File: test_friction.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (583 lines) | stat: -rw-r--r-- 21,574 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

from math import isnan, log10, pi

import pytest

from fluids.friction import (
    Alshul_1952,
    Avci_Karagoz_2009,
    Barr_1981,
    Blasius,
    Brkic_2011_1,
    Brkic_2011_2,
    Buzzelli_2008,
    Chen_1979,
    Churchill_1973,
    Churchill_1977,
    Clamond,
    Colebrook,
    Eck_1973,
    Fang_2011,
    Haaland,
    Jain_1976,
    Manadilli_1997,
    Moody,
    Papaevangelo_2010,
    Prandtl_von_Karman_Nikuradse,
    Rao_Kumar_2007,
    Romeo_2002,
    Round_1980,
    Serghides_1,
    Serghides_2,
    Shacham_1980,
    Sonnad_Goudar_2006,
    Swamee_Jain_1976,
    Tsal_1989,
    Wood_1966,
    Zigrang_Sylvester_1,
    Zigrang_Sylvester_2,
    _Farshad_roughness,
    _roughness,
    friction_factor,
    friction_factor_curved,
    friction_factor_curved_methods,
    friction_factor_methods,
    friction_laminar,
    friction_plate_Kumar,
    friction_plate_Martin_1999,
    friction_plate_Martin_VDI,
    friction_plate_Muley_Manglik,
    ft_Crane,
    helical_laminar_fd_Mori_Nakayama,
    helical_laminar_fd_Schmidt,
    helical_laminar_fd_White,
    helical_Re_crit,
    helical_transition_Re_Ito,
    helical_transition_Re_Kubair_Kuloor,
    helical_transition_Re_Kutateladze_Borishanskii,
    helical_transition_Re_Schmidt,
    helical_transition_Re_Seth_Stahel,
    helical_transition_Re_Srinivasan,
    helical_turbulent_fd_Czop,
    helical_turbulent_fd_Guo,
    helical_turbulent_fd_Ju,
    helical_turbulent_fd_Mandal_Nigam,
    helical_turbulent_fd_Mori_Nakayama,
    helical_turbulent_fd_Prasad,
    helical_turbulent_fd_Schmidt,
    helical_turbulent_fd_Srinivasan,
    material_roughness,
    nearest_material_roughness,
    one_phase_dP,
    one_phase_dP_dz_acceleration,
    one_phase_dP_gravitational,
    roughness_Farshad,
    transmission_factor,
    von_Karman,
)
from fluids.numerics import assert_close, assert_close1d, assert_close3d, linspace, logspace, secant

try:
    import thefuzz
    has_thefuzz = True
except:
    has_thefuzz = False

try:
    import mpmath
    has_mpmath = True
except:
    has_mpmath = False

def test_friction_basic():
    assert_close(Moody(1E5, 1E-4), 0.01809185666808665)
    assert_close(Alshul_1952(1E5, 1E-4), 0.018382997825686878)
    assert_close(Wood_1966(1E5, 1E-4), 0.021587570560090762)
    assert_close(Churchill_1973(1E5, 1E-4), 0.01846708694482294)
    assert_close(Eck_1973(1E5, 1E-4), 0.01775666973488564)
    assert_close(Jain_1976(1E5, 1E-4), 0.018436560312693327)
    assert_close(Swamee_Jain_1976(1E5, 1E-4), 0.018452424431901808)
    assert_close(Churchill_1977(1E5, 1E-4), 0.018462624566280075)
    assert_close(Chen_1979(1E5, 1E-4), 0.018552817507472126)
    assert_close(Round_1980(1E5, 1E-4), 0.01831475391244354)
    assert_close(Shacham_1980(1E5, 1E-4), 0.01860641215097828)
    assert_close(Barr_1981(1E5, 1E-4), 0.01849836032779929)
    assert_close(Zigrang_Sylvester_1(1E5, 1E-4), 0.018646892425980794)
    assert_close(Zigrang_Sylvester_2(1E5, 1E-4), 0.01850021312358548)
    assert_close(Haaland(1E5, 1E-4), 0.018265053014793857)
    assert_close(Serghides_1(1E5, 1E-4), 0.01851358983180063)
    assert_close(Serghides_2(1E5, 1E-4), 0.018486377560664482)
    assert_close(Tsal_1989(1E5, 1E-4), 0.018382997825686878)
    assert_close(Tsal_1989(1E8, 1E-4), 0.012165854627780102)
    assert_close(Manadilli_1997(1E5, 1E-4), 0.01856964649724108)
    assert_close(Romeo_2002(1E5, 1E-4), 0.018530291219676177)
    assert_close(Sonnad_Goudar_2006(1E5, 1E-4), 0.0185971269898162)
    assert_close(Rao_Kumar_2007(1E5, 1E-4), 0.01197759334600925)
    assert_close(Buzzelli_2008(1E5, 1E-4), 0.018513948401365277)
    assert_close(Avci_Karagoz_2009(1E5, 1E-4), 0.01857058061066499)
    assert_close(Papaevangelo_2010(1E5, 1E-4), 0.015685600818488177)
    assert_close(Brkic_2011_1(1E5, 1E-4), 0.01812455874141297)
    assert_close(Brkic_2011_2(1E5, 1E-4), 0.018619745410688716)
    assert_close(Fang_2011(1E5, 1E-4), 0.018481390682985432)
    assert_close(Clamond(1E5, 1E-4), 0.01851386607747165)
    assert_close(Clamond(1E5, 1E-4, fast=True), 0.01851486771096876)

    assert_close(friction_laminar(128), 0.5)

    assert_close(Blasius(10000.0), 0.03164)

    fd = ft_Crane(.1)
    assert_close(fd, 0.01628845962146481)
    assert_close(ft_Crane(1e-5), 604.8402578042682)

def test_friction():
    assert_close(sum(_roughness.values()), 0.01504508)


    assert_close(friction_factor(Re=1E5, eD=1E-4), 0.01851386607747165)
    methods_1 = friction_factor_methods(Re=1E5, eD=1E-4)
    methods_1.sort()

    methods_2 = ['Clamond', 'Colebrook', 'Manadilli_1997', 'Haaland', 'Alshul_1952', 'Avci_Karagoz_2009', 'Rao_Kumar_2007', 'Zigrang_Sylvester_2', 'Eck_1973', 'Buzzelli_2008', 'Tsal_1989', 'Papaevangelo_2010', 'Barr_1981', 'Jain_1976', 'Moody', 'Brkic_2011_2', 'Brkic_2011_1', 'Swamee_Jain_1976', 'Wood_1966', 'Shacham_1980', 'Romeo_2002', 'Chen_1979', 'Fang_2011', 'Round_1980', 'Sonnad_Goudar_2006', 'Churchill_1973', 'Churchill_1977', 'Serghides_2', 'Serghides_1', 'Zigrang_Sylvester_1']
    methods_2.sort()
    assert methods_1 == methods_2

    assert_close(friction_factor(Re=1E5, eD=1E-4, Darcy=False), 0.01851386607747165/4)
    assert_close(friction_factor(Re=128), 0.5)

    assert_close(friction_factor(Re=1E5, eD=0, Method=None), 0.01798977308427384)
    assert_close(friction_factor(20000, eD=0.0, Method='laminar'), 0.0032)

    with pytest.raises(ValueError):
        friction_factor(Re=1E5, eD=0, Method='BADMETHOD')

    assert ['laminar'] == friction_factor_methods(200, 0, True)
    assert 31 == len(friction_factor_methods(200, 0, False))

    for m in friction_factor_methods(200, 0, False):
        friction_factor(Re=1E5, eD=1e-6, Method=m)

    fd = ft_Crane(.1)
    Di = 0.1
    fd_act = Clamond(7.5E6*Di, eD=roughness_Farshad(ID='Carbon steel, bare', D=Di)/Di)
    assert_close(fd, fd_act, rtol=5e-6)

def test_friction_Colebrook():
    assert_close(Colebrook(1E5, 1E-4), 0.018513866077471648)

    # Test the colebrook is the clamond when tol=-1
    assert Colebrook(1E5, 1E-4, -1) == Clamond(1E5, 1E-4)
    # Test the colebrook is the analytical solution when Re < 10
    # even when the clamond solution is specified
    assert Colebrook(1, 1E-4, -1) == Colebrook(1, 1e-4)


@pytest.mark.slow
@pytest.mark.mpmath
@pytest.mark.skipif(not has_mpmath, reason='mpmath is not installed')
def test_Colebrook_numerical_mpmath():
    # tested at n=500 for both Re and eD
    Res = logspace(log10(1e-12), log10(1E12), 30) # 1E12 is too large for sympy - it slows down too much
    eDs = logspace(log10(1e-20), log10(.1), 21) # 1-1e-9
    for Re in Res:
        for eD in eDs:
            fd_exact = Colebrook(Re, eD, tol=0)
            fd_numerical = Colebrook(Re, eD, tol=1e-12)
            assert_close(fd_exact, fd_numerical, rtol=1e-5)

@pytest.mark.slow
@pytest.mark.mpmath
@pytest.mark.skipif(not has_mpmath, reason='mpmath is not installed')
def test_Colebrook_scipy_mpmath():
    # Faily grueling test - check the lambertw implementations are matching mostly
    # NOTE the test is to Re = 1E7; at higher Res the numerical solver is almost
    # always used
    Res = logspace(log10(1e-12), log10(1e7), 20) # 1E12 is too large for sympy
    eDs = logspace(log10(1e-20), log10(.1), 19) # 1-1e-9

    for Re in Res:
        for eD in eDs:
            Re = float(Re)
            eD = float(eD)
            fd_exact = Colebrook(Re, eD, tol=0)
            fd_scipy = Colebrook(Re, eD)
            assert_close(fd_exact, fd_scipy, rtol=1e-9)


@pytest.mark.slow
def test_Colebrook_vs_Clamond():
    Res = logspace(log10(10), log10(1E50), 40)
    eDs = logspace(log10(1e-20), log10(1), 40)
    for Re in Res:
        for eD in eDs:
            fd_exact = Colebrook(Re, eD)
            fd_clamond = Clamond(Re, eD)
            # Interestingly, matches to rtol=1e-9 vs. numerical solver
            # But does not have such accuracy compared to mpmath
            if isnan(fd_exact) or isnan(fd_clamond):
                continue # older scipy on 3.4 returns a nan sometimes
            assert_close(fd_exact, fd_clamond, rtol=1e-9)
            # If rtol is moved to 1E-7, eD can be increased to 1




@pytest.mark.mpmath
def test_Colebrook_hard_regimes():
    fd_inf_regime = Colebrook(104800000000, 2.55e-08)
    assert_close(fd_inf_regime, 0.0037751087365339906, rtol=1e-10)


def test_one_phase_dP():
    dP = one_phase_dP(10.0, 1000., 1E-5, .1, L=1.000)
    assert_close(dP, 63.43447321097365)

def test_one_phase_dP_gravitational():
    dP = one_phase_dP_gravitational(angle=90., rho=2.6)
    assert_close(dP, 25.49729)

    dP = one_phase_dP_gravitational(angle=90, rho=2.6, L=2.)
    assert_close(dP, 25.49729*2)


def test_one_phase_dP_dz_acceleration():
    dP = one_phase_dP_dz_acceleration(m=1., D=0.1, rho=827.1, dv_dP=-1.1E-5, dP_dL=5E5, dA_dL=0.0001)
    assert_close(dP, 89162.89116373913)


@pytest.mark.slow
@pytest.mark.thermo
@pytest.mark.skip
def test_one_phase_dP_dz_acceleration_example():
    # This requires thermo!
    from scipy.integrate import odeint
    from thermo import Stream, Vm_to_rho

    from fluids import one_phase_dP, one_phase_dP_acceleration
    from fluids.numerics import assert_close

    P0 = 1E5
    s = Stream(['nitrogen', 'methane'], T=300, P=P0, zs=[0.5, 0.5], m=1)
    rho0 = s.rho
    D = 0.1
    def dP_dz(P, L, acc=False):
        s.flash(P=float(P), Hm=s.Hm)
        dPf = one_phase_dP(m=s.m, rho=s.rhog, mu=s.rhog, D=D, roughness=0, L=1.0)

        if acc:
            G = 4.0*s.m/(pi*D*D)
            der = s.VolumeGasMixture.property_derivative_P(P=s.P, T=s.T, zs=s.zs, ws=s.ws)
            der = 1/Vm_to_rho(der, s.MW)
            factor = G*G*der
            dP = dPf/(1.0 + factor)
            return -dP
        return -dPf

    ls = linspace(0, .01)

    dP_noacc = odeint(dP_dz, s.P, ls, args=(False,))[-1]
    s.flash(P=float(P0), Hm=s.Hm) # Reset the stream object
    profile = odeint(dP_dz, s.P, ls, args=(True,))

    dP_acc = profile[-1]

    s.flash(P=dP_acc, Hm=s.Hm)
    rho1 = s.rho

    dP_acc_numerical = dP_noacc - dP_acc
    dP_acc_basic = one_phase_dP_acceleration(m=s.m, D=D, rho_o=rho1, rho_i=rho0)

    assert_close(dP_acc_basic, dP_acc_numerical, rtol=1E-4)
del test_one_phase_dP_dz_acceleration_example

def test_transmission_factor():
    assert_close(transmission_factor(fd=0.0185), 14.704292441876154)
    assert_close(transmission_factor(F=14.704292441876154), 0.0185)
    assert_close(transmission_factor(0.0185), 14.704292441876154)

    # Example in [1]_, lists answer as 12.65
    assert_close(transmission_factor(fd=0.025), 12.649110640673516)

    with pytest.raises(Exception):
        transmission_factor()


def test_roughness_Farshad():

    e = roughness_Farshad('Cr13, bare', 0.05)
    assert_close(e, 5.3141677781137006e-05)

    e = roughness_Farshad('Cr13, bare')
    assert_close(e, 5.5e-05)

    e = roughness_Farshad(coeffs=(0.0021, -1.0055), D=0.05)
    assert_close(e, 5.3141677781137006e-05)

    tot = sum([abs(j) for i in _Farshad_roughness.values() for j in i])
    assert_close(tot, 7.0729095)

    with pytest.raises(Exception):
        roughness_Farshad('BADID', 0.05)

@pytest.mark.skipif(not has_thefuzz, reason='missing thefuzz')
def test_nearest_material_roughness():
    hit1 = nearest_material_roughness('condensate pipes', clean=False)
    assert hit1 == 'Seamless steel tubes, Condensate pipes in open systems or periodically operated steam pipelines'

    hit2 = nearest_material_roughness('Plastic', clean=True)
    assert hit2 == 'Plastic coated'


@pytest.mark.skipif(not has_thefuzz, reason='missing thefuzz')
def test_material_roughness():
    e1 = material_roughness('Plastic coated')
    assert_close(e1, 5e-06)

    e2 = material_roughness('Plastic coated', D=1E-3)
    assert_close(e2, 5.243618447826409e-06)

    e3 = material_roughness('Brass')
    assert_close(e3, 1.52e-06)

    e4 = material_roughness('condensate pipes')
    assert_close(e4, 0.0005)

    ID = 'Old, poor fitting and manufacture; with an overgrown surface'
    e5 = [material_roughness(ID, optimism=i) for i in (True, False)]
    assert_close1d(e5, [0.001, 0.004])


def test_von_Karman():
    f = von_Karman(1E-4)
    f_precalc = 0.01197365149564789
    assert_close(f, f_precalc)


def Prandtl_von_Karman_Nikuradse_numeric(Re):
    rat = 2.51/Re
    def to_solve(f):
        # Good to 1E75, down to 1E-17
        v = f**-0.5
        return v + 2.0*log10(rat*v)
    return secant(to_solve, 0.000001)


def test_Prandtl_von_Karman_Nikuradse():
    Re = 200
    assert_close(Prandtl_von_Karman_Nikuradse_numeric(Re),  Prandtl_von_Karman_Nikuradse(Re))


def test_Prandtl_von_Karman_Nikuradse_full():
    # Tested to a very high number of points
    fds = []
    fds_numeric = []
    for Re in logspace(1E-15, 30, 40):
        fds.append(Prandtl_von_Karman_Nikuradse_numeric(Re))
        fds_numeric.append(Prandtl_von_Karman_Nikuradse(Re))
    assert_close1d(fds, fds_numeric)


def test_helical_laminar_fd_White():
    fd = helical_laminar_fd_White(250., .02, .1)
    assert_close(fd, 0.4063281817830202)
    assert_close(helical_laminar_fd_White(250, .02, 100), 0.256)


def test_helical_laminar_fd_Mori_Nakayama():
    fd = helical_laminar_fd_Mori_Nakayama(250., .02, .1)
    assert_close(fd, 0.4222458285779544)
    assert_close(4.4969472, helical_laminar_fd_Mori_Nakayama(20, .02, .1))


def test_helical_laminar_fd_Schmidt():
    fd = helical_laminar_fd_Schmidt(250., .02, .1)
    assert_close(fd, 0.47460725672835236)
    # Test convergence at low curvature
    assert_close(helical_laminar_fd_Schmidt(250., 1, 1E10), friction_laminar(250))


def test_helical_turbulent_fd_Srinivasan():
    fd = helical_turbulent_fd_Srinivasan(1E4, 0.01, .02)
    assert_close(fd, 0.0570745212117107)

def test_helical_turbulent_fd_Schmidt():
    fd = helical_turbulent_fd_Schmidt(1E4, 0.01, .02)
    assert_close(fd, 0.08875550767040916)
    fd = helical_turbulent_fd_Schmidt(1E4, 0.01, .2)
    assert_close(fd, 0.04476560991345504)
    assert_close(friction_factor(1E4), helical_turbulent_fd_Schmidt(1E4, 0.01, 1E11))

    fd = helical_turbulent_fd_Schmidt(1E6, 0.01, .02)
    assert_close(fd, 0.04312877383550924)


def test_helical_turbulent_fd_Mori_Nakayama():
    # Formula in [1]_ is hard to read, but the powers have been confirmed in
    # two sources to be 1/5. [3]_ butchers the formula's brackets/power raising,
    # but is otherwise correct.
    fd = helical_turbulent_fd_Mori_Nakayama(1E4, 0.01, .2)
    assert_close(fd, 0.037311802071379796)


def test_helical_turbulent_fd_Prasad():
    # Checks out, formula in [2]_ is the same as in [1]_!
    fd = helical_turbulent_fd_Prasad(1E4, 0.01, .2)
    assert_close(fd, 0.043313098093994626)
    assert_close(helical_turbulent_fd_Prasad(1E4, 0.01, 1E20), friction_factor(1E4))


def test_helical_turbulent_fd_Czop():
    fd = helical_turbulent_fd_Czop(1E4, 0.01, .2)
    assert_close(fd, 0.02979575250574106)


def test_helical_turbulent_fd_Guo():
    fd = helical_turbulent_fd_Guo(2E5, 0.01, .2)
    assert_close(fd, 0.022189161013253147)


def test_helical_turbulent_fd_Ju():
    fd = helical_turbulent_fd_Ju(1E4, 0.01, .2)
    assert_close(fd, 0.04945959480770937)
    assert_close(helical_turbulent_fd_Ju(1E4, 0.01, 1E80),  friction_factor(1E4))


def test_helical_turbulent_fd_Mandal_Nigam():
    fd = helical_turbulent_fd_Mandal_Nigam(1E4, 0.01, .2)
    assert_close(fd, 0.03831658117115902)
    assert_close(helical_turbulent_fd_Mandal_Nigam(1E4, 0.01, 1E80),  friction_factor(1E4))


def test_helical_transition_Re_Seth_Stahel():
    # Read the original
    assert_close(helical_transition_Re_Seth_Stahel(1, 7.), 7645.0599897402535)
    assert_close(helical_transition_Re_Seth_Stahel(1, 1E20), 1900)


def test_helical_transition_Re_Ito():
    assert_close(helical_transition_Re_Ito(1, 7.), 10729.972844697186)


def test_helical_transition_Re_Kubair_Kuloor():
    assert_close(helical_transition_Re_Kubair_Kuloor(1, 7), 8625.986927588123)


def test_helical_transition_Re_Kutateladze_Borishanskii():
    assert_close(helical_transition_Re_Kutateladze_Borishanskii(1, 7.),  7121.143774574058)
    assert_close(helical_transition_Re_Kutateladze_Borishanskii(1, 1E20), 2300)


def test_helical_transition_Re_Schmidt():
    assert_close(helical_transition_Re_Schmidt(1, 7.), 10540.094061770815)
    assert_close(helical_transition_Re_Schmidt(1, 1E20), 2300)


def test_helical_transition_Re_Srinivasan():
    assert_close(helical_transition_Re_Srinivasan(1, 7.),  11624.704719832524,)
    assert_close(helical_transition_Re_Srinivasan(1, 1E20),  2100)


def test_friction_factor_curved():
    fd = friction_factor_curved(2E4, 0.01, .02)
    assert_close(fd, 0.050134646621603024)
    fd = friction_factor_curved(250, .02, .1)
    assert_close(fd, 0.47460725672835236)

    fd_transition = [friction_factor_curved(i, 0.01, .02) for i in [16779, 16780]]
    assert_close1d(fd_transition, [0.03323676794260526, 0.057221855744623344])

    with pytest.raises(Exception):
        friction_factor_curved(16779, 0.01, .02, Method='BADMETHOD')
    with pytest.raises(Exception):
        friction_factor_curved(16779, 0.01, .02, Rec_method='BADMETHOD')

    fd_rough_false = friction_factor_curved(20000, 0.01, .02, roughness=.0001, turbulent_method='Guo')
    assert_close(fd_rough_false, 0.1014240343662085)

    methods = friction_factor_curved_methods(20000, 0.01, .02, check_ranges=True)
    assert sorted(methods) == sorted(['Guo','Ju','Schmidt turbulent','Prasad','Mandel Nigam','Mori Nakayama turbulent','Czop', 'Srinivasan turbulent'])
    methods = friction_factor_curved_methods(2000, 0.01, .02, check_ranges=True)
    assert sorted(methods) == sorted(['White', 'Schmidt laminar', 'Mori Nakayama laminar'])
    assert 'Schmidt turbulent' in friction_factor_curved_methods(Re=1E5, Di=0.02, Dc=0.5)
    assert 11 == len(friction_factor_curved_methods(Re=1E5, Di=0.02, Dc=0.5, check_ranges=False))

    for m in friction_factor_curved_methods(Re=1E5, Di=0.02, Dc=0.5, check_ranges=False):
        friction_factor_curved(2000, 0.01, .02, Method=m)

    # Test the Fanning case
    fd = friction_factor_curved(2E4, 0.01, .02, Darcy=False)
    assert_close(fd, 0.012533661655400756)

    for m in ['Seth Stahel', 'Ito', 'Kubair Kuloor', 'Kutateladze Borishanskii', 'Schmidt', 'Srinivasan']:
        helical_Re_crit(Di=0.02, Dc=0.5, Method=m)

def test_friction_plate():
    fd = friction_plate_Martin_1999(Re=20000., chevron_angle=45)
    assert_close(fd, 0.7818916308365043)

    fd = friction_plate_Martin_1999(Re=1999., chevron_angle=45)
    assert_close(fd, 0.8346709330530173)

    fd = friction_plate_Martin_VDI(Re=20000., chevron_angle=45)
    assert_close(fd, 0.7815890416247431)

    fd = friction_plate_Martin_VDI(Re=1999., chevron_angle=45)
    assert_close(fd, 0.8346777166415049)

    fd = friction_plate_Muley_Manglik(Re=2000., chevron_angle=45., plate_enlargement_factor=1.2)
    assert_close(fd, 1.0880870804075413)


def test_friction_Kumar():
    from fluids.friction import Kumar_beta_list, Kumar_fd_Res
    fd = friction_plate_Kumar(2000, 30)
    assert_close(fd, 2.9760669055634517)

    all_ans_expect = [[[22.22222222222222, 18.900854099814858, 5.181226661414687, 5.139730745446174],
  [20.88888888888889, 17.09090909090909, 3.656954441625244, 3.609575756782771]],
 [[13.428571428571427, 12.000171923243482, 1.7788367041690634, 1.7788497785371564],
  [9.714285714285714, 8.5, 1.2332865464612235, 1.2320492987599356]],
 [[7.157894736842104, 6.590102034105372, 1.2332865464612235, 1.2320492987599356],
  [5.052631578947368, 4.571428571428571, 0.9576862861589914, 0.9547729646969146]],
 [[2.4615384615384617, 2.374448634025773, 0.8393834232628009, 0.8379103279437352],
  [2.4615384615384617, 2.3414634146341466, 0.7519331759748705, 0.7502394735017442]],
 [[1.9591836734693877, 1.9015330284979595, 0.6797898512309091, 0.6799788644298855],
  [1.9591836734693877, 1.9015330284979595, 0.6797898512309091, 0.6799788644298855]]]

    all_ans = []
    for i, beta_main in enumerate(Kumar_beta_list):
        beta_ans = []
        for beta in (beta_main-1, beta_main+1):
            Re_ans = []
            for Re_main in Kumar_fd_Res[i]:
                for Re in [Re_main-1, Re_main+1]:
                    ans = friction_plate_Kumar(Re, beta)
                    Re_ans.append(ans)
            beta_ans.append(Re_ans)
        all_ans.append(beta_ans)

    assert_close3d(all_ans, all_ans_expect)