File: test_flow_meter.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (983 lines) | stat: -rw-r--r-- 50,076 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

from math import log, log10

import pytest

from fluids.constants import inch
from fluids.flow_meter import (
    AS_CAST_VENTURI_TUBE,
    CONCENTRIC_ORIFICE,
    CONE_METER,
    HOLLINGSHEAD_CONE,
    HOLLINGSHEAD_ORIFICE,
    HOLLINGSHEAD_VENTURI_SHARP,
    HOLLINGSHEAD_VENTURI_SMOOTH,
    HOLLINGSHEAD_WEDGE,
    ISA_1932_NOZZLE,
    ISO_5167_ORIFICE,
    ISO_15377_CONICAL_ORIFICE,
    ISO_15377_ECCENTRIC_ORIFICE,
    ISO_15377_QUARTER_CIRCLE_ORIFICE,
    LONG_RADIUS_NOZZLE,
    MACHINED_CONVERGENT_VENTURI_TUBE,
    MILLER_CONICAL_ORIFICE,
    MILLER_ECCENTRIC_ORIFICE,
    MILLER_ORIFICE,
    MILLER_QUARTER_CIRCLE_ORIFICE,
    MILLER_SEGMENTAL_ORIFICE,
    ORIFICE_CORNER_TAPS,
    ORIFICE_D_AND_D_2_TAPS,
    ORIFICE_FLANGE_TAPS,
    ORIFICE_PIPE_TAPS,
    ORIFICE_VENA_CONTRACTA_TAPS,
    ROUGH_WELDED_CONVERGENT_VENTURI_TUBE,
    TAPS_OPPOSITE,
    TAPS_SIDE,
    VENTURI_NOZZLE,
    WEDGE_METER,
    C_eccentric_orifice_ISO_15377_1998,
    C_ISA_1932_nozzle,
    C_long_radius_nozzle,
    C_Miller_1996,
    C_quarter_circle_orifice_ISO_15377_1998,
    C_Reader_Harris_Gallagher,
    C_Reader_Harris_Gallagher_wet_venturi_tube,
    C_venturi_nozzle,
    C_wedge_meter_ISO_5167_6_2017,
    C_wedge_meter_Miller,
    K_to_discharge_coefficient,
    cone_meter_expansibility_Stewart,
    diameter_ratio_cone_meter,
    diameter_ratio_wedge_meter,
    differential_pressure_meter_beta,
    differential_pressure_meter_C_epsilon,
    differential_pressure_meter_dP,
    differential_pressure_meter_solver,
    discharge_coefficient_to_K,
    dP_cone_meter,
    dP_orifice,
    dP_Reader_Harris_Gallagher_wet_venturi_tube,
    dP_venturi_tube,
    dP_wedge_meter,
    flow_coefficient,
    flow_meter_discharge,
    nozzle_expansibility,
    orifice_expansibility,
    orifice_expansibility_1989,
    velocity_of_approach_factor,
)
from fluids.numerics import assert_close, assert_close1d, assert_close2d, isclose, logspace, secant


def test_flow_meter_discharge():
    m = flow_meter_discharge(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, rho=1.1646, C=0.5988, expansibility=0.9975)
    assert_close(m, 0.01120390943807026)

def test_orifice_expansibility():
    epsilon = orifice_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
    assert_close(epsilon, 0.9974739057343425)
    # Tested against a value in the standard

def test_orifice_expansibility_1989():
    # No actual sample points
    epsilon = orifice_expansibility_1989(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
    assert_close(epsilon, 0.9970510687411718)

def test_C_Reader_Harris_Gallagher():
    C = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='corner' )
    assert_close(C, 0.6000085121444034)

    C = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='D' )
    assert_close(C, 0.5988219225153976)

    C = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='flange' )
    assert_close(C, 0.5990042535666878)
#
#def test_Reader_Harris_Gallagher_discharge():
#    m = Reader_Harris_Gallagher_discharge(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, taps='D')
#    assert_close(m, 7.702338035732167)

    with pytest.raises(Exception):
        C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5,  m=0.12, taps='NOTALOCATION')

    # Test continuity at the low-diameter function
    kwargs = dict(Do=0.0222, rho=1.1645909036, mu=0.0000185861753095, m=0.124431876, taps='corner')
    C1 = C_Reader_Harris_Gallagher(D=0.07112, **kwargs)
    C2 = C_Reader_Harris_Gallagher(D=0.07112-1e-13, **kwargs)
    assert_close(C1, C2)

def test_C_Miller_1996():
    C_flange_ISO = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps='flange')
    C_corner_ISO = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps='corner')
    C_D_D2_ISO = C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps=ORIFICE_D_AND_D_2_TAPS)

    C_flange = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
    C_flange_2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='orifice', taps=ORIFICE_FLANGE_TAPS)
    assert C_flange == C_flange_2
    assert_close(C_flange, 0.599065557156788, rtol=1e-12)
    assert_close(C_flange, C_flange_ISO, rtol=2e-4)

    C_flange_small_ISO = C_Reader_Harris_Gallagher(D=0.04, Do=0.02, rho=1.165, mu=1.85E-5, m=0.2, taps='flange')
    C_flange_small = C_Miller_1996(D=0.04, Do=0.02, rho=1.165, mu=1.85E-5, m=0.2, subtype=MILLER_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
    assert_close(C_flange_small, 0.6035249226284967, rtol=1e-12)
    assert_close(C_flange_small_ISO, C_flange_small, rtol=1e-2)

    C_corner = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_CORNER_TAPS)
    assert_close(C_corner, 0.5991255880475622, rtol=1e-12)
    assert_close(C_corner, C_corner_ISO, rtol=2e-3)

    C_D_D2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_D_AND_D_2_TAPS)
    assert_close(C_D_D2, 0.5836056345693277, rtol=1e-12)
    assert_close(C_D_D2, C_D_D2_ISO, rtol=3e-2)

    C_pipe = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps=ORIFICE_PIPE_TAPS)
    assert_close(C_pipe, 0.6338716097225481, rtol=1e-12)



    C_flange_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
    C_flange_small2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='segmental orifice', taps=ORIFICE_FLANGE_TAPS)
    assert C_flange_small == C_flange_small

    C_flange_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_FLANGE_TAPS)
    assert_close(C_flange_small, 0.6343546437000684, rtol=1e-12)
    assert_close(C_flange_large, 0.6301688962913937, rtol=1e-12)

    C_vc_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS)
    C_vc_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_SEGMENTAL_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS)
    assert_close(C_vc_small, 0.6341386019820933, rtol=1e-12)
    assert_close(C_vc_large, 0.6301688962913937, rtol=1e-12)

    C_flange_opp_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_OPPOSITE)
    C_flange_opp_small2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='eccentric orifice', taps='flange', tap_position=TAPS_OPPOSITE)
    assert_close(C_flange_opp_small, 0.6096299230744815, rtol=1e-12)
    C_flange_opp_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_OPPOSITE)
    assert_close(C_flange_opp_large, 0.6196903510975135, rtol=1e-12)

    C_flange_side_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_SIDE)
    C_flange_side_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps='flange', tap_position=TAPS_SIDE)
    assert_close(C_flange_side_small, 0.6086231594104639, rtol=1e-12)
    assert_close(C_flange_side_large, 0.6227796822413327, rtol=1e-12)


    C_vc_opp_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_OPPOSITE)
    assert_close(C_vc_opp_small, 0.6108105171632562, rtol=1e-12)
    C_vc_opp_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_OPPOSITE)
    assert_close(C_vc_opp_large, 0.6190713098741648, rtol=1e-12)

    C_vc_side_small = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_SIDE)
    C_vc_side_large = C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_VENA_CONTRACTA_TAPS, tap_position=TAPS_SIDE)
    assert_close(C_vc_side_small, 0.6089351556538237, rtol=1e-12)
    assert_close(C_vc_side_large, 0.6214809940486437, rtol=1e-12)

    # Error testing
    with pytest.raises(ValueError):
        C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ORIFICE, taps='NOTATAP')

    with pytest.raises(ValueError):
        C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps='NOTATAP')

    with pytest.raises(ValueError):
        C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position='NOTAPOSITION')

    with pytest.raises(ValueError):
        C_Miller_1996(D=0.2, Do=0.08, rho=1.165, mu=1.85E-5, m=2, subtype=MILLER_SEGMENTAL_ORIFICE, taps='BADTAP')

    with pytest.raises(ValueError):
        C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='BADTYPE')

    # Conical
    C_high = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_CONICAL_ORIFICE)
    assert C_high == 0.73
    C_low = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.0001, subtype=MILLER_CONICAL_ORIFICE)
    assert C_low == 0.734
    C_low2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.0001, subtype='conical orifice')
    assert C_low2 == C_low
    # Quarter circle
    C_circ = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype=MILLER_QUARTER_CIRCLE_ORIFICE)
    assert_close(C_circ, 0.7750496225919683)
    C_circ2 = C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, subtype='quarter circle orifice')
    assert C_circ == C_circ2

def test_differential_pressure_meter_discharge():
    # Orifice
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ISO_5167_ORIFICE, taps='D')
    assert_close(m, 7.702338035732167)

    # Nozzle meters
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
    assert_close(m, 11.86828167015467)

    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
    assert_close(m, 11.370262314304702)

    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
    assert_close(m, 11.471786198133566)

    # Venturi tubes
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
    assert_close(m, 11.867774156238344)

    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
    assert_close(m, 12.000442363269464)

    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
    assert_close(m, 11.879834902332082)

    # Cone meter
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
    assert_close(m, 9.997923896460703)

    # wedge meter
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
    assert_close(m, 8.941980099523539)

    with pytest.raises(ValueError):
        differential_pressure_meter_solver(D=.07366, m=7.702338, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')


def test_differential_pressure_meter_diameter():
    # ISO 5167 orifice
    D2 = differential_pressure_meter_solver(D=0.07366, m=7.702338035732167, P1=200000.0,  P2=183000.0, rho=999.1, mu=0.0011, k=1.33,  meter_type=ISO_5167_ORIFICE, taps='D')
    assert_close(D2, 0.05)

    # Nozzle meters
    D2 = differential_pressure_meter_solver(D=0.07366, m= 11.86828167015467, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
    assert_close(D2, 0.05)

    D2 = differential_pressure_meter_solver(D=0.07366, m=11.370262314304702, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
    assert_close(D2, 0.05)

    D2 = differential_pressure_meter_solver(D=0.07366, m=11.471786198133566, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
    assert_close(D2, 0.05)

    # Venturi tubes
    D2 = differential_pressure_meter_solver(D=0.07366, m=11.867774156238344, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
    assert_close(D2, 0.05)

    D2 = differential_pressure_meter_solver(D=0.07366, m=12.000442363269464, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
    assert_close(D2, 0.05)

    D2 = differential_pressure_meter_solver(D=0.07366, m=11.879834902332082, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
    assert_close(D2, 0.05)

    # Cone meter
    D2 = differential_pressure_meter_solver(D=0.07366, m=9.997923896460703, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
    assert_close(D2, 0.05)

    # wedge meter
    D2 = differential_pressure_meter_solver(D=0.07366, m=8.941980099523539, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
    assert_close(D2, 0.05)


def test_differential_pressure_meter_P2():
    P2 = differential_pressure_meter_solver(D=0.07366, m=7.702338035732167, P1=200000.0,  D2=0.05, rho=999.1, mu=0.0011, k=1.33,  meter_type=ISO_5167_ORIFICE, taps='D')
    assert_close(P2, 183000.0)

    # Nozzle meters
    P2 = differential_pressure_meter_solver(D=0.07366, m= 11.86828167015467, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
    assert_close(P2, 183000.0)

    P2 = differential_pressure_meter_solver(D=0.07366, m=11.370262314304702, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
    assert_close(P2, 183000.0)

    P2 = differential_pressure_meter_solver(D=0.07366, m=11.471786198133566, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
    assert_close(P2, 183000.0)

    # Venturi tubes
    P2 = differential_pressure_meter_solver(D=0.07366, m=11.867774156238344, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
    assert_close(P2, 183000.0)

    P2 = differential_pressure_meter_solver(D=0.07366, m=12.000442363269464, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
    assert_close(P2, 183000.0)

    P2 = differential_pressure_meter_solver(D=0.07366, m=11.879834902332082, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
    assert_close(P2, 183000.0)

    # Cone meter
    P2 = differential_pressure_meter_solver(D=0.07366, m=9.997923896460703, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
    assert_close(P2, 183000.0)

    # Wedge meter
    P2 = differential_pressure_meter_solver(D=0.07366, m=8.941980099523539, P1=200000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
    assert_close(P2, 183000.0)

def test_differential_pressure_meter_P1():
    P1 = differential_pressure_meter_solver(D=0.07366, m=7.702338035732167, P2=183000.0,  D2=0.05, rho=999.1, mu=0.0011, k=1.33,  meter_type=ISO_5167_ORIFICE, taps='D')
    assert_close(P1, 200000)

    # Nozzle meters
    P1 = differential_pressure_meter_solver(D=0.07366, m=11.86828167015467, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=LONG_RADIUS_NOZZLE)
    assert_close(P1, 200000)

    P1 = differential_pressure_meter_solver(D=0.07366, m=11.370262314304702, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ISA_1932_NOZZLE)
    assert_close(P1, 200000)

    P1 = differential_pressure_meter_solver(D=0.07366, m=11.471786198133566, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=VENTURI_NOZZLE)
    assert_close(P1, 200000)

    # Venturi tubes
    P1 = differential_pressure_meter_solver(D=0.07366, m=11.867774156238344, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=AS_CAST_VENTURI_TUBE)
    assert_close(P1, 200000)

    P1 = differential_pressure_meter_solver(D=0.07366, m=12.000442363269464, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=MACHINED_CONVERGENT_VENTURI_TUBE)
    assert_close(P1, 200000)

    P1 = differential_pressure_meter_solver(D=0.07366, m=11.879834902332082, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=ROUGH_WELDED_CONVERGENT_VENTURI_TUBE)
    assert_close(P1, 200000)

    # Cone meter
    P1 = differential_pressure_meter_solver(D=0.07366, m=9.997923896460703, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=CONE_METER)
    assert_close(P1, 200000)

    # Wedge meter
    P1 = differential_pressure_meter_solver(D=0.07366, m=8.941980099523539, P2=183000.0, D2=0.05, rho=999.1, mu=0.0011, k=1.33, meter_type=WEDGE_METER)
    assert_close(P1, 200000)




def test_differential_pressure_meter_solver_limits():
    # ISO 5167 orifice - How low can P out go?
    P_out = differential_pressure_meter_solver(D=0.07366, m=7.702338, P1=200000.0, D2=0.0345, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
    assert_close(P_out, 37914.15989971644)

    # same point
    D2_recalc = differential_pressure_meter_solver(D=0.07366, m=7.702338, P1=200000.0, P2=37914.15989971644, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
    assert_close(D2_recalc, 0.0345)

    P1_recalc = differential_pressure_meter_solver(D=0.07366, m=7.702338, P2=37914.15989971644, D2=0.0345, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
    assert_close(P1_recalc, 200000.0)

    m_recalc = differential_pressure_meter_solver(D=0.07366, P1=200000, P2=37914.15989971644, D2=0.0345, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
    assert_close(m_recalc, 7.702338)

def test_differential_pressure_meter_solver_misc():
    # Test for types

    m_expect = 7.918128618951788
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,  P2=183000.0, rho=999.1, mu=0.0011,
                                       k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
    assert_close(m, m_expect)

    P1 = differential_pressure_meter_solver(m=7.918128618951788, D=0.07366, D2=0.05,  P2=183000.0, rho=999.1, mu=0.0011,
                                       k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
    assert_close(P1, 200000)
    P2 = differential_pressure_meter_solver(m=7.918128618951788, D=0.07366, D2=0.05,  P1=200000.0, rho=999.1, mu=0.0011,
                                       k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
    assert_close(P2, 183000)

    D2 = differential_pressure_meter_solver(m=7.918128618951788, D=0.07366, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011,
                                       k=1.33, meter_type=MILLER_ECCENTRIC_ORIFICE, taps=ORIFICE_FLANGE_TAPS, tap_position=TAPS_SIDE)
    assert_close(D2, 0.05)

    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,  P2=183000.0, rho=1.2, mu=0.00011, k=1.33, meter_type='ISO 5167 orifice', taps='D')
    assert_close(m, 0.2695835697819371)

    m_expect = 7.9299168920313425
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, k=1.33, meter_type='ISO 5167 orifice', taps='D', epsilon_specified=1)
    assert_close(m, m_expect)
    m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, rho=999.1, mu=0.0011, meter_type='ISO 5167 orifice', taps='D', epsilon_specified=1)
    assert_close(m, m_expect)

def test_unspecified_meter_C_specified():
    for t in ('unspecified meter', 'ISO 5167 orifice'):
        m = differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,
         P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
        meter_type=t, taps='D', C_specified=0.6)
        assert_close(m, 7.512945567976503)

        D2 = differential_pressure_meter_solver(D=0.07366, m=7.512945567976503, D2=None, P1=200000.0,
         P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
        meter_type=t, taps='D', C_specified=0.6)
        assert_close(D2, 0.05)

        P1 = differential_pressure_meter_solver(D=0.07366, D2=0.05, m=7.512945567976503,
         P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
        meter_type=t, taps='D', C_specified=0.6)
        assert_close(P1, 200000.0)

        P2 = differential_pressure_meter_solver(D=0.07366, D2=0.05, m=7.512945567976503,
         P1=200000.0, rho=999.1, mu=0.0011, k=1.33,
        meter_type=t, taps='D', C_specified=0.6)
        assert_close(P2, 183000.0)

    with pytest.raises(ValueError):
        differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,
         P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
        meter_type='unspecified meter', taps='D', C_specified=None)



def test_C_eccentric_orifice_ISO_15377_1998():
    C =  C_eccentric_orifice_ISO_15377_1998(.2, .075)
    assert_close(C, 0.6351923828125)

    # Does not perfectly match - like error in ISO.
    D = 1.0
    betas = [1e-2*i for i in range(46, 85, 1)]
    Cs_expect = [0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.627, 0.628, 0.628, 0.628, 0.628, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.629, 0.628, 0.628, 0.627, 0.626, 0.625, 0.624, 0.623, 0.621, 0.620, 0.618, 0.616, 0.613, 0.611, 0.608, 0.605, 0.601, 0.597]
    Cs_calc = [C_eccentric_orifice_ISO_15377_1998(D=D, Do=beta_i) for beta_i in betas]
    for Ci, Cj in zip(Cs_expect, Cs_calc):
        assert isclose(Ci, Cj, rel_tol=1.02e-3)

def test_C_quarter_circle_orifice_ISO_15377_1998():
    C = C_quarter_circle_orifice_ISO_15377_1998(.2, .075)
    assert_close(C, 0.7785148437500001, rtol=1e-12)

    betas = [0.245, 0.250, 0.260, 0.270, 0.280, 0.290, 0.300, 0.310, 0.320, 0.330, 0.340, 0.350, 0.360, 0.370, 0.380, 0.390, 0.400, 0.410, 0.420, 0.430, 0.440, 0.450, 0.460, 0.470, 0.480, 0.490, 0.500, 0.510, 0.520, 0.530, 0.540, 0.550, 0.560, 0.570, 0.580, 0.590, 0.600]
    Cs_expect = [0.772, 0.772, 0.772, 0.773, 0.773, 0.773, 0.774, 0.774, 0.775, 0.775, 0.776, 0.776, 0.777, 0.778, 0.779, 0.780, 0.781, 0.783, 0.784, 0.786, 0.787, 0.789, 0.791, 0.794, 0.796, 0.799, 0.802, 0.805, 0.808, 0.812, 0.816, 0.820, 0.824, 0.829, 0.834, 0.839, 0.844]
    for Do, C_expect in zip(betas, Cs_expect):
        C = C_quarter_circle_orifice_ISO_15377_1998(D=1, Do=Do)
        assert (round(C, 3) == C_expect)

def test_K_to_discharge_coefficient():
    C = K_to_discharge_coefficient(D=0.07366, Do=0.05, K=5.2314291729754)
    assert_close(C, 0.6151200000000001)

def test_discharge_coefficient_to_K():
    K = discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512)
    assert_close(K, 5.2314291729754)

def test_dP_orifice():
    dP = dP_orifice(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0, C=0.61512)
    assert_close(dP, 9069.474705745388)

def test_velocity_of_approach_factor():
    factor = velocity_of_approach_factor(D=0.0739, Do=0.0222)
    assert_close(factor, 1.0040970074165514)

def test_flow_coefficient():
    factor = flow_coefficient(D=0.0739, Do=0.0222, C=0.6)
    assert_close(factor, 0.6024582044499308)

def test_nozzle_expansibility():
    epsilon = nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
    assert_close(epsilon, 0.9945702344566746)

    assert_close(nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=1e5, k=1.4), 1, rtol=1e-14)

    assert_close(nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1), 0.9924074233062772, rtol=1e-13)

def test_C_long_radius_nozzle():
    C = C_long_radius_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
    assert_close(C, 0.9805503704679863)

def test_C_ISA_1932_nozzle():
    C = C_ISA_1932_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
    assert_close(C, 0.9635849973250495)

def test_C_venturi_nozzle():
    C = C_venturi_nozzle(D=0.07391, Do=0.0422)
    assert_close(C, 0.9698996454169576)


def test_diameter_ratio_cone_meter():
    beta = diameter_ratio_cone_meter(D=0.2575, Dc=0.184)
    assert_close(beta, 0.6995709873957624)
    # Example in 1 matches exactly;
    beta = diameter_ratio_cone_meter(D=10.137*inch, Dc=7.244*inch)
    assert_close(beta, 0.6995232442563669)


def test_diameter_ratio_wedge_meter():
    beta = diameter_ratio_wedge_meter(D=6.065*inch, H=1.82*inch)
    assert_close(beta, 0.5024062047655528)

    beta = diameter_ratio_wedge_meter(D=7.981*inch, H=3.192*inch)
    assert_close(beta, 0.6111198863284705)

    beta = diameter_ratio_wedge_meter(D=7.981*inch, H=2.394*inch)
    assert_close(beta, 0.5022667856496335)


def test_cone_meter_expansibility_Stewart():
    eps = cone_meter_expansibility_Stewart(D=1, Dc=0.8930285549745876, P1=1E6, P2=1E6*.85, k=1.2)
    assert_close(eps, 0.91530745625)

def test_wedge_meter_expansibility():
    data = [[1.0000, 0.9871, 0.9741, 0.9610, 0.9478, 0.9345, 0.9007, 0.8662, 0.8308],
            [1.0000, 0.9863, 0.9726, 0.9588, 0.9449, 0.9310, 0.8957, 0.8599, 0.8234],
            [1.0000, 0.9848, 0.9696, 0.9544, 0.9393, 0.9241, 0.8860, 0.8479, 0.8094],
            [1.0000, 0.9820, 0.9643, 0.9467, 0.9292, 0.9119, 0.8692, 0.8272, 0.7857],
            [1.0000, 0.9771, 0.9547, 0.9329, 0.9117, 0.8909, 0.8408, 0.7930, 0.7472]]

    h_ds = [0.2, 0.3, 0.4, 0.5, 0.6]
    pressure_ratios = [1.0, 0.98, 0.96, 0.94, 0.92, 0.9, 0.85, 0.8, 0.75]
    calculated = []
    for i, h_d in enumerate(h_ds):
        row = []
        beta = diameter_ratio_wedge_meter(D=1, H=h_d)
        for j, p_ratio in enumerate(pressure_ratios):

            ans = nozzle_expansibility(D=1, Do=h_d, P1=1E5, P2=1E5*p_ratio, k=1.2, beta=beta)
            row.append(ans)
        calculated.append(row)

    assert_close2d(data, calculated, rtol=1e-4)


def test_dP_wedge_meter():
    dP = dP_wedge_meter(1, .7, 1E6, 9.5E5)
    assert_close(dP, 20344.849697483587)


def test_dP_cone_meter():
    dP = dP_cone_meter(1, .7, 1E6, 9.5E5)
    assert_close(dP, 25470.093437973323)


def test_C_wedge_meter_Miller():
    # Large bore
    D = 0.15239999999999998
    C = C_wedge_meter_Miller(D=D, H=0.3*D)
    assert_close(C, 0.7267069372687651)

    # Tiny bore
    C = C_wedge_meter_Miller(D=.6*inch, H=0.3*.6*inch)
    assert_close(C, 0.8683022107124251)

    # Medium bore
    C = C_wedge_meter_Miller(D=1.3*inch, H=0.3*1.3*inch)
    assert_close(C, 1.15113726440674)


def test_C_wedge_meter_ISO_5167_6_2017():
    C = C_wedge_meter_ISO_5167_6_2017(D=0.1524, H=0.3*0.1524)
    assert_close(C, 0.724792059539853)

def test_dP_venturi_tube():
    dP = dP_venturi_tube(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0)
    assert_close(dP, 1788.5717754177406)


def test_C_Reader_Harris_Gallagher_wet_venturi_tube():
    # Example 1
    # Works don't change anything
    C = C_Reader_Harris_Gallagher_wet_venturi_tube(mg=5.31926, ml=5.31926/2, rhog=50.0, rhol=800., D=.1, Do=.06, H=1)
    assert_close(C, 0.9754210845876333)

    # From ISO 5167-4:2003, 5.6,
    # epsilon = 0.994236
    # nozzle_expansibility, orifice_expansibility
    epsilon = nozzle_expansibility(D=.1, Do=.06, P1=60E5, P2=59.5E5, k=1.3)
    assert_close(epsilon, 0.994236, rtol=0, atol=.0000001)

    # Example 2
    # Had to solve backwards to get ml, but C checks out perfectly
    C = C_Reader_Harris_Gallagher_wet_venturi_tube(ml=0.434947009566078, mg=6.3817, rhog=50.0, rhol=1000., D=.1, Do=.06, H=1.35)
    # Don't know what the ml is
    #  0,976 992 is C
    assert_close(C, 0.9769937323602329)


def test_dP_Reader_Harris_Gallagher_wet_venturi_tube():
    dP = dP_Reader_Harris_Gallagher_wet_venturi_tube(ml=5.31926/2, mg=5.31926, rhog=50.0, rhol=800., D=.1, Do=.06, H=1.0,  P1=6E6, P2=6E6-5E4)
    assert_close(dP, 16957.43843129572)


def test_differential_pressure_meter_dP():
    for m in [AS_CAST_VENTURI_TUBE, MACHINED_CONVERGENT_VENTURI_TUBE, ROUGH_WELDED_CONVERGENT_VENTURI_TUBE, HOLLINGSHEAD_VENTURI_SMOOTH, HOLLINGSHEAD_VENTURI_SHARP]:
        dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, meter_type=m)
        assert_close(dP, 1788.5717754177406)

    dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, C=0.61512, meter_type=ISO_5167_ORIFICE)
    assert_close(dP, 9069.474705745388)

    dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, C=0.61512, meter_type=LONG_RADIUS_NOZZLE)
    assert_close(dP, 9069.474705745388)

    dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, C=0.61512, meter_type=ISA_1932_NOZZLE)
    assert_close(dP, 9069.474705745388)

    for m in (CONE_METER, HOLLINGSHEAD_CONE):
        dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0,  meter_type=m)
        assert_close(dP, 8380.848307054845)

    for m in (WEDGE_METER, HOLLINGSHEAD_WEDGE):
        dP = differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0,  meter_type=m)
        assert_close(dP, 7112.927753356824)

    with pytest.raises(Exception):
        differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0,  P2=183000.0, meter_type=VENTURI_NOZZLE)

    with pytest.raises(ValueError):
        differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0, P2=183000.0, meter_type='NOTAMETER')



def test_differential_pressure_meter_beta():
    beta = differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=LONG_RADIUS_NOZZLE)
    assert_close(beta, 0.7145631067961165)

    beta = differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=WEDGE_METER)
    assert_close(beta, 0.8743896375172885)

    beta = differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=CONE_METER)
    assert_close(beta, 0.6995709873957624)

    with pytest.raises(ValueError):
        differential_pressure_meter_beta(D=0.07366, D2=0.05, meter_type='NOTAMETER')

    assert_close(differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=HOLLINGSHEAD_CONE),
        differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=CONE_METER))

    assert_close(differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=HOLLINGSHEAD_WEDGE),
        differential_pressure_meter_beta(D=0.2575, D2=0.184, meter_type=WEDGE_METER))



def test_cone_meter_expansibility_Stewart_full():
    err = lambda Dc, beta : diameter_ratio_cone_meter(D=1, Dc=Dc) - beta

    solve_Dc = lambda beta : float(secant(err, .7, args=(beta,)))

    # Accidentally missed the beta ratio 0.75, oops
    vals = [[1.0000, 0.9887, 0.9774, 0.9661, 0.9548, 0.9435, 0.9153, 0.8871, 0.8588],
    [1.0000, 0.9885, 0.9769, 0.9654, 0.9538, 0.9423, 0.9134, 0.8846, 0.8557],
    [1.0000, 0.9881, 0.9762, 0.9644, 0.9525, 0.9406, 0.9109, 0.8812, 0.8515],
    [1.0000, 0.9877, 0.9754, 0.9630, 0.9507, 0.9384, 0.9076, 0.8768, 0.8460],
    [1.0000, 0.9871, 0.9742, 0.9613, 0.9485, 0.9356, 0.9033, 0.8711, 0.8389],
    [1.0000, 0.9864, 0.9728, 0.9592, 0.9456, 0.9320, 0.8980, 0.8640, 0.8300]]
    pressure_ratios = [1, 0.98, 0.96, 0.94, 0.92, 0.9, 0.85, 0.8, 0.75]
    betas = [.45, .5, .55, .6, .65, .7, .75]

    k = 1.2
    for i, beta in enumerate(betas[:-1]):
        Dc = solve_Dc(beta)
        for j, pr in enumerate(pressure_ratios):
            eps = cone_meter_expansibility_Stewart(D=1, Dc=Dc, P1=1E5, P2=pr*1E5, k=1.2)
            eps = round(eps, 4)
            assert eps == vals[i][j]


def test_C_ISA_1932_nozzle_full():
    Cs = [[0.9616, 0.9692, 0.9750, 0.9773, 0.9789, 0.9813, 0.9820, 0.9821, 0.9822],
    [0.9604, 0.9682, 0.9741, 0.9764, 0.9781, 0.9805, 0.9812, 0.9813, 0.9814],
    [0.9592, 0.9672, 0.9731, 0.9755, 0.9773, 0.9797, 0.9804, 0.9805, 0.9806],
    [0.9579, 0.9661, 0.9722, 0.9746, 0.9763, 0.9788, 0.9795, 0.9797, 0.9797],
    [0.9567, 0.9650, 0.9711, 0.9736, 0.9754, 0.9779, 0.9786, 0.9787, 0.9788],
    [0.9554, 0.9638, 0.9700, 0.9726, 0.9743, 0.9769, 0.9776, 0.9777, 0.9778],
    [0.9542, 0.9626, 0.9689, 0.9715, 0.9733, 0.9758, 0.9766, 0.9767, 0.9768],
    [0.9529, 0.9614, 0.9678, 0.9703, 0.9721, 0.9747, 0.9754, 0.9756, 0.9757],
    [0.9516, 0.9602, 0.9665, 0.9691, 0.9709, 0.9735, 0.9743, 0.9744, 0.9745],
    [0.9503, 0.9589, 0.9653, 0.9678, 0.9696, 0.9722, 0.9730, 0.9731, 0.9732],
    [0.9490, 0.9576, 0.9639, 0.9665, 0.9683, 0.9709, 0.9717, 0.9718, 0.9719],
    [0.9477, 0.9562, 0.9626, 0.9651, 0.9669, 0.9695, 0.9702, 0.9704, 0.9705],
    [0.9464, 0.9548, 0.9611, 0.9637, 0.9655, 0.9680, 0.9688, 0.9689, 0.9690],
    [0.9451, 0.9534, 0.9596, 0.9621, 0.9639, 0.9664, 0.9672, 0.9673, 0.9674],
    [0.9438, 0.9520, 0.9581, 0.9606, 0.9623, 0.9648, 0.9655, 0.9656, 0.9657],
    [0.9424, 0.9505, 0.9565, 0.9589, 0.9606, 0.9630, 0.9638, 0.9639, 0.9640],
    [0.9411, 0.9490, 0.9548, 0.9572, 0.9588, 0.9612, 0.9619, 0.9620, 0.9621],
    [0.9398, 0.9474, 0.9531, 0.9554, 0.9570, 0.9593, 0.9600, 0.9601, 0.9602],
    [0.9385, 0.9458, 0.9513, 0.9535, 0.9550, 0.9573, 0.9579, 0.9580, 0.9581],
    [0.9371, 0.9442, 0.9494, 0.9515, 0.9530, 0.9551, 0.9558, 0.9559, 0.9560],
    [0.9358, 0.9425, 0.9475, 0.9495, 0.9509, 0.9529, 0.9535, 0.9536, 0.9537],
    [0.9345, 0.9408, 0.9455, 0.9473, 0.9487, 0.9506, 0.9511, 0.9512, 0.9513],
    [0.9332, 0.9390, 0.9434, 0.9451, 0.9464, 0.9481, 0.9487, 0.9487, 0.9488],
    [0.9319, 0.9372, 0.9412, 0.9428, 0.9440, 0.9456, 0.9460, 0.9461, 0.9462],
    [0.9306, 0.9354, 0.9390, 0.9404, 0.9414, 0.9429, 0.9433, 0.9434, 0.9435],
    [0.9293, 0.9335, 0.9367, 0.9379, 0.9388, 0.9401, 0.9405, 0.9405, 0.9406],
    [0.9280, 0.9316, 0.9343, 0.9353, 0.9361, 0.9372, 0.9375, 0.9375, 0.9376],
    [0.9268, 0.9296, 0.9318, 0.9326, 0.9332, 0.9341, 0.9344, 0.9344, 0.9344],
    [0.9255, 0.9276, 0.9292, 0.9298, 0.9303, 0.9309, 0.9311, 0.9311, 0.9312],
    [0.9243, 0.9256, 0.9265, 0.9269, 0.9272, 0.9276, 0.9277, 0.9277, 0.9278],
    [0.9231, 0.9235, 0.9238, 0.9239, 0.9240, 0.9241, 0.9242, 0.9242, 0.9242],
    [0.9219, 0.9213, 0.9209, 0.9208, 0.9207, 0.9205, 0.9205, 0.9205, 0.9205],
    [0.9207, 0.9192, 0.9180, 0.9176, 0.9172, 0.9168, 0.9166, 0.9166, 0.9166],
    [0.9195, 0.9169, 0.9150, 0.9142, 0.9136, 0.9128, 0.9126, 0.9126, 0.9125],
    [0.9184, 0.9147, 0.9118, 0.9107, 0.9099, 0.9088, 0.9084, 0.9084, 0.9083],
    [0.9173, 0.9123, 0.9086, 0.9071, 0.9060, 0.9045, 0.9041, 0.9040, 0.9040],
    [0.9162, 0.9100, 0.9053, 0.9034, 0.9020, 0.9001, 0.8996, 0.8995, 0.8994]]


    def C_ISA_1932_nozzle(D, Do, Re_D):
        beta = Do/D
        C = (0.9900 - 0.2262*beta**4.1
             - (0.00175*beta**2 - 0.0033*beta**4.15)*(1E6/Re_D)**1.15)
        return C

    Rd_values = [2E4, 3E4, 5E4, 7E4, 1E5, 3E5, 1E6, 2E6, 1E7]
    betas = [i/100. for i in range(44, 81)]

    for i in range(len(betas)):
        Cs_expect = Cs[i]
        beta = betas[i]
        Cs_calc = [round(C_ISA_1932_nozzle(D=1, Do=beta, Re_D=i), 4) for i in Rd_values]
        assert_close1d(Cs_expect, Cs_calc, atol=1E-4)

    # There were three typos in there in the values for beta of 0.77 or 0.78.
    # values: 0.9215, 0.9412, 0.9803

def test_C_long_radius_nozzle_full():
    Cs = [[0.9673, 0.9759, 0.9834, 0.9873, 0.9900, 0.9924, 0.9936, 0.9952, 0.9956],
    [0.9659, 0.9748, 0.9828, 0.9868, 0.9897, 0.9922, 0.9934, 0.9951, 0.9955],
    [0.9645, 0.9739, 0.9822, 0.9864, 0.9893, 0.9920, 0.9933, 0.9951, 0.9955],
    [0.9632, 0.9730, 0.9816, 0.9860, 0.9891, 0.9918, 0.9932, 0.9950, 0.9954],
    [0.9619, 0.9721, 0.9810, 0.9856, 0.9888, 0.9916, 0.9930, 0.9950, 0.9954],
    [0.9607, 0.9712, 0.9805, 0.9852, 0.9885, 0.9914, 0.9929, 0.9949, 0.9954],
    [0.9596, 0.9704, 0.9800, 0.9848, 0.9882, 0.9913, 0.9928, 0.9948, 0.9953],
    [0.9584, 0.9696, 0.9795, 0.9845, 0.9880, 0.9911, 0.9927, 0.9948, 0.9953],
    [0.9573, 0.9688, 0.9790, 0.9841, 0.9877, 0.9910, 0.9926, 0.9947, 0.9953],
    [0.9562, 0.9680, 0.9785, 0.9838, 0.9875, 0.9908, 0.9925, 0.9947, 0.9952],
    [0.9552, 0.9673, 0.9780, 0.9834, 0.9873, 0.9907, 0.9924, 0.9947, 0.9952],
    [0.9542, 0.9666, 0.9776, 0.9831, 0.9870, 0.9905, 0.9923, 0.9946, 0.9952],
    [0.9532, 0.9659, 0.9771, 0.9828, 0.9868, 0.9904, 0.9922, 0.9946, 0.9951],
    [0.9523, 0.9652, 0.9767, 0.9825, 0.9866, 0.9902, 0.9921, 0.9945, 0.9951],
    [0.9513, 0.9645, 0.9763, 0.9822, 0.9864, 0.9901, 0.9920, 0.9945, 0.9951],
    [0.9503, 0.9639, 0.9759, 0.9819, 0.9862, 0.9900, 0.9919, 0.9944, 0.9950],
    [0.9499, 0.9635, 0.9756, 0.9818, 0.9861, 0.9899, 0.9918, 0.9944, 0.9950],
    [0.9494, 0.9632, 0.9754, 0.9816, 0.9860, 0.9898, 0.9918, 0.9944, 0.9950],
    [0.9490, 0.9629, 0.9752, 0.9815, 0.9859, 0.9898, 0.9917, 0.9944, 0.9950],
    [0.9485, 0.9626, 0.9750, 0.9813, 0.9858, 0.9897, 0.9917, 0.9944, 0.9950],
    [0.9481, 0.9623, 0.9748, 0.9812, 0.9857, 0.9897, 0.9917, 0.9943, 0.9950],
    [0.9476, 0.9619, 0.9746, 0.9810, 0.9856, 0.9896, 0.9916, 0.9943, 0.9950],
    [0.9472, 0.9616, 0.9745, 0.9809, 0.9855, 0.9895, 0.9916, 0.9943, 0.9949],
    [0.9468, 0.9613, 0.9743, 0.9808, 0.9854, 0.9895, 0.9915, 0.9943, 0.9949],
    [0.9463, 0.9610, 0.9741, 0.9806, 0.9853, 0.9894, 0.9915, 0.9943, 0.9949],
    [0.9459, 0.9607, 0.9739, 0.9805, 0.9852, 0.9893, 0.9914, 0.9942, 0.9949],
    [0.9455, 0.9604, 0.9737, 0.9804, 0.9851, 0.9893, 0.9914, 0.9942, 0.9949],
    [0.9451, 0.9601, 0.9735, 0.9802, 0.9850, 0.9892, 0.9914, 0.9942, 0.9949],
    [0.9447, 0.9599, 0.9733, 0.9801, 0.9849, 0.9892, 0.9913, 0.9942, 0.9949],
    [0.9443, 0.9596, 0.9731, 0.9800, 0.9848, 0.9891, 0.9913, 0.9942, 0.9948],
    [0.9439, 0.9593, 0.9730, 0.9799, 0.9847, 0.9891, 0.9912, 0.9941, 0.9948],
    [0.9435, 0.9590, 0.9728, 0.9797, 0.9846, 0.9890, 0.9912, 0.9941, 0.9948],
    [0.9430, 0.9587, 0.9726, 0.9796, 0.9845, 0.9889, 0.9912, 0.9941, 0.9948],
    [0.9427, 0.9584, 0.9724, 0.9795, 0.9845, 0.9889, 0.9911, 0.9941, 0.9948],
    [0.9423, 0.9581, 0.9722, 0.9793, 0.9844, 0.9888, 0.9911, 0.9941, 0.9948],
    [0.9419, 0.9579, 0.9721, 0.9792, 0.9843, 0.9888, 0.9910, 0.9941, 0.9948],
    [0.9415, 0.9576, 0.9719, 0.9791, 0.9842, 0.9887, 0.9910, 0.9940, 0.9948],
    [0.9411, 0.9573, 0.9717, 0.9790, 0.9841, 0.9887, 0.9910, 0.9940, 0.9947],
    [0.9407, 0.9570, 0.9715, 0.9789, 0.9840, 0.9886, 0.9909, 0.9940, 0.9947],
    [0.9403, 0.9568, 0.9714, 0.9787, 0.9839, 0.9886, 0.9909, 0.9940, 0.9947],
    [0.9399, 0.9565, 0.9712, 0.9786, 0.9839, 0.9885, 0.9908, 0.9940, 0.9947],
    [0.9396, 0.9562, 0.9710, 0.9785, 0.9838, 0.9884, 0.9908, 0.9940, 0.9947],
    [0.9392, 0.9560, 0.9709, 0.9784, 0.9837, 0.9884, 0.9908, 0.9939, 0.9947],
    [0.9388, 0.9557, 0.9707, 0.9783, 0.9836, 0.9883, 0.9907, 0.9939, 0.9947],
    [0.9385, 0.9555, 0.9705, 0.9781, 0.9835, 0.9883, 0.9907, 0.9939, 0.9947],
    [0.9381, 0.9552, 0.9704, 0.9780, 0.9834, 0.9882, 0.9907, 0.9939, 0.9947]]

    Rd_values = [1E4, 2E4, 5E4, 1E5, 2E5, 5E5, 1E6, 5E6, 1E7]
    betas = [i/100. for i in list(range(20, 51, 2)) + list(range(51, 81))]

    def C_long_radius_nozzle(D, Do, Re_D):
        beta = Do/D
        return 0.9965 - 0.00653*beta**0.5*(1E6/Re_D)**0.5


    for i in range(len(betas)):
        Cs_expect = Cs[i]
        beta = betas[i]
        Cs_calc = [round(C_long_radius_nozzle(D=1, Do=beta, Re_D=i), 4) for i in Rd_values]
        assert_close1d(Cs_expect, Cs_calc, atol=1E-4)

    # Errata:
    # 0.9834 to 0.9805
    # 0.9828 to 9800
    # 0.9822 to 0.9795
    # 0.9816 to 0.979
    # 0.981 to 0.9785
    # 0.9805 to 0.9780
    # 0.98   to 0.9776
    # 0.9795 to 0.9771
    # 0.979 to 0.9767
    # 0.9785 to 0.9763
    #  9.9607 to 0.9607
    # 0.9875 to 0.9785

def test_C_venturi_nozzle_full():
    # Many values do not match well, but the equation has been checked with both standards.
    betas = [0.32, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78]
    Cs = [0.9847, 0.9846, 0.9845, 0.9843, 0.9841, 0.9838, 0.9836, 0.9833, 0.9830, 0.9826, 0.9823, 0.9818, 0.9814, 0.9809, 0.9804, 0.9798, 0.9792, 0.9786, 0.9779, 0.9771, 0.9763, 0.9755, 0.9745, 0.9736, 0.9725, 0.9714, 0.9702, 0.9689, 0.9676, 0.9661, 0.9646, 0.9630, 0.9613, 0.9595, 0.9576, 0.9556, 0.9535, 0.9512, 0.9489, 0.9464, 0.9438, 0.9411, 0.9382, 0.9352, 0.9321, 0.9288, 0.9253, 0.9236]
    Cs_calc = [C_venturi_nozzle(D=1, Do=beta) for beta in betas]
    assert_close1d(Cs, Cs_calc, rtol=5E-3)

def test_differential_pressure_meter_C_epsilon():
    # Some random cases
    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
    meter_type=ISO_15377_ECCENTRIC_ORIFICE)
    assert_close(C, 0.6284616939680627)
    assert_close(eps, 0.9711026966676307)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
    meter_type=ISO_15377_QUARTER_CIRCLE_ORIFICE)
    assert_close(C, 0.899402420975695)
    assert_close(eps, 0.9711026966676307)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
    meter_type=ISO_15377_CONICAL_ORIFICE)
    assert_close(C, 0.734)
    assert_close(eps, 0.9532330165749132)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
    meter_type=MILLER_ORIFICE, taps='corner')
    assert_close(C, 0.6068011224659587)
    assert_close(eps, 0.9711026966676307)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,
    meter_type=MILLER_CONICAL_ORIFICE)
    assert_close(C, 0.73)
    assert_close(eps, 0.9532330165749132)


    # Test one case of the default translation
    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,taps='corner',
    meter_type=CONCENTRIC_ORIFICE)
    C_iso, eps_iso = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.702338035732168,taps='corner',
    meter_type=CONCENTRIC_ORIFICE)

    assert C == C_iso
    assert eps == eps_iso

    with pytest.raises(ValueError):
        differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
                                              P2=183000.0, rho=999.1, mu=0.0011,
                                              k=1.33, m=7.702338035732168, meter_type='NOTAREAMETER')


    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
        meter_type=HOLLINGSHEAD_ORIFICE)
    assert_close(C, 0.7809066489631418)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
        meter_type=HOLLINGSHEAD_VENTURI_SMOOTH)
    assert_close(C, 0.7765555753764869)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
        meter_type=HOLLINGSHEAD_VENTURI_SHARP)
    assert_close(C, 0.7710760458207614)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
        meter_type=HOLLINGSHEAD_CONE)
    assert_close(C, 0.5796605776735264)

    C, eps = differential_pressure_meter_C_epsilon(D=0.07366, D2=0.025, P1=200000.0,
    P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=.01,
        meter_type=HOLLINGSHEAD_WEDGE)
    assert_close(C, 0.7002380207294499)

def test_issue_49():
    kwargs = {'D': 0.36,  'rho': 39.6, 'mu': 1.32e-05, 'k': 1.3,'D2': 0.28,'P1': 5000000.0,
                 'P2': 4995000.0, 'meter_type': 'long radius nozzle'}

    massflow = differential_pressure_meter_solver(kwargs['D'], kwargs['rho'],
                                                                    kwargs['mu'], kwargs['k'],
                                                                    kwargs['D2'], kwargs['P1'],
                                                                kwargs['P2'], meter_type=kwargs['meter_type'])
    assert_close(massflow, 48.36465032864742)

@pytest.mark.fuzz
@pytest.mark.slow
def test_fuzz_K_to_discharge_coefficient():
    '''
    # Testing the different formulas
    from sympy import *
    C, beta, K = symbols('C, beta, K')

    expr = Eq(K, (sqrt(1 - beta**4*(1 - C*C))/(C*beta**2) - 1)**2)
    solns = solve(expr, C)
    [i.subs({'K': 5.2314291729754, 'beta': 0.05/0.07366}) for i in solns]

    [-sqrt(-beta**4/(-2*sqrt(K)*beta**4 + K*beta**4) + 1/(-2*sqrt(K)*beta**4 + K*beta**4)),
    sqrt(-beta**4/(-2*sqrt(K)*beta**4 + K*beta**4) + 1/(-2*sqrt(K)*beta**4 + K*beta**4)),
    -sqrt(-beta**4/(2*sqrt(K)*beta**4 + K*beta**4) + 1/(2*sqrt(K)*beta**4 + K*beta**4)),
    sqrt(-beta**4/(2*sqrt(K)*beta**4 + K*beta**4) + 1/(2*sqrt(K)*beta**4 + K*beta**4))]

    # Getting the formula
    from sympy import *
    C, beta, K = symbols('C, beta, K')

    expr = Eq(K, (sqrt(1 - beta**4*(1 - C*C))/(C*beta**2) - 1)**2)
    print(latex(solve(expr, C)[3]))
    '''
    Ds = logspace(log10(1-1E-9), log10(1E-9), 8)
    for D_ratio in Ds:
        Ks = logspace(log10(1E-9), log10(50000), 8)
        Ks_recalc = []
        for K in Ks:
            C = K_to_discharge_coefficient(D=1.0, Do=D_ratio, K=K)
            K_calc = discharge_coefficient_to_K(D=1.0, Do=D_ratio, C=C)
            Ks_recalc.append(K_calc)
        assert_close1d(Ks, Ks_recalc)

@pytest.mark.scipy
@pytest.mark.slow
def test_orifice_std_Hollingshead_fit():
    import numpy as np
    from scipy.interpolate import RectBivariateSpline, bisplev

    from fluids.flow_meter import orifice_std_betas_Hollingshead, orifice_std_Hollingshead_Cs, orifice_std_Hollingshead_tck, orifice_std_logRes_Hollingshead

    obj = RectBivariateSpline(orifice_std_betas_Hollingshead, orifice_std_logRes_Hollingshead,
                              np.array(orifice_std_Hollingshead_Cs), s=0, kx=3, ky=3)

    assert_close(obj(.55, log(1e3))[0][0], bisplev(.55, log(1e3), orifice_std_Hollingshead_tck))

    assert_close1d(obj.tck[0], orifice_std_Hollingshead_tck[0])
    assert_close1d(obj.tck[1], orifice_std_Hollingshead_tck[1])
    assert_close1d(obj.tck[2], orifice_std_Hollingshead_tck[2])


@pytest.mark.scipy
@pytest.mark.slow
def test_wedge_Hollingshead_fit():
    import numpy as np
    from scipy.interpolate import RectBivariateSpline, bisplev

    from fluids.flow_meter import wedge_betas_Hollingshead, wedge_Hollingshead_Cs, wedge_Hollingshead_tck, wedge_logRes_Hollingshead

    obj = RectBivariateSpline(wedge_betas_Hollingshead, wedge_logRes_Hollingshead,
                              np.array(wedge_Hollingshead_Cs), s=0, kx=1, ky=3)
    assert_close(obj(.55, log(1e4))[0][0], bisplev(.55, log(1e4), wedge_Hollingshead_tck))

    assert_close1d(obj.tck[0], wedge_Hollingshead_tck[0])
    assert_close1d(obj.tck[1], wedge_Hollingshead_tck[1])
    assert_close1d(obj.tck[2], wedge_Hollingshead_tck[2])

@pytest.mark.scipy
@pytest.mark.slow
def test_cone_Hollingshead_fit():
    import numpy as np
    from scipy.interpolate import RectBivariateSpline, bisplev

    from fluids.flow_meter import cone_betas_Hollingshead, cone_Hollingshead_Cs, cone_Hollingshead_tck, cone_logRes_Hollingshead

    obj = RectBivariateSpline(cone_betas_Hollingshead, cone_logRes_Hollingshead,
                              np.array(cone_Hollingshead_Cs), s=0, kx=2, ky=3)
    assert_close(obj(.77, log(1e4))[0][0], bisplev(.77, log(1e4), cone_Hollingshead_tck))

    assert_close1d(obj.tck[0], cone_Hollingshead_tck[0])
    assert_close1d(obj.tck[1], cone_Hollingshead_tck[1])
    assert_close1d(obj.tck[2], cone_Hollingshead_tck[2])