1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from math import isnan, log10, pi
import pytest
from fluids.friction import (
Alshul_1952,
Avci_Karagoz_2009,
Barr_1981,
Blasius,
Brkic_2011_1,
Brkic_2011_2,
Buzzelli_2008,
Chen_1979,
Churchill_1973,
Churchill_1977,
Clamond,
Colebrook,
Eck_1973,
Fang_2011,
Haaland,
Jain_1976,
Manadilli_1997,
Moody,
Papaevangelo_2010,
Prandtl_von_Karman_Nikuradse,
Rao_Kumar_2007,
Romeo_2002,
Round_1980,
Serghides_1,
Serghides_2,
Shacham_1980,
Sonnad_Goudar_2006,
Swamee_Jain_1976,
Tsal_1989,
Wood_1966,
Zigrang_Sylvester_1,
Zigrang_Sylvester_2,
_Farshad_roughness,
_roughness,
friction_factor,
friction_factor_curved,
friction_factor_curved_methods,
friction_factor_methods,
friction_laminar,
friction_plate_Kumar,
friction_plate_Martin_1999,
friction_plate_Martin_VDI,
friction_plate_Muley_Manglik,
ft_Crane,
helical_laminar_fd_Mori_Nakayama,
helical_laminar_fd_Schmidt,
helical_laminar_fd_White,
helical_Re_crit,
helical_transition_Re_Ito,
helical_transition_Re_Kubair_Kuloor,
helical_transition_Re_Kutateladze_Borishanskii,
helical_transition_Re_Schmidt,
helical_transition_Re_Seth_Stahel,
helical_transition_Re_Srinivasan,
helical_turbulent_fd_Czop,
helical_turbulent_fd_Guo,
helical_turbulent_fd_Ju,
helical_turbulent_fd_Mandal_Nigam,
helical_turbulent_fd_Mori_Nakayama,
helical_turbulent_fd_Prasad,
helical_turbulent_fd_Schmidt,
helical_turbulent_fd_Srinivasan,
material_roughness,
nearest_material_roughness,
one_phase_dP,
one_phase_dP_dz_acceleration,
one_phase_dP_gravitational,
roughness_Farshad,
transmission_factor,
von_Karman,
)
from fluids.numerics import assert_close, assert_close1d, assert_close3d, linspace, logspace, secant
try:
import thefuzz
has_thefuzz = True
except:
has_thefuzz = False
try:
import mpmath
has_mpmath = True
except:
has_mpmath = False
def test_friction_basic():
assert_close(Moody(1E5, 1E-4), 0.01809185666808665)
assert_close(Alshul_1952(1E5, 1E-4), 0.018382997825686878)
assert_close(Wood_1966(1E5, 1E-4), 0.021587570560090762)
assert_close(Churchill_1973(1E5, 1E-4), 0.01846708694482294)
assert_close(Eck_1973(1E5, 1E-4), 0.01775666973488564)
assert_close(Jain_1976(1E5, 1E-4), 0.018436560312693327)
assert_close(Swamee_Jain_1976(1E5, 1E-4), 0.018452424431901808)
assert_close(Churchill_1977(1E5, 1E-4), 0.018462624566280075)
assert_close(Chen_1979(1E5, 1E-4), 0.018552817507472126)
assert_close(Round_1980(1E5, 1E-4), 0.01831475391244354)
assert_close(Shacham_1980(1E5, 1E-4), 0.01860641215097828)
assert_close(Barr_1981(1E5, 1E-4), 0.01849836032779929)
assert_close(Zigrang_Sylvester_1(1E5, 1E-4), 0.018646892425980794)
assert_close(Zigrang_Sylvester_2(1E5, 1E-4), 0.01850021312358548)
assert_close(Haaland(1E5, 1E-4), 0.018265053014793857)
assert_close(Serghides_1(1E5, 1E-4), 0.01851358983180063)
assert_close(Serghides_2(1E5, 1E-4), 0.018486377560664482)
assert_close(Tsal_1989(1E5, 1E-4), 0.018382997825686878)
assert_close(Tsal_1989(1E8, 1E-4), 0.012165854627780102)
assert_close(Manadilli_1997(1E5, 1E-4), 0.01856964649724108)
assert_close(Romeo_2002(1E5, 1E-4), 0.018530291219676177)
assert_close(Sonnad_Goudar_2006(1E5, 1E-4), 0.0185971269898162)
assert_close(Rao_Kumar_2007(1E5, 1E-4), 0.01197759334600925)
assert_close(Buzzelli_2008(1E5, 1E-4), 0.018513948401365277)
assert_close(Avci_Karagoz_2009(1E5, 1E-4), 0.01857058061066499)
assert_close(Papaevangelo_2010(1E5, 1E-4), 0.015685600818488177)
assert_close(Brkic_2011_1(1E5, 1E-4), 0.01812455874141297)
assert_close(Brkic_2011_2(1E5, 1E-4), 0.018619745410688716)
assert_close(Fang_2011(1E5, 1E-4), 0.018481390682985432)
assert_close(Clamond(1E5, 1E-4), 0.01851386607747165)
assert_close(Clamond(1E5, 1E-4, fast=True), 0.01851486771096876)
assert_close(friction_laminar(128), 0.5)
assert_close(Blasius(10000.0), 0.03164)
fd = ft_Crane(.1)
assert_close(fd, 0.01628845962146481)
assert_close(ft_Crane(1e-5), 604.8402578042682)
def test_friction():
assert_close(sum(_roughness.values()), 0.01504508)
assert_close(friction_factor(Re=1E5, eD=1E-4), 0.01851386607747165)
methods_1 = friction_factor_methods(Re=1E5, eD=1E-4)
methods_1.sort()
methods_2 = ['Clamond', 'Colebrook', 'Manadilli_1997', 'Haaland', 'Alshul_1952', 'Avci_Karagoz_2009', 'Rao_Kumar_2007', 'Zigrang_Sylvester_2', 'Eck_1973', 'Buzzelli_2008', 'Tsal_1989', 'Papaevangelo_2010', 'Barr_1981', 'Jain_1976', 'Moody', 'Brkic_2011_2', 'Brkic_2011_1', 'Swamee_Jain_1976', 'Wood_1966', 'Shacham_1980', 'Romeo_2002', 'Chen_1979', 'Fang_2011', 'Round_1980', 'Sonnad_Goudar_2006', 'Churchill_1973', 'Churchill_1977', 'Serghides_2', 'Serghides_1', 'Zigrang_Sylvester_1']
methods_2.sort()
assert methods_1 == methods_2
assert_close(friction_factor(Re=1E5, eD=1E-4, Darcy=False), 0.01851386607747165/4)
assert_close(friction_factor(Re=128), 0.5)
assert_close(friction_factor(Re=1E5, eD=0, Method=None), 0.01798977308427384)
assert_close(friction_factor(20000, eD=0.0, Method='laminar'), 0.0032)
with pytest.raises(ValueError):
friction_factor(Re=1E5, eD=0, Method='BADMETHOD')
assert ['laminar'] == friction_factor_methods(200, 0, True)
assert 31 == len(friction_factor_methods(200, 0, False))
for m in friction_factor_methods(200, 0, False):
friction_factor(Re=1E5, eD=1e-6, Method=m)
fd = ft_Crane(.1)
Di = 0.1
fd_act = Clamond(7.5E6*Di, eD=roughness_Farshad(ID='Carbon steel, bare', D=Di)/Di)
assert_close(fd, fd_act, rtol=5e-6)
def test_friction_Colebrook():
assert_close(Colebrook(1E5, 1E-4), 0.018513866077471648)
# Test the colebrook is the clamond when tol=-1
assert Colebrook(1E5, 1E-4, -1) == Clamond(1E5, 1E-4)
# Test the colebrook is the analytical solution when Re < 10
# even when the clamond solution is specified
assert Colebrook(1, 1E-4, -1) == Colebrook(1, 1e-4)
@pytest.mark.slow
@pytest.mark.mpmath
@pytest.mark.skipif(not has_mpmath, reason='mpmath is not installed')
def test_Colebrook_numerical_mpmath():
# tested at n=500 for both Re and eD
Res = logspace(log10(1e-12), log10(1E12), 30) # 1E12 is too large for sympy - it slows down too much
eDs = logspace(log10(1e-20), log10(.1), 21) # 1-1e-9
for Re in Res:
for eD in eDs:
fd_exact = Colebrook(Re, eD, tol=0)
fd_numerical = Colebrook(Re, eD, tol=1e-12)
assert_close(fd_exact, fd_numerical, rtol=1e-5)
@pytest.mark.slow
@pytest.mark.mpmath
@pytest.mark.skipif(not has_mpmath, reason='mpmath is not installed')
def test_Colebrook_scipy_mpmath():
# Faily grueling test - check the lambertw implementations are matching mostly
# NOTE the test is to Re = 1E7; at higher Res the numerical solver is almost
# always used
Res = logspace(log10(1e-12), log10(1e7), 20) # 1E12 is too large for sympy
eDs = logspace(log10(1e-20), log10(.1), 19) # 1-1e-9
for Re in Res:
for eD in eDs:
Re = float(Re)
eD = float(eD)
fd_exact = Colebrook(Re, eD, tol=0)
fd_scipy = Colebrook(Re, eD)
assert_close(fd_exact, fd_scipy, rtol=1e-9)
@pytest.mark.slow
def test_Colebrook_vs_Clamond():
Res = logspace(log10(10), log10(1E50), 40)
eDs = logspace(log10(1e-20), log10(1), 40)
for Re in Res:
for eD in eDs:
fd_exact = Colebrook(Re, eD)
fd_clamond = Clamond(Re, eD)
# Interestingly, matches to rtol=1e-9 vs. numerical solver
# But does not have such accuracy compared to mpmath
if isnan(fd_exact) or isnan(fd_clamond):
continue # older scipy on 3.4 returns a nan sometimes
assert_close(fd_exact, fd_clamond, rtol=1e-9)
# If rtol is moved to 1E-7, eD can be increased to 1
@pytest.mark.mpmath
def test_Colebrook_hard_regimes():
fd_inf_regime = Colebrook(104800000000, 2.55e-08)
assert_close(fd_inf_regime, 0.0037751087365339906, rtol=1e-10)
def test_one_phase_dP():
dP = one_phase_dP(10.0, 1000., 1E-5, .1, L=1.000)
assert_close(dP, 63.43447321097365)
def test_one_phase_dP_gravitational():
dP = one_phase_dP_gravitational(angle=90., rho=2.6)
assert_close(dP, 25.49729)
dP = one_phase_dP_gravitational(angle=90, rho=2.6, L=2.)
assert_close(dP, 25.49729*2)
def test_one_phase_dP_dz_acceleration():
dP = one_phase_dP_dz_acceleration(m=1., D=0.1, rho=827.1, dv_dP=-1.1E-5, dP_dL=5E5, dA_dL=0.0001)
assert_close(dP, 89162.89116373913)
@pytest.mark.slow
@pytest.mark.thermo
@pytest.mark.skip
def test_one_phase_dP_dz_acceleration_example():
# This requires thermo!
from scipy.integrate import odeint
from thermo import Stream, Vm_to_rho
from fluids import one_phase_dP, one_phase_dP_acceleration
from fluids.numerics import assert_close
P0 = 1E5
s = Stream(['nitrogen', 'methane'], T=300, P=P0, zs=[0.5, 0.5], m=1)
rho0 = s.rho
D = 0.1
def dP_dz(P, L, acc=False):
s.flash(P=float(P), Hm=s.Hm)
dPf = one_phase_dP(m=s.m, rho=s.rhog, mu=s.rhog, D=D, roughness=0, L=1.0)
if acc:
G = 4.0*s.m/(pi*D*D)
der = s.VolumeGasMixture.property_derivative_P(P=s.P, T=s.T, zs=s.zs, ws=s.ws)
der = 1/Vm_to_rho(der, s.MW)
factor = G*G*der
dP = dPf/(1.0 + factor)
return -dP
return -dPf
ls = linspace(0, .01)
dP_noacc = odeint(dP_dz, s.P, ls, args=(False,))[-1]
s.flash(P=float(P0), Hm=s.Hm) # Reset the stream object
profile = odeint(dP_dz, s.P, ls, args=(True,))
dP_acc = profile[-1]
s.flash(P=dP_acc, Hm=s.Hm)
rho1 = s.rho
dP_acc_numerical = dP_noacc - dP_acc
dP_acc_basic = one_phase_dP_acceleration(m=s.m, D=D, rho_o=rho1, rho_i=rho0)
assert_close(dP_acc_basic, dP_acc_numerical, rtol=1E-4)
del test_one_phase_dP_dz_acceleration_example
def test_transmission_factor():
assert_close(transmission_factor(fd=0.0185), 14.704292441876154)
assert_close(transmission_factor(F=14.704292441876154), 0.0185)
assert_close(transmission_factor(0.0185), 14.704292441876154)
# Example in [1]_, lists answer as 12.65
assert_close(transmission_factor(fd=0.025), 12.649110640673516)
with pytest.raises(Exception):
transmission_factor()
def test_roughness_Farshad():
e = roughness_Farshad('Cr13, bare', 0.05)
assert_close(e, 5.3141677781137006e-05)
e = roughness_Farshad('Cr13, bare')
assert_close(e, 5.5e-05)
e = roughness_Farshad(coeffs=(0.0021, -1.0055), D=0.05)
assert_close(e, 5.3141677781137006e-05)
tot = sum([abs(j) for i in _Farshad_roughness.values() for j in i])
assert_close(tot, 7.0729095)
with pytest.raises(Exception):
roughness_Farshad('BADID', 0.05)
@pytest.mark.skipif(not has_thefuzz, reason='missing thefuzz')
def test_nearest_material_roughness():
hit1 = nearest_material_roughness('condensate pipes', clean=False)
assert hit1 == 'Seamless steel tubes, Condensate pipes in open systems or periodically operated steam pipelines'
hit2 = nearest_material_roughness('Plastic', clean=True)
assert hit2 == 'Plastic coated'
@pytest.mark.skipif(not has_thefuzz, reason='missing thefuzz')
def test_material_roughness():
e1 = material_roughness('Plastic coated')
assert_close(e1, 5e-06)
e2 = material_roughness('Plastic coated', D=1E-3)
assert_close(e2, 5.243618447826409e-06)
e3 = material_roughness('Brass')
assert_close(e3, 1.52e-06)
e4 = material_roughness('condensate pipes')
assert_close(e4, 0.0005)
ID = 'Old, poor fitting and manufacture; with an overgrown surface'
e5 = [material_roughness(ID, optimism=i) for i in (True, False)]
assert_close1d(e5, [0.001, 0.004])
def test_von_Karman():
f = von_Karman(1E-4)
f_precalc = 0.01197365149564789
assert_close(f, f_precalc)
def Prandtl_von_Karman_Nikuradse_numeric(Re):
rat = 2.51/Re
def to_solve(f):
# Good to 1E75, down to 1E-17
v = f**-0.5
return v + 2.0*log10(rat*v)
return secant(to_solve, 0.000001)
def test_Prandtl_von_Karman_Nikuradse():
Re = 200
assert_close(Prandtl_von_Karman_Nikuradse_numeric(Re), Prandtl_von_Karman_Nikuradse(Re))
def test_Prandtl_von_Karman_Nikuradse_full():
# Tested to a very high number of points
fds = []
fds_numeric = []
for Re in logspace(1E-15, 30, 40):
fds.append(Prandtl_von_Karman_Nikuradse_numeric(Re))
fds_numeric.append(Prandtl_von_Karman_Nikuradse(Re))
assert_close1d(fds, fds_numeric)
def test_helical_laminar_fd_White():
fd = helical_laminar_fd_White(250., .02, .1)
assert_close(fd, 0.4063281817830202)
assert_close(helical_laminar_fd_White(250, .02, 100), 0.256)
def test_helical_laminar_fd_Mori_Nakayama():
fd = helical_laminar_fd_Mori_Nakayama(250., .02, .1)
assert_close(fd, 0.4222458285779544)
assert_close(4.4969472, helical_laminar_fd_Mori_Nakayama(20, .02, .1))
def test_helical_laminar_fd_Schmidt():
fd = helical_laminar_fd_Schmidt(250., .02, .1)
assert_close(fd, 0.47460725672835236)
# Test convergence at low curvature
assert_close(helical_laminar_fd_Schmidt(250., 1, 1E10), friction_laminar(250))
def test_helical_turbulent_fd_Srinivasan():
fd = helical_turbulent_fd_Srinivasan(1E4, 0.01, .02)
assert_close(fd, 0.0570745212117107)
def test_helical_turbulent_fd_Schmidt():
fd = helical_turbulent_fd_Schmidt(1E4, 0.01, .02)
assert_close(fd, 0.08875550767040916)
fd = helical_turbulent_fd_Schmidt(1E4, 0.01, .2)
assert_close(fd, 0.04476560991345504)
assert_close(friction_factor(1E4), helical_turbulent_fd_Schmidt(1E4, 0.01, 1E11))
fd = helical_turbulent_fd_Schmidt(1E6, 0.01, .02)
assert_close(fd, 0.04312877383550924)
def test_helical_turbulent_fd_Mori_Nakayama():
# Formula in [1]_ is hard to read, but the powers have been confirmed in
# two sources to be 1/5. [3]_ butchers the formula's brackets/power raising,
# but is otherwise correct.
fd = helical_turbulent_fd_Mori_Nakayama(1E4, 0.01, .2)
assert_close(fd, 0.037311802071379796)
def test_helical_turbulent_fd_Prasad():
# Checks out, formula in [2]_ is the same as in [1]_!
fd = helical_turbulent_fd_Prasad(1E4, 0.01, .2)
assert_close(fd, 0.043313098093994626)
assert_close(helical_turbulent_fd_Prasad(1E4, 0.01, 1E20), friction_factor(1E4))
def test_helical_turbulent_fd_Czop():
fd = helical_turbulent_fd_Czop(1E4, 0.01, .2)
assert_close(fd, 0.02979575250574106)
def test_helical_turbulent_fd_Guo():
fd = helical_turbulent_fd_Guo(2E5, 0.01, .2)
assert_close(fd, 0.022189161013253147)
def test_helical_turbulent_fd_Ju():
fd = helical_turbulent_fd_Ju(1E4, 0.01, .2)
assert_close(fd, 0.04945959480770937)
assert_close(helical_turbulent_fd_Ju(1E4, 0.01, 1E80), friction_factor(1E4))
def test_helical_turbulent_fd_Mandal_Nigam():
fd = helical_turbulent_fd_Mandal_Nigam(1E4, 0.01, .2)
assert_close(fd, 0.03831658117115902)
assert_close(helical_turbulent_fd_Mandal_Nigam(1E4, 0.01, 1E80), friction_factor(1E4))
def test_helical_transition_Re_Seth_Stahel():
# Read the original
assert_close(helical_transition_Re_Seth_Stahel(1, 7.), 7645.0599897402535)
assert_close(helical_transition_Re_Seth_Stahel(1, 1E20), 1900)
def test_helical_transition_Re_Ito():
assert_close(helical_transition_Re_Ito(1, 7.), 10729.972844697186)
def test_helical_transition_Re_Kubair_Kuloor():
assert_close(helical_transition_Re_Kubair_Kuloor(1, 7), 8625.986927588123)
def test_helical_transition_Re_Kutateladze_Borishanskii():
assert_close(helical_transition_Re_Kutateladze_Borishanskii(1, 7.), 7121.143774574058)
assert_close(helical_transition_Re_Kutateladze_Borishanskii(1, 1E20), 2300)
def test_helical_transition_Re_Schmidt():
assert_close(helical_transition_Re_Schmidt(1, 7.), 10540.094061770815)
assert_close(helical_transition_Re_Schmidt(1, 1E20), 2300)
def test_helical_transition_Re_Srinivasan():
assert_close(helical_transition_Re_Srinivasan(1, 7.), 11624.704719832524,)
assert_close(helical_transition_Re_Srinivasan(1, 1E20), 2100)
def test_friction_factor_curved():
fd = friction_factor_curved(2E4, 0.01, .02)
assert_close(fd, 0.050134646621603024)
fd = friction_factor_curved(250, .02, .1)
assert_close(fd, 0.47460725672835236)
fd_transition = [friction_factor_curved(i, 0.01, .02) for i in [16779, 16780]]
assert_close1d(fd_transition, [0.03323676794260526, 0.057221855744623344])
with pytest.raises(Exception):
friction_factor_curved(16779, 0.01, .02, Method='BADMETHOD')
with pytest.raises(Exception):
friction_factor_curved(16779, 0.01, .02, Rec_method='BADMETHOD')
fd_rough_false = friction_factor_curved(20000, 0.01, .02, roughness=.0001, turbulent_method='Guo')
assert_close(fd_rough_false, 0.1014240343662085)
methods = friction_factor_curved_methods(20000, 0.01, .02, check_ranges=True)
assert sorted(methods) == sorted(['Guo','Ju','Schmidt turbulent','Prasad','Mandel Nigam','Mori Nakayama turbulent','Czop', 'Srinivasan turbulent'])
methods = friction_factor_curved_methods(2000, 0.01, .02, check_ranges=True)
assert sorted(methods) == sorted(['White', 'Schmidt laminar', 'Mori Nakayama laminar'])
assert 'Schmidt turbulent' in friction_factor_curved_methods(Re=1E5, Di=0.02, Dc=0.5)
assert 11 == len(friction_factor_curved_methods(Re=1E5, Di=0.02, Dc=0.5, check_ranges=False))
for m in friction_factor_curved_methods(Re=1E5, Di=0.02, Dc=0.5, check_ranges=False):
friction_factor_curved(2000, 0.01, .02, Method=m)
# Test the Fanning case
fd = friction_factor_curved(2E4, 0.01, .02, Darcy=False)
assert_close(fd, 0.012533661655400756)
for m in ['Seth Stahel', 'Ito', 'Kubair Kuloor', 'Kutateladze Borishanskii', 'Schmidt', 'Srinivasan']:
helical_Re_crit(Di=0.02, Dc=0.5, Method=m)
def test_friction_plate():
fd = friction_plate_Martin_1999(Re=20000., chevron_angle=45)
assert_close(fd, 0.7818916308365043)
fd = friction_plate_Martin_1999(Re=1999., chevron_angle=45)
assert_close(fd, 0.8346709330530173)
fd = friction_plate_Martin_VDI(Re=20000., chevron_angle=45)
assert_close(fd, 0.7815890416247431)
fd = friction_plate_Martin_VDI(Re=1999., chevron_angle=45)
assert_close(fd, 0.8346777166415049)
fd = friction_plate_Muley_Manglik(Re=2000., chevron_angle=45., plate_enlargement_factor=1.2)
assert_close(fd, 1.0880870804075413)
def test_friction_Kumar():
from fluids.friction import Kumar_beta_list, Kumar_fd_Res
fd = friction_plate_Kumar(2000, 30)
assert_close(fd, 2.9760669055634517)
all_ans_expect = [[[22.22222222222222, 18.900854099814858, 5.181226661414687, 5.139730745446174],
[20.88888888888889, 17.09090909090909, 3.656954441625244, 3.609575756782771]],
[[13.428571428571427, 12.000171923243482, 1.7788367041690634, 1.7788497785371564],
[9.714285714285714, 8.5, 1.2332865464612235, 1.2320492987599356]],
[[7.157894736842104, 6.590102034105372, 1.2332865464612235, 1.2320492987599356],
[5.052631578947368, 4.571428571428571, 0.9576862861589914, 0.9547729646969146]],
[[2.4615384615384617, 2.374448634025773, 0.8393834232628009, 0.8379103279437352],
[2.4615384615384617, 2.3414634146341466, 0.7519331759748705, 0.7502394735017442]],
[[1.9591836734693877, 1.9015330284979595, 0.6797898512309091, 0.6799788644298855],
[1.9591836734693877, 1.9015330284979595, 0.6797898512309091, 0.6799788644298855]]]
all_ans = []
for i, beta_main in enumerate(Kumar_beta_list):
beta_ans = []
for beta in (beta_main-1, beta_main+1):
Re_ans = []
for Re_main in Kumar_fd_Res[i]:
for Re in [Re_main-1, Re_main+1]:
ans = friction_plate_Kumar(Re, beta)
Re_ans.append(ans)
beta_ans.append(Re_ans)
all_ans.append(beta_ans)
assert_close3d(all_ans, all_ans_expect)
|