9485, 0.9626, 0.9750, 0.9813, 0.9858, 0.9897, 0.9917, 0.9944, 0.9950],
[0.9481, 0.9623, 0.9748, 0.9812, 0.9857, 0.9897, 0.9917, 0.9943, 0.9950],
[0.9476, 0.9619, 0.9746, 0.9810, 0.9856, 0.9896, 0.9916, 0.9943, 0.9950],
[0.9472, 0.9616, 0.9745, 0.9809, 0.9855, 0.9895, 0.9916, 0.9943, 0.9949],
[0.9468, 0.9613, 0.9743, 0.9808, 0.9854, 0.9895, 0.9915, 0.9943, 0.9949],
[0.9463, 0.9610, 0.9741, 0.9806, 0.9853, 0.9894, 0.9915, 0.9943, 0.9949],
[0.9459, 0.9607, 0.9739, 0.9805, 0.9852, 0.9893, 0.9914, 0.9942, 0.9949],
[0.9455, 0.9604, 0.9737, 0.9804, 0.9851, 0.9893, 0.9914, 0.9942, 0.9949],
[0.9451, 0.9601, 0.9735, 0.9802, 0.9850, 0.9892, 0.9914, 0.9942, 0.9949],
[0.9447, 0.9599, 0.9733, 0.9801, 0.9849, 0.9892, 0.9913, 0.9942, 0.9949],
[0.9443, 0.9596, 0.9731, 0.9800, 0.9848, 0.9891, 0.9913, 0.9942, 0.9948],
[0.9439, 0.9593, 0.9730, 0.9799, 0.9847, 0.9891, 0.9912, 0.9941, 0.9948],
[0.9435, 0.9590, 0.9728, 0.9797, 0.9846, 0.9890, 0.9912, 0.9941, 0.9948],
[0.9430, 0.9587, 0.9726, 0.9796, 0.9845, 0.9889, 0.9912, 0.9941, 0.9948],
[0.9427, 0.9584, 0.9724, 0.9795, 0.9845, 0.9889, 0.9911, 0.9941, 0.9948],
[0.9423, 0.9581, 0.9722, 0.9793, 0.9844, 0.9888, 0.9911, 0.9941, 0.9948],
[0.9419, 0.9579, 0.9721, 0.9792, 0.9843, 0.9888, 0.9910, 0.9941, 0.9948],
[0.9415, 0.9576, 0.9719, 0.9791, 0.9842, 0.9887, 0.9910, 0.9940, 0.9948],
[0.9411, 0.9573, 0.9717, 0.9790, 0.9841, 0.9887, 0.9910, 0.9940, 0.9947],
[0.9407, 0.9570, 0.9715, 0.9789, 0.9840, 0.9886, 0.9909, 0.9940, 0.9947],
[0.9403, 0.9568, 0.9714, 0.9787, 0.9839, 0.9886, 0.9909, 0.9940, 0.9947],
[0.9399, 0.9565, 0.9712, 0.9786, 0.9839, 0.9885, 0.9908, 0.9940, 0.9947],
[0.9396, 0.9562, 0.9710, 0.9785, 0.9838, 0.9884, 0.9908, 0.9940, 0.9947],
[0.9392, 0.9560, 0.9709, 0.9784, 0.9837, 0.9884, 0.9908, 0.9939, 0.9947],
[0.9388, 0.9557, 0.9707, 0.9783, 0.9836, 0.9883, 0.9907, 0.9939, 0.9947],
[0.9385, 0.9555, 0.9705, 0.9781, 0.9835, 0.9883, 0.9907, 0.9939, 0.9947],
[0.9381, 0.9552, 0.9704, 0.9780, 0.9834, 0.9882, 0.9907, 0.9939, 0.9947]]
Rd_values = [1E4, 2E4, 5E4, 1E5, 2E5, 5E5, 1E6, 5E6, 1E7]
betas = [i/100. for i in list(range(20, 51, 2)) + list(range(51, 81))]
def C_long_radius_nozzle(D, Do, Re_D):
beta = Do/D
return 0.9965 - 0.00653*beta**0.5*(1E6/Re_D)**0.5
for i in range(len(betas)):
Cs_expect = Cs[i]
beta = betas[i]
Cs_calc = [round(C_long_radius_nozzle(D=1, Do=beta, Re_D=i), 4) for i in Rd_values]
assert_close1d(Cs_expect, Cs_calc, atol=1E-4)
# Errata:
# 0.9834 to 0.9805
# 0.9828 to 9800
# 0.9822 to 0.9795
# 0.9816 to 0.979
# 0.981 to 0.9785
# 0.9805 to 0.9780
# 0.98 to 0.9776
# 0.9795 to 0.9771
# 0.979 to 0.9767
# 0.9785 to 0.9763
# 9.9607 to 0.9607
# 0.9875 to 0.9785
def test_C_venturi_nozzle_full():
# Many values do not match well, but the equation has been checked with both standards.
betas = [0.32, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78]
Cs = [0.9847, 0.9846, 0.9845, 0.9843, 0.9841, 0.9838, 0.9836, 0.9833, 0.9830, 0.9826, 0.9823, 0.9818, 0.9814, 0.9809, 0.9804, 0.9798, 0.9792, 0.9786, 0.9779, 0.9771, 0.9763, 0.9755, 0.9745, 0.9736, 0.9725, 0.9714, 0.9702, 0.9689, 0.9676, 0.9661, 0.9646, 0.9630, 0.9613, 0.9595, 0.9576, 0.9556, 0.9535, 0.9512, 0.9489, 0.9464, 0.9438, 0.9411, 0.9382, 0.9352, 0.9321, 0.9288, 0.9253, 0.9236]
Cs_calc = [C_venturi_nozzle(D=1, Do=beta) for beta in betas]
assert_close1d(Cs, Cs_calc, rtol=5E-3)
def test_differential_pressure_meter_C_epsilon():
# Some random cases
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
meter_type=ISO_15377_ECCENTRIC_ORIFICE)
assert_close(C, 0.6284616939680627)
assert_close(eps, 0.9711026966676307)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
meter_type=ISO_15377_QUARTER_CIRCLE_ORIFICE)
assert_close(C, 0.899402420975695)
assert_close(eps, 0.9711026966676307)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
meter_type=ISO_15377_CONICAL_ORIFICE)
assert_close(C, 0.734)
assert_close(eps, 0.9532330165749132)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
meter_type=MILLER_ORIFICE, taps='corner')
assert_close(C, 0.6068011224659587)
assert_close(eps, 0.9711026966676307)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
meter_type=MILLER_CONICAL_ORIFICE)
assert_close(C, 0.73)
assert_close(eps, 0.9532330165749132)
# Test one case of the default translation
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,taps='corner',
meter_type=CONCENTRIC_ORIFICE)
C_iso, eps_iso = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,taps='corner',
meter_type=CONCENTRIC_ORIFICE)
assert C == C_iso
assert eps == eps_iso
with pytest.raises(ValueError):
differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011,
k=1.33, m=7.702338035732168, meter_type='NOTAREAMETER')
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
meter_type=HOLLINGSHEAD_ORIFICE)
assert_close(C, 0.7809066489631418)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
meter_type=HOLLINGSHEAD_VENTURI_SMOOTH)
assert_close(C, 0.7765555753764869)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
meter_type=HOLLINGSHEAD_VENTURI_SHARP)
assert_close(C, 0.7710760458207614)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
meter_type=HOLLINGSHEAD_CONE)
assert_close(C, 0.5796605776735264)
C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.025, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
meter_type=HOLLINGSHEAD_WEDGE)
assert_close(C, 0.7002380207294499)
def test_issue_49():
kwargs = {'D': 0.36, 'rho': 39.6, 'mu': 1.32e-05, 'k': 1.3,'D2': 0.28,'P1': 5000000.0,
'P2': 4995000.0, 'meter_type': 'long radius nozzle'}
massflow = differential_pressure_meter_solver(kwargs['D'], kwargs['rho'],
kwargs['mu'], kwargs['k'],
kwargs['D2'], kwargs['P1'],
kwargs['P2'], meter_type=kwargs['meter_type'])
assert_close(massflow, 48.36465032864742)
@pytest.mark.fuzz
@pytest.mark.slow
def test_fuzz_K_to_discharge_coefficient():
'''
# Testing the different formulas
from sympy import *
C, beta, K = symbols('C, beta, K')
expr = Eq(K, (sqrt(1 - beta**4*(1 - C*C))/(C*beta**2) - 1)**2)
solns = solve(expr, C)
[i.subs({'K': 5.2314291729754, 'beta': 0.05/0.07366}) for i in solns]
[-sqrt(-beta**4/(-2*sqrt(K)*beta**4 + K*beta**4) + 1/(-2*sqrt(K)*beta**4 + K*beta**4)),
sqrt(-beta**4/(-2*sqrt(K)*beta**4 + K*beta**4) + 1/(-2*sqrt(K)*beta**4 + K*beta**4)),
-sqrt(-beta**4/(2*sqrt(K)*beta**4 + K*beta**4) + 1/(2*sqrt(K)*beta**4 + K*beta**4)),
sqrt(-beta**4/(2*sqrt(K)*beta**4 + K*beta**4) + 1/(2*sqrt(K)*beta**4 + K*beta**4))]
# Getting the formula
from sympy import *
C, beta, K = symbols('C, beta, K')
expr = Eq(K, (sqrt(1 - beta**4*(1 - C*C))/(C*beta**2) - 1)**2)
print(latex(solve(expr, C)[3]))
'''
Ds = logspace(log10(1-1E-9), log10(1E-9), 8)
for D_ratio in Ds:
Ks = logspace(log10(1E-9), log10(50000), 8)
Ks_recalc = []
for K in Ks:
C = K_to_discharge_coefficient(D=1.0, Do=D_ratio, K=K)
K_calc = discharge_coefficient_to_K(D=1.0, Do=D_ratio, C=C)
Ks_recalc.append(K_calc)
assert_close1d(Ks, Ks_recalc)
@pytest.mark.scipy
@pytest.mark.slow
def test_orifice_std_Hollingshead_fit():
import numpy as np
from scipy.interpolate import RectBivariateSpline, bisplev
from fluids.flow_meter import orifice_std_betas_Hollingshead, orifice_std_Hollingshead_Cs, orifice_std_Hollingshead_tck, orifice_std_logRes_Hollingshead
obj = RectBivariateSpline(orifice_std_betas_Hollingshead, orifice_std_logRes_Hollingshead,
np.array(orifice_std_Hollingshead_Cs), s=0, kx=3, ky=3)
assert_close(obj(.55, log(1e3))[0][0], bisplev(.55, log(1e3), orifice_std_Hollingshead_tck))
assert_close1d(obj.tck[0], orifice_std_Hollingshead_tck[0])
assert_close1d(obj.tck[1], orifice_std_Hollingshead_tck[1])
assert_close1d(obj.tck[2], orifice_std_Hollingshead_tck[2])
@pytest.mark.scipy
@pytest.mark.slow
def test_wedge_Hollingshead_fit():
import numpy as np
from scipy.interpolate import RectBivariateSpline, bisplev
from fluids.flow_meter import wedge_betas_Hollingshead, wedge_Hollingshead_Cs, wedge_Hollingshead_tck, wedge_logRes_Hollingshead
obj = RectBivariateSpline(wedge_betas_Hollingshead, wedge_logRes_Hollingshead,
np.array(wedge_Hollingshead_Cs), s=0, kx=1, ky=3)
assert_close(obj(.55, log(1e4))[0][0], bisplev(.55, log(1e4), wedge_Hollingshead_tck))
assert_close1d(obj.tck[0], wedge_Hollingshead_tck[0])
assert_close1d(obj.tck[1], wedge_Hollingshead_tck[1])
assert_close1d(obj.tck[2], wedge_Hollingshead_tck[2])
@pytest.mark.scipy
@pytest.mark.slow
def test_cone_Hollingshead_fit():
import numpy as np
from scipy.interpolate import RectBivariateSpline, bisplev
from fluids.flow_meter import cone_betas_Hollingshead, cone_Hollingshead_Cs, cone_Hollingshead_tck, cone_logRes_Hollingshead
obj = RectBivariateSpline(cone_betas_Hollingshead, cone_logRes_Hollingshead,
np.array(cone_Hollingshead_Cs), s=0, kx=2, ky=3)
assert_close(obj(.77, log(1e4))[0][0], bisplev(.77, log(1e4), cone_Hollingshead_tck))
assert_close1d(obj.tck[0], cone_Hollingshead_tck[0])
assert_close1d(obj.tck[1], cone_Hollingshead_tck[1])
assert_close1d(obj.tck[2], cone_Hollingshead_tck[2])
|