1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from math import cos
import pytest
from fluids import (
TANK,
A_cylinder,
A_hollow_cylinder,
A_multiple_hole_cylinder,
A_partial_circle,
AirCooledExchanger,
HelicalCoil,
PlateExchanger,
RectangularFinExchanger,
RectangularOffsetStripFinExchanger,
SA_conical_head,
SA_ellipsoidal_head,
SA_from_h,
SA_guppy_head,
SA_partial_cylindrical_body,
SA_partial_horiz_conical_head,
SA_partial_horiz_ellipsoidal_head,
SA_partial_horiz_guppy_head,
SA_partial_horiz_spherical_head,
SA_partial_horiz_torispherical_head,
SA_partial_sphere,
SA_partial_vertical_conical_head,
SA_partial_vertical_ellipsoidal_head,
SA_partial_vertical_spherical_head,
SA_partial_vertical_torispherical_head,
SA_tank,
SA_torispheroidal,
V_cylinder,
V_from_h,
V_hollow_cylinder,
V_horiz_conical,
V_horiz_ellipsoidal,
V_horiz_guppy,
V_horiz_spherical,
V_horiz_torispherical,
V_multiple_hole_cylinder,
V_partial_sphere,
V_vertical_conical,
V_vertical_conical_concave,
V_vertical_ellipsoidal,
V_vertical_ellipsoidal_concave,
V_vertical_spherical,
V_vertical_spherical_concave,
V_vertical_torispherical,
V_vertical_torispherical_concave,
a_torispherical,
aspect_ratio,
circle_segment_h_from_A,
circularity,
pitch_angle_solver,
plate_enlargement_factor,
sphericity,
)
from fluids.constants import foot, inch, pi
from fluids.numerics import assert_close, assert_close1d, linspace
def test_SA_partial_sphere():
SA1 = SA_partial_sphere(1., 0.7)
assert_close(SA1, 2.199114857512855)
SA2 = SA_partial_sphere(2, 1) # One spherical head's surface area:
assert_close(SA2, 6.283185307179586)
# Edge cases
assert_close(SA_partial_sphere(1., 0),
SA_partial_sphere(1., -1e-12))
assert_close(SA_partial_sphere(1., 0),
SA_partial_sphere(1., -1e100))
assert_close(SA_partial_sphere(1., 1),
SA_partial_sphere(1., 1+1e-12))
assert_close(SA_partial_sphere(1., 1),
SA_partial_sphere(1., 1e100))
def test_V_partial_sphere():
V1 = V_partial_sphere(1., 0.7)
assert_close(V1, 0.4105014400690663)
assert 0.0 == V_partial_sphere(1., 0.0)
assert 0.0 == V_partial_sphere(1., -1e-10)
assert 0.0 == V_partial_sphere(1., -1e-300)
assert 0.0 == V_partial_sphere(1., -1e300)
assert_close(V_partial_sphere(1., 1),
V_partial_sphere(1., 1+1e-12))
assert_close(V_partial_sphere(1., 1),
V_partial_sphere(1., 1+1e12))
def test_V_horiz_conical():
# Two examples from [1]_, and at midway, full, and empty.
Vs_horiz_conical1 = [V_horiz_conical(D=108., L=156., a=42., h=i)/231. for i in (36, 84, 54, 108, 0)]
Vs_horiz_conical1s = [2041.1923581273443, 6180.540773905826, 3648.490668241736, 7296.981336483472, 0.0]
assert_close1d(Vs_horiz_conical1, Vs_horiz_conical1s)
# Head only custom example:
V_head1 = V_horiz_conical(D=108., L=156., a=42., h=84., headonly=True)/231.
V_head2 = V_horiz_conical(108., 156., 42., 84., headonly=True)/231.
assert_close1d([V_head1, V_head2], [508.8239000645628]*2)
assert V_horiz_conical(D=108., L=156., a=42., h=0, headonly=True) == 0.0
# Check that if `h` is larger than `D`, it is truncated. This is helpful for floating point error cases.
assert_close(V_horiz_conical(D=108., L=156., a=42., h=108),
V_horiz_conical(D=108., L=156., a=42., h=109))
assert_close(V_horiz_conical(D=108., L=156., a=42., h=108),
V_horiz_conical(D=108., L=156., a=42., h=2000))
# Check the function handles floating point errors for a slightly negative value of `h`
assert_close(V_horiz_conical(D=108., L=156., a=42., h=0), V_horiz_conical(D=108., L=156., a=42., h=-1e-30))
assert_close(V_horiz_conical(D=108., L=156., a=42., h=0), V_horiz_conical(D=108., L=156., a=42., h=-1e30))
# Two examples from [1]_, and at midway, full, and empty.
Vs_horiz_ellipsoidal = [V_horiz_ellipsoidal(D=108., L=156., a=42., h=i)/231. for i in (36, 84, 54, 108, 0)]
Vs_horiz_ellipsoidals = [2380.9565415578145, 7103.445235921378, 4203.695769930696, 8407.391539861392, 0.0]
assert_close1d(Vs_horiz_ellipsoidal, Vs_horiz_ellipsoidals)
#Head only custom example:
V_head1 = V_horiz_ellipsoidal(D=108., L=156., a=42., h=84., headonly=True)/231.
V_head2 = V_horiz_ellipsoidal(108., 156., 42., 84., headonly=True)/231.
assert_close1d([V_head1, V_head2], [970.2761310723387]*2)
assert 0.0 == V_horiz_ellipsoidal(108., 156., 42., 0., headonly=True)
assert_close(V_horiz_ellipsoidal(D=108., L=156., a=42., h=108),
V_horiz_ellipsoidal(D=108., L=156., a=42., h=108+1e-10))
assert_close(V_horiz_ellipsoidal(D=108., L=156., a=42., h=108),
V_horiz_ellipsoidal(D=108., L=156., a=42., h=108+1e10))
def test_V_horiz_guppy():
# Two examples from [1]_, and at midway, full, and empty.
V_calc = [V_horiz_guppy(D=108., L=156., a=42., h=i)/231. for i in (36, 84, 54, 108, 0)]
Vs = [1931.7208029476762, 5954.110515329029, 3412.8543046053724, 7296.981336483472, 0.0]
assert_close1d(V_calc, Vs)
# Head only custom example:
V_head1 = V_horiz_guppy(D=108., L=156., a=42., h=36, headonly=True)/231.
V_head2 = V_horiz_guppy(108., 156., 42., 36, headonly=True)/231.
assert_close1d([V_head1, V_head2], [63.266257496613804]*2)
assert 0.0 == V_horiz_guppy(108., 156., 42., 0.0, headonly=True)
assert_close(V_horiz_guppy(D=108., L=156., a=42., h=108, headonly=True),
V_horiz_guppy(D=108., L=156., a=42., h=108+1e-10, headonly=True))
assert_close(V_horiz_guppy(D=108., L=156., a=42., h=108, headonly=True),
V_horiz_guppy(D=108., L=156., a=42., h=108+1e10, headonly=True))
def test_V_horiz_spherical():
# Two examples from [1]_, and at midway, full, and empty.
V_calc = [V_horiz_spherical(D=108., L=156., a=42., h=i)/231. for i in (36, 84, 54, 108, 0)]
Vs = [2303.9615116986183, 6935.163365275476, 4094.025626387197, 8188.051252774394, 0.0]
assert_close1d(V_calc, Vs)
assert 0.0 == V_horiz_spherical(D=108., L=156., a=42., h=0)
# Test z = 0 zero division error
base = V_horiz_spherical(D=108., L=156., a=54, h=36, headonly=True)
perturbed = V_horiz_spherical(D=108., L=156., a=53.999999999, h=36, headonly=True)
assert_close(base, perturbed, rtol=1e-10)
# Test while z is very very slow
perturbed = V_horiz_spherical(D=108., L=156., a=53.99999999, h=36, headonly=True)
assert_close(base, perturbed, rtol=1e-7)
# Test when the integration function is called, on its limits:
# The integral can be done analytically, but there's a zero to the power of negative integer error
# the expression is
# -cmath.atan(cmath.sqrt((R ** 2 - x ** 2) / (-R ** 2 + r ** 2))) * x ** 3 / 3 + cmath.atan(cmath.sqrt((R ** 2 - x ** 2) / (-R ** 2 + r ** 2))) * r ** 2 * x + x * (R ** 2 - r ** 2) * cmath.sqrt(0.1e1 / (R ** 2 - r ** 2) * x ** 2 - R ** 2 / (R ** 2 - r ** 2)) / 6 + R ** 2 * cmath.log(x / (R ** 2 - r ** 2) * (0.1e1 / (R ** 2 - r ** 2)) ** (-0.1e1 / 0.2e1) + cmath.sqrt(0.1e1 / (R ** 2 - r ** 2) * x ** 2 - R ** 2 / (R ** 2 - r ** 2))) * (0.1e1 / (R ** 2 - r ** 2)) ** (-0.1e1 / 0.2e1) / 6 - 0.2e1 / 0.3e1 * r ** 2 * cmath.log(x / (R ** 2 - r ** 2) * (0.1e1 / (R ** 2 - r ** 2)) ** (-0.1e1 / 0.2e1) + cmath.sqrt(0.1e1 / (R ** 2 - r ** 2) * x ** 2 - R ** 2 / (R ** 2 - r ** 2))) * (0.1e1 / (R ** 2 - r ** 2)) ** (-0.1e1 / 0.2e1) - r ** 3 * cmath.atan((-2 + 2 / (R ** 2 - r ** 2) * r * (x - r)) * (0.1e1 / (R ** 2 - r ** 2) * (x - r) ** 2 + 2 / (R ** 2 - r ** 2) * r * (x - r) - 1) ** (-0.1e1 / 0.2e1) / 2) / 3 + r ** 3 * cmath.atan((-2 - 2 / (R ** 2 - r ** 2) * r * (x + r)) * (0.1e1 / (R ** 2 - r ** 2) * (x + r) ** 2 - 2 / (R ** 2 - r ** 2) * r * (x + r) - 1) ** (-0.1e1 / 0.2e1) / 2) / 3
Vs = [V_horiz_spherical(D=108., L=156., a=i, h=84.)/231. for i in (108*.009999999, 108*.01000001)]
V_calc = [5201.54341872961, 5201.543461255985]
assert_close1d(Vs, V_calc)
# Head only custom example:
V_head1 = V_horiz_spherical(D=108., L=156., a=42., h=84., headonly=True)/231.
V_head2 = V_horiz_spherical(108., 156., 42., 84., headonly=True)/231.
assert_close1d([V_head1, V_head2], [886.1351957493874]*2)
# case that wasn't working
V = V_horiz_spherical(0.8855699976977874, 2.6567099930933624, 0.4427849988488937, 0.8855699976977874, True)
# Case with h over D
assert_close(V_horiz_spherical(D=108., L=156., a=42., h=108., headonly=True),
V_horiz_spherical(D=108., L=156., a=42., h=108.+1e-8, headonly=True))
assert_close(V_horiz_spherical(D=108., L=156., a=42., h=108., headonly=True),
V_horiz_spherical(D=108., L=156., a=42., h=108.+1e8, headonly=True))
def test_V_horiz_torispherical():
# Two examples from [1]_, and at midway, full, empty, and 1 inch; covering
# all code cases.
V_calc = [V_horiz_torispherical(D=108., L=156., f=1., k=0.06, h=i)/231. for i in [36, 84, 54, 108, 0, 1]]
Vs = [2028.626670842139, 5939.897910157917, 3534.9973314622794, 7069.994662924554, 0.0, 9.580013820942611]
assert_close1d(V_calc, Vs)
# Head only custom example:
V_head1 = V_horiz_torispherical(D=108., L=156., f=1., k=0.06, h=36, headonly=True)/231.
V_head2 = V_horiz_torispherical(108., 156., 1., 0.06, 36, headonly=True)/231.
assert_close1d([V_head1, V_head2], [111.71919144384525]*2)
assert 0.0 == V_horiz_torispherical(108., 156., 1., 0.06, 0.0)
# case that wasn't working
V = V_horiz_torispherical(0.7515011011912177, 2.254503303573653, 1.0, 0.06, 0.7515011011912177, True)
assert_close(V, 0.03437704511588912, rtol=1e-9)
# Another case that wasn't working
V = V_horiz_torispherical(3.411696249215663, 10.235088747646989, 1.0, 0.06, 3.4116962492156633, True)
assert_close(V_horiz_torispherical(108., 156., 1., 0.06, 108, headonly=True),
V_horiz_torispherical(108., 156., 1., 0.06, 108+1e-5, headonly=True))
assert_close(V_horiz_torispherical(108., 156., 1., 0.06, 108, headonly=True),
V_horiz_torispherical(108., 156., 1., 0.06, 108+1e5, headonly=True))
# cases that weren't tested
assert_close(V_horiz_torispherical(2, 0, 0.8, 0.154, 1.9623962396239625), 2.0899393249597247, rtol=1e-9)
assert_close(V_horiz_torispherical(2, 0, 0.9, 0.17, 1.8301830183018302), 2.0778125327193195, rtol=1e-9)
assert_close(V_horiz_torispherical(1.018018018018018, 0, 0.8, 0.1, 1), 0.2316373202419867, rtol=1e-9)
def test_V_vertical_conical():
# Two examples from [1]_, and at empty and h=D.
Vs_calc = [V_vertical_conical(132., 33., i)/231. for i in [24, 60, 0, 132]]
Vs = [250.67461381371024, 2251.175535772343, 0.0, 6516.560761446257]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_conical(132., 33., 0.0)
assert 0.0 == V_vertical_conical(132., 33., -1)
def test_V_vertical_ellipsoidal():
# Two examples from [1]_, and at empty and h=D.
Vs_calc = [V_vertical_ellipsoidal(132., 33., i)/231. for i in [24, 60, 0, 132]]
Vs = [783.3581681678445, 2902.831611916969, 0.0, 7168.216837590883]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_ellipsoidal(132., 33., 0.0)
def test_V_vertical_spherical():
# Two examples from [1]_, and at empty and h=D.
Vs_calc = [V_vertical_spherical(132., 33., i)/231. for i in [24, 60, 0, 132]]
Vs = [583.6018352850442, 2658.4605833627343, 0.0, 6923.845809036648]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_spherical(132., 33., 0.0)
def test_V_vertical_torispherical():
# Two examples from [1]_, and at empty, 1, 22, and h=D.
Vs_calc = [V_vertical_torispherical(132., 1.0, 0.06, i)/231. for i in [24, 60, 0, 1, 22, 132]]
Vs = [904.0688283793511, 3036.7614412163075, 0.0, 1.7906624793188568, 785.587561468186, 7302.146666890221]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_torispherical(132., 1.0, 0.06, 0.0)
def test_V_vertical_conical_concave():
# Three examples from [1]_, and at empty and with h=D.
Vs_calc = [V_vertical_conical_concave(113., -33.0, i)/231 for i in [15., 25., 50., 0, 113]]
Vs = [251.15825565795188, 614.6068425492208, 1693.1654406426783, 0.0, 4428.278844757774]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_conical_concave(113., -33.0, 0.0)
def test_V_vertical_ellipsoidal_concave():
# Three examples from [1]_, and at empty and with h=D.
Vs_calc = [V_vertical_ellipsoidal_concave(113., -33.0, i)/231 for i in [15., 25., 50., 0, 113]]
Vs = [44.84968851034856, 207.6374468071692, 1215.605957384487, 0.0, 3950.7193614995826]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_ellipsoidal_concave(113., -33, 0.0)
def test_V_vertical_spherical_concave():
# Three examples from [1]_, and at empty and with h=D.
Vs_calc = [V_vertical_spherical_concave(113., -33.0, i)/231 for i in [15., 25., 50., 0, 113]]
Vs = [112.81405437348528, 341.7056403375114, 1372.9286894955042, 0.0, 4108.042093610599]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_spherical_concave(113., -33, 0.0)
def test_V_vertical_torispherical_concave():
# Three examples from [1]_, and at empty and with h=D.
Vs_calc = [V_vertical_torispherical_concave(D=113., f=0.71, k=0.081, h=i)/231 for i in [15., 25., 50., 0, 113]]
Vs = [103.88569287163769, 388.72142877582087, 1468.762358198084, 0.0, 4203.87576231318]
assert_close1d(Vs_calc, Vs)
assert 0.0 == V_vertical_torispherical_concave(D=113., f=0.71, k=0.081, h=0.0)
# Does not use 0 <= h < a2; and then does use it; should be the same
base = V_vertical_torispherical_concave(D=113., f=0.71, k=0.16794375443150927, h=15)
perturbed = V_vertical_torispherical_concave(D=113., f=0.71, k=0.16794375443151, h=15)
assert_close(base, perturbed, rtol=1e-14)
def test_geometry():
SA1 = SA_ellipsoidal_head(2, 1)
SA2 = SA_ellipsoidal_head(2, 0.999)
SAs = [6.283185307179586, 6.278996936093318]
assert_close1d([SA1, SA2], SAs)
SA = SA_ellipsoidal_head(2, 1.5)
assert_close(SA, 8.459109081729984, rtol=1e-12)
# Check code avoids zero division error
assert_close(SA_ellipsoidal_head(2, 1e-8), pi)
SA1 = SA_conical_head(2, 1)
SAs = 4.442882938158366
assert_close(SA1, SAs)
SA1 = SA_guppy_head(2, 1)
assert_close(SA1, 6.654000019110157)
SA1 = SA_torispheroidal(D=2.54, f=1.039370079, k=0.062362205)
assert_close(SA1, 6.00394283477063, rtol=1e-12)
SA1 = SA_tank(D=2, L=2)[0]
SA2 = SA_tank(D=1., L=0, sideA='ellipsoidal', sideA_a=2, sideB='ellipsoidal', sideB_a=2)[0]
SA3 = SA_tank(D=1., L=5, sideA='conical', sideA_a=2, sideB='conical', sideB_a=2)[0]
SA4 = SA_tank(D=1., L=5, sideA='spherical', sideA_a=0.5, sideB='spherical', sideB_a=0.5)[0]
SAs = [18.84955592153876, 10.124375616183064, 22.18452243965656, 18.84955592153876]
assert_close1d([SA1, SA2, SA3, SA4], SAs)
SA1, SA2, SA3, SA4 = SA_tank(D=2.54, L=5, sideA='torispherical', sideB='torispherical', sideA_f=1.039370079, sideA_k=0.062362205, sideB_f=1.039370079, sideB_k=0.062362205)
SAs = [51.90611237013163, 6.00394283477063, 6.00394283477063, 39.89822670059037]
assert_close1d([SA1, SA2, SA3, SA4], SAs)
SA1 = SA_tank(D=1., L=5, sideA='guppy', sideA_a=0.5, sideB='guppy', sideB_a=0.5)[0]
assert_close(SA1, 19.034963277504044)
a1 = a_torispherical(D=96., f=0.9, k=0.2)
a2 = a_torispherical(D=108., f=1., k=0.06)
ais = [25.684268924767125, 18.288462280484797]
assert_close1d([a1, a2], ais)
# Horizontal configurations, compared with TankCalc - Ellipsoidal*2,
# Ellipsoidal/None, spherical/conical, None/None. Final test is guppy/torispherical,
# no checks available.
Vs_calc = [V_from_h(h=h, D=10., L=25., horizontal=True, sideA='ellipsoidal', sideB='ellipsoidal', sideA_a=2, sideB_a=2) for h in [1, 2.5, 5, 7.5, 10]]
Vs = [108.05249928250362, 416.5904542901302, 1086.4674593664702, 1756.34446444281, 2172.9349187329403]
assert_close1d(Vs_calc, Vs)
Vs_calc =[V_from_h(h=h, D=10., L=25., horizontal=True, sideA='ellipsoidal', sideA_a=2) for h in [1, 2.5, 5, 7.5, 10]]
Vs = [105.12034613915314, 400.22799255268336, 1034.1075818066402, 1667.9871710605971, 2068.2151636132803]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=10., L=25., horizontal=True, sideA='spherical', sideB='conical', sideA_a=2, sideB_a=2) for h in [1, 2.5, 5, 7.5, 10]]
Vs = [104.20408244287965, 400.47607362329063, 1049.291946298991, 1698.107818974691, 2098.583892597982]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=10., L=25., horizontal=True, sideB='spherical', sideA='conical', sideB_a=2, sideA_a=2) for h in [1, 2.5, 5, 7.5, 10]]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=1.5, L=5., horizontal=True) for h in [0, 0.75, 1.5]]
Vs = [0.0, 4.417864669110647, 8.835729338221293]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=10., L=25., horizontal=True, sideA='guppy', sideB='torispherical', sideA_a=2, sideB_f=1., sideB_k=0.06) for h in [1, 2.5, 5, 7.5, 10]]
Vs = [104.68706323659293, 399.0285611453449, 1037.3160340613756, 1683.391972469731, 2096.854290344973]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=10., L=25., horizontal=True, sideB='guppy', sideA='torispherical', sideB_a=2, sideA_f=1., sideA_k=0.06) for h in [1, 2.5, 5, 7.5, 10]]
assert_close1d(Vs_calc, Vs)
# Test the error handling for elevation
assert_close(V_from_h(h=1.5, D=1.5, L=5, horizontal=True),
V_from_h(h=7, D=1.5, L=5, horizontal=True))
# bad head cases
with pytest.raises(Exception):
V_from_h(h=2.6, D=10., L=25., horizontal=True, sideA='BADHEAD', sideB='torispherical', sideA_a=2, sideB_f=1., sideB_k=0.06)
with pytest.raises(Exception):
V_from_h(h=2.6, D=10., L=25., horizontal=True, sideA='torispherical', sideB='BADHEAD', sideA_a=2, sideB_f=1., sideB_k=0.06)
# Vertical configurations, compared with TankCalc - conical*2, spherical*2,
# ellipsoidal*2. Torispherical*2 has no check. None*2 checks.
Vs_calc = [V_from_h(h=h, D=1.5, L=5., horizontal=False, sideA='conical', sideB='conical', sideA_a=2., sideB_a=1.) for h in [0, 1, 2, 5., 7, 7.2, 8]]
Vs = [0.0, 0.14726215563702155, 1.1780972450961726, 6.4795348480289485, 10.013826583317465, 10.301282311120932, 10.602875205865551]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=8., L=10., horizontal=False, sideA='spherical', sideB='spherical', sideA_a=3., sideB_a=4.) for h in [0, 1.5, 3, 8.5, 13., 15., 16.2, 17]]
Vs = [0.0, 25.91813939211579, 89.5353906273091, 365.99554414321085, 592.190215201676, 684.3435997069765, 718.7251897078633, 726.2315017548405]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=8., L=10., horizontal=False, sideA='ellipsoidal', sideB='ellipsoidal', sideA_a=3., sideB_a=4.) for h in [0, 1.5, 3, 8.5, 13., 15., 16.2, 17]]
Vs = [0.0, 31.41592653589793, 100.53096491487338, 376.99111843077515, 603.1857894892403, 695.3391739945409, 729.7207639954277, 737.2270760424049]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=8., L=10., horizontal=False, sideA='torispherical', sideB='torispherical', sideA_a=1.3547, sideB_a=1.3547, sideA_f=1., sideA_k=0.06, sideB_f=1., sideB_k=0.06) for h in [0, 1.3, 9.3, 10.1, 10.7094, 12]]
Vs = [0.0, 38.723353379954276, 440.84578224136413, 481.0581682073135, 511.68995321687544, 573.323556832692]
assert_close1d(Vs_calc, Vs)
Vs_calc = [V_from_h(h=h, D=1.5, L=5., horizontal=False) for h in [0, 2.5, 5]]
Vs = [0, 4.417864669110647, 8.835729338221293]
assert_close1d(Vs_calc, Vs)
# truncate height
assert_close(V_from_h(h=7, D=1.5, L=5., horizontal=False),
V_from_h(h=5, D=1.5, L=5., horizontal=False),)
def test_TANK_cross_sectional_area():
T1 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='torispherical' ,sideB='same')
assert_close(T1.A_cross_sectional(0.5*T1.h_max), 0.25*pi*T1.D**2)
def test_from_two_specs():
# Takes about 1 ms
T0 = TANK(horizontal=True, L=15, D=3)
A_cross = T0.A_cross_sectional(1.5)
T1 = TANK.from_two_specs(T0.V_total, A_cross, spec0_name='V', spec1_name='A_cross',
h=1e-10, horizontal=False)
assert_close(T1.V_total, T0.V_total)
assert_close(T0.A_cross_sectional(1.5), T1.A_cross_sectional(1e-10))
def test_SA_partial():
# Checked with
# https://www.aqua-calc.com/calculate/volume-in-a-horizontal-cylinder
SA = SA_partial_cylindrical_body(L=120*inch, D=72*inch, h=24*inch) + 2*A_partial_circle(D=72*inch, h=24*inch)
assert_close(SA/(foot**2), (8.250207631*2+73.85756504))
# partial area of one circle
# Checked at https://www.aqua-calc.com/calculate/volume-in-a-horizontal-cylinder
assert_close(A_partial_circle(D=72, h=24), 1188.02989891)
assert_close(A_partial_circle(D=72, h=72), 0.25*pi*72**2)
assert_close(A_partial_circle(D=72, h=0), 0)
# hard checks
assert A_partial_circle(D=72, h=72*(1+1e-15)) == A_partial_circle(D=72, h=72)
assert 0 == A_partial_circle(D=72, h=1e-9)
assert 0 == A_partial_circle(D=72, h=-1e-20)
assert_close(SA_partial_cylindrical_body(L=200.0, D=96., h=22.0), 19168.852890279868, rtol=1e-12)
assert_close(SA_partial_cylindrical_body(L=200.0, D=96., h=96), pi*96*200.0, rtol=1e-15) # Pi D L check for full
assert 0 == SA_partial_cylindrical_body(L=200.0, D=96., h=0)
assert 0 == SA_partial_cylindrical_body(L=200.0, D=96., h=-1e-14)
SA_higher = SA_partial_cylindrical_body(L=200.0, D=1., h=1+1e-15)
assert_close(SA_higher, pi*200.0, rtol=1e-15)
def test_SA_partial_horiz_conical_head():
# Conical heads
As_expect = [101.35826, 141.37167, 181.38508]
hs = [24*inch, 36*inch, 48*inch]
for h, A_expect in zip(hs, As_expect):
SA = (2*SA_partial_horiz_conical_head(D=72*inch, a=48*inch, h=h)
+ SA_partial_cylindrical_body(D=72*inch, L=120*inch, h=h))
A_calc = SA/(foot**2)
assert_close(A_calc, A_expect, rtol=4e-8)
assert 0 == SA_partial_horiz_conical_head(D=72., a=48.0, h=0)
assert 0 == SA_partial_horiz_conical_head(D=72., a=48.0, h=-1e-16)
assert SA_partial_horiz_conical_head(D=72., a=48.0, h=72) == SA_partial_horiz_conical_head(D=72., a=48.0, h=72+1e-5)
assert_close(SA_partial_horiz_conical_head(D=72., a=0, h=35),
A_partial_circle(D=72, h=35), rtol=1e-12)
# Integration tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='conical', sideA_a=48*inch, sideB='same')
assert_close(T1.SA_from_h(24*inch)/foot**2, 101.35826, rtol=1e-7)
assert_close(T1.SA_from_h(36*inch)/foot**2, 141.37167, rtol=1e-7)
assert_close(T1.SA_from_h(48*inch)/foot**2, 181.38508, rtol=1e-7)
assert T1.SA_from_h(0) == 0.0
assert_close(T1.SA_from_h(T1.h_max), T1.A, rtol=1e-14)
def test_SA_partial_horiz_spherical_head():
L = 120*inch
D = 72*inch
a_values = [24*inch]*3 + [36*inch]*3
h_values = [24*inch, 36*inch, 48*inch]*2
SA_expect = [99.49977, 135.08848, 170.67720, 111.55668, 150.79645, 190.03622]
SA_expect = [i*foot**2 for i in SA_expect]
for i in range(6):
SA = (2*SA_partial_horiz_spherical_head(D=D, a=a_values[i], h=h_values[i])
+ SA_partial_cylindrical_body(D=D, L=L, h=h_values[i]))
assert_close(SA, SA_expect[i], rtol=4e-8)
# numerical integral, expect 1e-7 tol from the code
SA_calc = SA_partial_horiz_spherical_head(D=72., a=48.0, h=24.0)
assert_close(SA_calc, 2027.2672091672684, rtol=1e-7)
assert 0 == SA_partial_horiz_spherical_head(D=72., a=48.0, h=1e-20)
assert 0 == SA_partial_horiz_spherical_head(D=72., a=48.0, h=-1e-12)
assert SA_partial_horiz_spherical_head(D=72., a=48.0, h=7200) == SA_partial_horiz_spherical_head(D=72., a=48.0, h=72)
assert_close(SA_partial_horiz_spherical_head(D=72., a=36+1e-11, h=22),
SA_partial_horiz_spherical_head(D=72., a=36, h=22), rtol=1e-8)
# Integration tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='spherical', sideA_a=24*inch, sideB='same')
assert_close(T1.SA_from_h(24*inch)/foot**2, 99.49977, rtol=1e-7)
assert_close(T1.SA_from_h(36*inch)/foot**2, 135.08848, rtol=1e-7)
assert_close(T1.SA_from_h(48*inch)/foot**2, 170.67720, rtol=1e-7)
assert 0.0 == T1.SA_from_h(0)
# Numerical integral here too
assert_close(T1.SA_from_h(T1.h_max), T1.A, rtol=1e-7)
T2 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='spherical', sideA_a=36*inch, sideB='same')
assert_close(T2.SA_from_h(24*inch)/foot**2, 111.55668, rtol=1e-7)
assert_close(T2.SA_from_h(36*inch)/foot**2, 150.79645, rtol=1e-7)
assert_close(T2.SA_from_h(48*inch)/foot**2, 190.03622, rtol=1e-7)
assert 0.0 == T2.SA_from_h(0)
assert_close(T2.SA_from_h(T2.h_max), T2.A, rtol=2e-12)
def test_SA_partial_horiz_guppy_head():
L = 120*inch
D = 72*inch
h_values = [24*inch, 36*inch, 48*inch]
SA_expect = [94.24500, 129.98330, 167.06207]
SA_expect = [i*foot**2 for i in SA_expect]
for i in range(3):
SA = (2*SA_partial_horiz_guppy_head(D=D, a=48*inch, h=h_values[i])
+ SA_partial_cylindrical_body(D=D, L=L, h=h_values[i]))
assert_close(SA, SA_expect[i], rtol=5e-8)
assert type(SA) is float
assert 0 == SA_partial_horiz_guppy_head(D=72., a=48.0, h=1e-20)
assert 0 == SA_partial_horiz_guppy_head(D=72., a=48.0, h=-1e-12)
assert SA_partial_horiz_guppy_head(D=72., a=48.0, h=7200) == SA_partial_horiz_guppy_head(D=72., a=48.0, h=72)
assert_close(SA_partial_horiz_guppy_head(D=72., a=48.0, h=24.0), 1467.8949780037, rtol=1e-8)
assert pi*72*inch/2*72*inch == SA_partial_horiz_guppy_head(D=72*inch, a=36*inch, h=72*inch)
# Area is NOT CONSISTENT!
T1 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='guppy', sideA_a=48*inch, sideB='same')
assert_close(T1.SA_from_h(24*inch)/foot**2, 94.24500, rtol=1e-7)
assert_close(T1.SA_from_h(36*inch)/foot**2, 129.98330, rtol=1e-7)
assert_close(T1.SA_from_h(48*inch)/foot**2, 167.06207, rtol=1e-7)
assert 0.0 == T1.SA_from_h(0)
# assert_close(T1.SA_from_h(T1.h_max), T1.A, rtol=1e-12)
def test_SA_partial_horiz_ellipsoidal_head():
L = 120*inch
D = 72*inch
h_values = [24*inch, 36*inch, 48*inch]*3
SA_expect = [102.59905, 138.74815, 174.89725,
111.55668, 150.79645, 190.03622,
121.09692, 163.71486, 206.33279]
SA_expect = [i*foot**2 for i in SA_expect]
a_values = [24*inch]*3 + [36*inch]*3 + [48*inch]*3
for i in range(9):
SA = (2*SA_partial_horiz_ellipsoidal_head(D=D, a=a_values[i], h=h_values[i])
+ SA_partial_cylindrical_body(D=D, L=L, h=h_values[i]))
assert_close(SA, SA_expect[i], rtol=5e-8)
assert 0 == SA_partial_horiz_ellipsoidal_head(D=72., a=48.0, h=1e-20)
assert 0 == SA_partial_horiz_ellipsoidal_head(D=72., a=48.0, h=-1e-12)
assert SA_partial_horiz_ellipsoidal_head(D=72., a=48.0, h=7200) == SA_partial_horiz_ellipsoidal_head(D=72., a=48.0, h=72)
assert_close(SA_partial_horiz_ellipsoidal_head(D=72., a=48.0, h=24.0), 3401.2336225352738, rtol=1e-11)
# Integration tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='ellipsoidal', sideA_a=24*inch, sideB='same')
assert_close(T1.SA_from_h(24*inch)/foot**2, 102.59905, rtol=1e-7)
assert_close(T1.SA_from_h(36*inch)/foot**2, 138.74815, rtol=1e-7)
assert_close(T1.SA_from_h(48*inch)/foot**2, 174.89725, rtol=1e-7)
assert_close(T1.SA_from_h(T1.h_max), T1.A, rtol=1e-12)
assert 0.0 == T1.SA_from_h(0)
T2 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='ellipsoidal', sideA_a=36*inch, sideB='same')
assert_close(T2.SA_from_h(24*inch)/foot**2, 111.55668, rtol=1e-7)
assert_close(T2.SA_from_h(36*inch)/foot**2, 150.79645, rtol=1e-7)
assert_close(T2.SA_from_h(48*inch)/foot**2, 190.03622, rtol=1e-7)
assert 0.0 == T2.SA_from_h(0)
assert_close(T2.SA_from_h(T2.h_max), T2.A, rtol=1e-12)
T3 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='ellipsoidal', sideA_a=48*inch, sideB='same')
assert_close(T3.SA_from_h(24*inch)/foot**2, 121.09692, rtol=1e-7)
assert_close(T3.SA_from_h(36*inch)/foot**2, 163.71486, rtol=1e-7)
assert_close(T3.SA_from_h(48*inch)/foot**2, 206.33279, rtol=1e-7)
assert 0.0 == T3.SA_from_h(0)
assert_close(T3.SA_from_h(T3.h_max), T3.A, rtol=1e-12)
def test_SA_partial_horiz_torispherical_head():
# Nasty Python-2 only numerical issue in _SA_partial_horiz_torispherical_head_int_1 ; fixed
# by ensuring numbers were complex
assert_close(SA_partial_horiz_torispherical_head(D=1.8288, f=1.0, k=0.06, h=0.6095999999999999), 0.9491605631461236)
# Python 2 issue with trig due to my own mistake
assert_close(SA_partial_horiz_torispherical_head(D=1.8288, f=0.9, k=0.1, h=0.6095999999999999),
1.037030313486593, rtol=1e-6)
L = 120*inch
D = 72*inch
h_values = [2.28*inch, 24*inch, 36*inch, 48*inch, 69.72*inch]
h_values += [3*inch, 24*inch, 36*inch, 48*inch, 69*inch]
SA_expect = [22.74924, 94.29092, 127.74876,
161.20660, 232.74828,
26.82339, 96.18257, 130.22802,
164.27347, 233.63265]
SA_expect = [i*foot**2 for i in SA_expect]
k_values = [.06]*5 + [.1]*5
f_values = [1.0]*5 + [.9]*5
for i in range(9):
SA = (2*SA_partial_horiz_torispherical_head(D=D, f=f_values[i], k=k_values[i], h=h_values[i])
+ SA_partial_cylindrical_body(D=D, L=L, h=h_values[i]))
assert_close(SA, SA_expect[i], rtol=2e-7)
# Precision points for the three regimes
SA = SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=2)
assert_close(SA, 80.54614956735351, rtol=1e-7)
# Only have 1e-7 tolerance here due to numerical itnegration
SA = SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=20)
assert_close(SA, 1171.9138610357936, rtol=1e-7)
SA = SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=71)
assert_close(SA, 4784.441787378645, rtol=1e-7)
# Error handling
# Was a bug computing this
SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=1e-20)
assert 0 == SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=0)
assert 0 == SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=-1e-12)
assert SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=7200) == SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=72)
# Check G returns a real number
assert_close(SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=1e-13), 3.859157404406146e-12, rtol=.1)
# Torispherical tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='torispherical', sideA_f=1, sideA_k=.06, sideB='same')
assert_close(T1.SA_from_h(2.28*inch)/foot**2, 22.74924, rtol=1e-7)
assert_close(T1.SA_from_h(24*inch)/foot**2, 94.29092, rtol=1e-7)
assert_close(T1.SA_from_h(36*inch)/foot**2, 127.74876, rtol=1e-7)
assert_close(T1.SA_from_h(48*inch)/foot**2, 161.20660, rtol=1e-7)
assert_close(T1.SA_from_h(69.72*inch)/foot**2, 232.74828, rtol=1e-7)
assert 0.0 == T1.SA_from_h(0)
assert_close(T1.SA_from_h(T1.h_max), T1.A, rtol=1e-12)
T2 = TANK(L=120*inch, D=72*inch, horizontal=True,
sideA='torispherical', sideA_f=.9, sideA_k=.1, sideB='same')
assert_close(T2.SA_from_h(3*inch)/foot**2, 26.82339, rtol=2e-7)
assert_close(T2.SA_from_h(24*inch)/foot**2, 96.18257, rtol=1e-7)
assert_close(T2.SA_from_h(36*inch)/foot**2, 130.22802, rtol=1e-7)
assert_close(T2.SA_from_h(48*inch)/foot**2, 164.27347, rtol=1e-7)
assert_close(T2.SA_from_h(69*inch)/foot**2, 233.63265, rtol=1e-7)
assert 0.0 == T2.SA_from_h(0)
assert_close(T2.SA_from_h(T2.h_max), T2.A, rtol=1e-12)
def test_SA_vert_flat_got_area():
T_actually_flat = TANK(L=120, D=72, horizontal=False)
assert_close(T_actually_flat.SA_from_h(0), 4071.5040790523717, rtol=1e-15)
assert_close(T_actually_flat.SA_from_h(T_actually_flat.h_max), 35286.36868512056, rtol=1e-15)
T_actually_flat2 = TANK(L=1e-100, D=72, horizontal=False)
assert_close(T_actually_flat2.SA_from_h(0), 4071.5040790523717, rtol=1e-15)
assert_close(T_actually_flat2.SA_from_h(T_actually_flat2.h_max), 2*4071.5040790523717, rtol=1e-15)
def test_SA_partial_vertical_conical_head():
SA = SA_partial_vertical_conical_head(D=72., a=48.0, h=24.0)
assert_close(SA, 1696.4600329384882)
assert_close(SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0),
SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0*(1+1e-12)))
assert_close(SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0),
SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0+1e12))
# Integration tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='conical', sideA_a=36*inch, sideB='same')
assert_close(T1.SA_from_h(36*inch)/foot**2, 39.98595)
assert_close(T1.SA_from_h(0)/foot**2, 0)
assert_close(T1.SA_from_h(-1e-14)/foot**2, 0)
T2 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='conical', sideA_a=48*inch, sideB='same')
assert_close(T2.SA_from_h(24*inch)/foot**2, 11.78097, rtol=3e-7)
assert_close(T2.SA_from_h(36*inch)/foot**2, 26.50719, rtol=1e-7)
assert_close(T2.SA_from_h(48*inch)/foot**2, 47.12389, rtol=1e-7)
assert_close(T2.SA_from_h(60*inch)/foot**2, 65.97345, rtol=1e-7)
assert_close(T2.SA_from_h(72*inch)/foot**2, 84.82300, rtol=1e-7)
assert_close(T2.SA_from_h(0)/foot**2,0, rtol=1e-7)
assert_close(T2.SA_from_h(-1e-14)/foot**2,0, rtol=1e-7)
assert_close(T2.SA_from_h(T2.h_max), 26.26771571641428, rtol=1e-12)
assert_close(T2.SA_from_h(T2.h_max*.95), 26.046081865057033, rtol=1e-12)
T_flat = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='conical', sideA_a=0, sideB='same')
T_actually_flat = TANK(L=120*inch, D=72*inch, horizontal=False)
for h in (0, T_flat.h_max*.1, T_flat.h_max*.4, T_flat.h_max*.9, T_flat.h_max):
assert_close(T_flat.SA_from_h(h), T_actually_flat.SA_from_h(h), rtol=1e-11)
def test_SA_partial_vertical_spherical_head():
SA = SA_partial_vertical_spherical_head(72, a=24, h=12)
assert_close(SA, 2940.5307237600464)
assert_close(SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0),
SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0*(1+1e-12)))
assert_close(SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0),
SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0+1e12))
# Make sure we cover zeros, avoid the zero division
assert_close(SA_partial_vertical_spherical_head(D=1, a=0.0, h=1e-100), 0.7853981633974483, rtol=1e-12)
# Integration tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='spherical', sideA_a=24*inch, sideB='same')
assert_close(T1.SA_from_h(12*inch)/foot**2, 20.42035, rtol=2e-7)
assert_close(T1.SA_from_h(24*inch)/foot**2, 40.84070, rtol=2e-7)
assert_close(T1.SA_from_h(48*inch)/foot**2, 78.53982, rtol=2e-7)
T2 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='spherical', sideA_a=36*inch, sideB='same')
assert_close(T2.SA_from_h(18*inch)/foot**2, 28.27433, rtol=2e-7)
assert_close(T2.SA_from_h(36*inch)/foot**2, 56.54867, rtol=2e-7)
assert_close(T2.SA_from_h(60*inch)/foot**2, 94.24778, rtol=2e-7)
assert_close(T2.SA_from_h(T2.h_max), 28.01889676417523, rtol=1e-10)
assert 0 == T2.SA_from_h(0)
assert 0 == T2.SA_from_h(-1e-12)
# T2.SA_from_h(1e-320) # works :)
T_flat = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='spherical', sideA_a=0, sideB='same')
T_actually_flat = TANK(L=120*inch, D=72*inch, horizontal=False)
for h in (0, T_flat.h_max*.1, T_flat.h_max*.4, T_flat.h_max*.9, T_flat.h_max):
assert_close(T_flat.SA_from_h(h), T_actually_flat.SA_from_h(h), rtol=1e-15)
def test_SA_partial_vertical_torispherical_head():
assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.2127198169675985*(1-1e-12)),
SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.2127198169675985*(1+1e-12)), rtol=1e-9)
assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1-1e-12)),
SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1+1e12)), rtol=1e-9)
assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1-1e-12)),
SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1)), rtol=1e-9)
assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=.2), 2.2981378579540053, rtol=1e-12)
assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=.3), 3.056637737809865, rtol=1e-12)
assert 0 == SA_partial_vertical_torispherical_head(D=72*inch, f=1, k=.06, h=0)
assert 0 == SA_partial_vertical_torispherical_head(D=72*inch, f=1, k=.06, h=-1e-16)
# Integration tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='torispherical', sideA_f=1, sideA_k=.06, sideB='same')
assert_close(T1.SA_from_h(2*inch)/foot**2, 6.28319, rtol=1e-6)
assert_close(T1.SA_from_h(6*inch)/foot**2, 18.84956, rtol=2.5e-7)
assert_close(T1.SA_from_h(12*inch)/foot**2, 33.19882, rtol=1e-7)
assert_close(T1.SA_from_h(T1.sideA_a)/foot**2, 33.50098, rtol=1e-7)
assert_close(T1.SA_from_h(36.19231*inch)/foot**2, 71.20010, rtol=1e-7)
T2 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='torispherical', sideA_f=.9, sideA_k=.1, sideB='same')
assert_close(T2.SA_from_h(6*inch)/foot**2, 16.96460, rtol=2e-7)
assert_close(T2.SA_from_h(8*inch)/foot**2, 22.61947, rtol=2e-7)
assert_close(T2.SA_from_h(12*inch)/foot**2, 31.28983, rtol=2e-7)
assert_close(T2.SA_from_h(14.91694*inch)/foot**2, 35.98024, rtol=2e-7)
assert_close(T2.SA_from_h(38.91694*inch)/foot**2, 73.67936, rtol=2e-7)
assert_close(T2.SA_from_h(1), 6.911163458435757, rtol=1e-12)
assert_close(T2.SA_from_h(T2.h_max), 24.197157590255674, rtol=1e-12)
assert_close(T2.SA_from_h(T2.h_max*.9642342), 22.789489525238952, rtol=1e-12)
assert T2.SA_from_h(0) == 0
assert T2.SA_from_h(-1e-12) == 0
# Cannot do flat tests with torispherical, it does not support it
def test_SA_partial_vertical_ellipsoidal_head():
SA = SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=24.0)
assert_close(SA, 4675.237891376319, rtol=1e-12)
assert_close(SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0),
SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0*(1+1e-12)))
assert_close(SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0),
SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0+1e12))
# Integration tests
T1 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='ellipsoidal', sideA_a=24*inch, sideB='same')
assert_close(T1.SA_from_h(12*inch)/foot**2, 24.71061)
assert_close(T1.SA_from_h(24*inch)/foot**2, 44.50037)
assert_close(T1.SA_from_h(48*inch)/foot**2, 82.19948)
T2 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='ellipsoidal', sideA_a=36*inch, sideB='same')
assert_close(T2.SA_from_h(18*inch)/foot**2, 28.27433, rtol=1.5e-7)
assert_close(T2.SA_from_h(36*inch)/foot**2, 56.54867, rtol=1e-7)
assert_close(T2.SA_from_h(60*inch)/foot**2, 94.24778, rtol=1e-7)
T3 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='ellipsoidal', sideA_a=48*inch, sideB='same')
assert_close(T3.SA_from_h(24*inch)/foot**2, 32.46693, rtol=1e-7)
assert_close(T3.SA_from_h(48*inch)/foot**2, 69.46708, rtol=1e-7)
assert_close(T3.SA_from_h(72*inch)/foot**2, 107.16619, rtol=1e-7)
assert_close(T3.SA_from_h(T3.h_max), 30.419215944509517, rtol=1e-12)
assert T3.SA_from_h(0) == 0
assert T3.SA_from_h(-1e-13) == 0
# Flat test case
T_flat = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='ellipsoidal', sideA_a=0, sideB='same')
T_actually_flat = TANK(L=120*inch, D=72*inch, horizontal=False)
for h in (0, T_flat.h_max*.1, T_flat.h_max*.4, T_flat.h_max*.9, T_flat.h_max):
assert_close(T_flat.SA_from_h(h), T_actually_flat.SA_from_h(h), rtol=1e-11)
# Numerical issue - unsolved, when `a` approaches `R`. The switch is smooth if we zoom out but not if we are close
low = SA_partial_vertical_ellipsoidal_head(72*inch, a=36.*inch*(1+1e-9), h=18*inch)
high = SA_partial_vertical_ellipsoidal_head(72*inch, a=36.*inch*(1-1e-9), h=18*inch)
assert_close(low, high, rtol=1e-8)
# The issue has been identified to be occurring in the just-above 36 code
with pytest.raises(Exception):
low = SA_partial_vertical_ellipsoidal_head(72*inch, a=36.*inch*(1+1e-12), h=18*inch)
high = SA_partial_vertical_ellipsoidal_head(72*inch, a=36.*inch*(1-1e-12), h=18*inch)
assert_close(low, high, rtol=1e-8)
assert_close(0.25*pi*72**2*inch**2, SA_partial_vertical_ellipsoidal_head(72*inch, a=0.0, h=1e-20))
def test_SA_from_h_basics():
# Bad side names
with pytest.raises(ValueError):
SA_from_h(h=7, D=1.5, L=5., horizontal=False, sideA='conical', sideB='NOTASIDE', sideA_a=2., sideB_a=1.)
with pytest.raises(ValueError):
SA_from_h(h=7, D=1.5, L=5., horizontal=False, sideB='conical', sideA='NOTASIDE', sideA_a=2., sideB_a=1.)
# height above tank height
assert_close(SA_from_h(h=15, D=1.5, L=5., horizontal=True, sideA=None, sideB=None),
SA_from_h(h=1.5, D=1.5, L=5., horizontal=True, sideA=None, sideB=None),)
assert_close(SA_from_h(h=70, D=1.5, L=5., horizontal=False, sideA='conical', sideB='conical', sideA_a=2., sideB_a=1.),
SA_from_h(h=8, D=1.5, L=5., horizontal=False, sideA='conical', sideB='conical', sideA_a=2., sideB_a=1.))
assert_close(SA_from_h(h=1.5, D=1.5, L=5., horizontal=True, sideA=None, sideB=None),
0.25*pi*1.5**2*2 + 1.5*5*pi, rtol=1e-13)
def test_pitch_angle_solver():
ans = [{'angle': 30.0, 'pitch': 2., 'pitch_parallel': 1.7320508075688774, 'pitch_normal': 1.},
{'angle': 60.0, 'pitch': 2., 'pitch_parallel': 1., 'pitch_normal': 1.7320508075688774},
{'angle': 45.0, 'pitch': 2., 'pitch_parallel': 1.414213562373095, 'pitch_normal': 1.414213562373095},
{'angle': 90.0, 'pitch': 1., 'pitch_parallel': 0., 'pitch_normal': 1.},
{'angle': 0.0, 'pitch': 1., 'pitch_parallel': 1., 'pitch_normal': 0.},
]
for ans_set in ans:
for k1, v1 in ans_set.items():
for k2, v2 in ans_set.items():
if k1 != k2 and v1 != 0 and v2 != 0:
angle, pitch, pitch_parallel, pitch_normal = pitch_angle_solver(**{k1:v1, k2:v2})
assert_close(ans_set['angle'], angle, atol=1e-16)
assert_close(ans_set['pitch'], pitch, atol=1e-16)
assert_close(ans_set['pitch_parallel'], pitch_parallel, atol=1e-16)
assert_close(ans_set['pitch_normal'], pitch_normal, atol=1e-16)
with pytest.raises(Exception):
pitch_angle_solver(30)
def test_AirCooledExchanger():
# Full solution, exchanger in Serth
AC = AirCooledExchanger(tube_rows=1, tube_passes=1, tubes_per_row=56, tube_length=10.9728,
tube_diameter=1*inch, fin_thickness=0.013*inch, fin_density=10/inch,
angle=30, pitch=2.5*inch, fin_height=0.625*inch, tube_thickness=0.00338)
assert_close(AC.A_fin_per_tube, 18.041542744557212)
# Minimal solution
AC = AirCooledExchanger(tube_rows=1, tube_passes=1, tubes_per_row=56, tube_length=10.9728,
tube_diameter=1*inch, fin_thickness=0.013*inch, fin_density=10/inch,
angle=30, pitch=2.5*inch, fin_height=0.625*inch)
with pytest.raises(Exception):
AirCooledExchanger(tube_rows=1, tube_passes=1, tubes_per_row=56, tube_length=10.9728,
tube_diameter=1*inch, fin_thickness=0.013*inch, fin_density=10/inch,
angle=30, pitch=2.5*inch)
# test AC with geometry whose minimum area is lower on the diagonal plane
AC = AirCooledExchanger(tube_rows=1, tube_passes=1, tubes_per_row=56, tube_length=10.9728,
tube_diameter=1*inch, fin_thickness=0.013*inch, fin_density=10/inch,
angle=60, pitch=2.2*inch, fin_height=0.625*inch, tube_thickness=0.00338)
assert_close(AC.A_diagonal_per_bundle, AC.A_min_per_bundle)
def test_AirCooledExchangerFull():
AC = AirCooledExchanger(tube_rows=4, tube_passes=4, tubes_per_row=56, tube_length=10.9728,
tube_diameter=1*inch, fin_thickness=0.013*inch, fin_density=10/inch,
angle=30, pitch=2.5*inch, fin_height=0.625*inch, tube_thickness=0.00338,
bundles_per_bay=2, parallel_bays=3)
assert_close(AC.bare_length, 0.0022097999999999996)
assert AC.tubes_per_bundle == 224
assert AC.tubes_per_bay == 224*2
assert AC.tubes == 224*2*3
assert_close(AC.pitch_diagonal, 0.057238126497990836)
assert_close(AC.A_bare_tube_per_tube, 0.875590523880476)
assert_close(AC.A_bare_tube_per_row, AC.A_bare_tube_per_tube*AC.tubes_per_row)
assert_close(AC.A_bare_tube_per_bundle, AC.A_bare_tube_per_tube*AC.tubes_per_bundle)
assert_close(AC.A_bare_tube_per_bay, AC.A_bare_tube_per_tube*AC.tubes_per_bay)
assert_close(AC.A_bare_tube, AC.A_bare_tube_per_tube*AC.tubes)
assert_close(AC.A_tube_showing_per_tube, 0.7617637557760141)
assert_close(AC.A_tube_showing_per_row, AC.A_tube_showing_per_tube*AC.tubes_per_row)
assert_close(AC.A_tube_showing_per_bundle, AC.A_tube_showing_per_tube*AC.tubes_per_bundle)
assert_close(AC.A_tube_showing_per_bay, AC.A_tube_showing_per_tube*AC.tubes_per_bay)
assert_close(AC.A_tube_showing, AC.A_tube_showing_per_tube*AC.tubes)
assert_close(AC.A_per_fin, 0.0041762830427215765)
assert_close(AC.A_fin_per_tube, 18.041542744557212)
assert_close(AC.A_fin_per_row, AC.A_fin_per_tube*AC.tubes_per_row)
assert_close(AC.A_fin_per_bundle, AC.A_fin_per_tube*AC.tubes_per_bundle)
assert_close(AC.A_fin_per_bay, AC.A_fin_per_tube*AC.tubes_per_bay)
assert_close(AC.A_fin, AC.A_fin_per_tube*AC.tubes)
assert_close(AC.A_per_tube, 18.803306500333225)
assert_close(AC.A_per_row, AC.A_per_tube*AC.tubes_per_row)
assert_close(AC.A_per_bundle, AC.A_per_tube*AC.tubes_per_bundle)
assert_close(AC.A_per_bay, AC.A_per_tube*AC.tubes_per_bay)
assert_close(AC.A, AC.A_per_tube*AC.tubes)
assert_close(AC.A_increase, 21.47500000000001)
assert_close(AC.A_diagonal_per_bundle, 34.05507419296123)
assert_close(AC.A_normal_per_bundle, 1.365674687999997)
assert_close(AC.A_normal_per_bundle, AC.A_normal_per_bundle)
assert_close(AC.A_min_per_bay, AC.A_min_per_bundle*AC.bundles_per_bay)
assert_close(AC.A_min, AC.A_min_per_bay*AC.parallel_bays)
assert_close(AC.A_face_per_bundle, 19.858025)
assert_close(AC.A_face_per_bay, AC.A_face_per_bundle*AC.bundles_per_bay)
assert_close(AC.A_face, AC.A_face_per_bay*AC.parallel_bays)
assert_close(AC.flow_area_contraction_ratio, 0.06877192982456128)
assert_close(AC.Di, 0.018639999999999997)
assert_close(AC.A_tube_flow, 0.00027288627771317794)
assert_close(AC.A_tube_flow_per_row, 0.015281631551937964)
assert_close(AC.A_tube_flow_per_bundle, 0.06112652620775186)
assert_close(AC.A_tube_flow_per_bay, 0.12225305241550372)
assert_close(AC.A_tube_flow_total, 0.36675915724651115)
assert_close(AC.tube_volume_per_tube, 0.0029943265480911587)
assert_close(AC.tube_volume_per_row, AC.tube_volume_per_tube*AC.tubes_per_row)
assert_close(AC.tube_volume_per_bundle, AC.tube_volume_per_tube*AC.tubes_per_bundle)
assert_close(AC.tube_volume, AC.tube_volume_per_tube*AC.tubes)
assert AC.channels == 56
assert AC.pitch_str == 'triangular'
assert AC.pitch_class == 'staggered'
# test with corbels
AC = AirCooledExchanger(tube_rows=4, tube_passes=4, tubes_per_row=56, tube_length=10.9728,
tube_diameter=1*inch, fin_thickness=0.013*inch, fin_density=10/inch,
angle=30, pitch=2.5*inch, fin_height=0.625*inch, tube_thickness=0.00338,
bundles_per_bay=2, parallel_bays=3, corbels=True)
assert_close(AC.A_face_per_bundle, 19.683831599999998)
def test_geometry_tank():
V1 = TANK(D=1.2, L=4, horizontal=False).V_total
assert_close(V1, 4.523893421169302)
V2 = TANK(D=1.2, L=4, horizontal=False).V_from_h(.5)
assert_close(V2, 0.5654866776461628)
V3 = TANK(D=1.2, L=4, horizontal=False).h_from_V(.5)
assert_close(V3, 0.44209706414415373)
T1 = TANK(V=10, L_over_D=0.7, sideB='conical', sideB_a=0.5)
# T1.set_table(dx=0.001)
things_calc = T1.A, T1.A_sideA, T1.A_sideB, T1.A_lateral
things = (24.94775907657148, 5.118555935958284, 5.497246519930003, 14.331956620683194)
assert_close1d(things_calc, things)
L1 = TANK(D=10., horizontal=True, sideA='conical', sideB='conical', V=500).L
D1 = TANK(L=4.69953105701, horizontal=True, sideA='conical', sideB='conical', V=500).D
L2 = TANK(L_over_D=0.469953105701, horizontal=True, sideA='conical', sideB='conical', V=500).L
assert_close1d([L1, D1, L2], [4.699531057009146, 9.999999999999407, 4.69953105700979])
L1 = TANK(D=10., horizontal=False, sideA='conical', sideB='conical', V=500).L
D1 = TANK(L=4.69953105701, horizontal=False, sideA='conical', sideB='conical', V=500).D
L2 = TANK(L_over_D=0.469953105701, horizontal=False, sideA='conical', sideB='conical', V=500).L
assert_close1d([L1, D1, L2], [4.699531057009146, 9.999999999999407, 4.69953105700979])
# Test L_over_D setting simple cases
L1 = TANK(D=1.2, L_over_D=3.5, horizontal=False).L
D1 = TANK(L=1.2, L_over_D=3.5, horizontal=False).D
assert_close1d([L1, D1], [4.2, 0.342857142857])
# Test toripsherical a calculation
V = TANK(L=1.2, L_over_D=3.5, sideA='torispherical', sideB='torispherical', sideA_f=1., sideA_k=0.06, sideB_f=1., sideB_k=0.06).V_total
assert_close(V, 0.117318265914)
# Test default a_ratio
assert_close(0.25, TANK(V=10, L=10, sideA='conical', sideA_a_ratio=None).sideA_a_ratio)
with pytest.raises(Exception):
# Test overdefinition case
TANK(V=10, L=10, D=10)
with pytest.raises(Exception):
# Test sides specified with V solving
TANK(V=10, L=10, sideA='conical', sideB_a=0.5)
# Couple points that needed some polishing
base = TANK(D=10., horizontal=True, sideA_a_ratio=.25, sideB_f=1., sideB_k=0.06,
sideA='conical', sideB='torispherical', V=500)
forward = TANK(D=10.0, horizontal=True, sideA_a_ratio=.25, sideB_f=1., sideB_k=0.06,
sideA='conical', sideB='torispherical', L=base.L)
assert_close(base.V, forward.V_total, rtol=1e-11)
base = TANK(D=10., horizontal=True, sideB_a_ratio=.25, sideA_f=1., sideA_k=0.06,
sideB='conical', sideA='torispherical', V=500)
forward = TANK(D=10.0, horizontal=True, sideB_a_ratio=.25, sideA_f=1., sideA_k=0.06,
sideB='conical', sideA='torispherical', L=base.L)
assert_close(base.V, forward.V_total, rtol=1e-11)
# Same tank keyword
T1 = TANK(V=10, L_over_D=0.7, sideB='conical', sideB_a=0.5, sideA='same')
assert T1.sideB == T1.sideA
assert T1.sideB_a == T1.sideA_a
assert T1.sideB_f == T1.sideA_f
assert T1.sideB_k == T1.sideB_k
assert T1.sideB_a_ratio == T1.sideA_a_ratio
T1 = TANK(D=10.0, horizontal=True, sideA_f=1., sideA_k=0.06, sideA='torispherical', L=3, sideB='same')
assert T1.sideB == T1.sideA
assert T1.sideB_a == T1.sideA_a
assert T1.sideB_f == T1.sideA_f
assert T1.sideB_k == T1.sideB_k
assert T1.sideB_a_ratio == T1.sideA_a_ratio
T1 = TANK(D=10.0, horizontal=True, sideB_f=1., sideB_k=0.06, sideB='torispherical', L=3, sideA='same')
assert T1.sideB == T1.sideA
assert T1.sideB_a == T1.sideA_a
assert T1.sideB_f == T1.sideA_f
assert T1.sideB_k == T1.sideB_k
assert T1.sideB_a_ratio == T1.sideA_a_ratio
# No spec at all
T1 = TANK(D=10.0, horizontal=True, L=3, sideA='same')
assert T1.sideB == T1.sideA
assert T1.sideB_a == T1.sideA_a
assert T1.sideB_f == T1.sideA_f
assert T1.sideB_k == T1.sideB_k
assert T1.sideB_a_ratio == T1.sideA_a_ratio
assert T1.sideB_a == 0
with pytest.raises(Exception):
T1 = TANK(D=10.0, horizontal=True, L=3, sideA='same', sideB='same')
# Default k, f
T1 = TANK(D=10.0, horizontal=True, L=3, sideA='torispherical', sideB='torispherical')
assert T1.sideB == T1.sideA
assert T1.sideB_a == T1.sideA_a
assert T1.sideB_f == T1.sideA_f
assert T1.sideB_k == T1.sideB_k
assert T1.sideB_a_ratio == T1.sideA_a_ratio
assert T1.sideB_k == 0.06
assert T1.sideB_f == 1.0
def test_TANK_issues():
# GH issue 31
Tk = TANK(L=3, D=5, horizontal=False, sideA='torispherical', sideA_f=1, sideA_k=0.1, sideB='torispherical', sideB_f=1, sideB_k=0.1) #DIN28011
assert_close(Tk.V_total, Tk.V_from_h(Tk.h_max*.9999999999), rtol=1e-12)
# Issue where checking sideA_a was for truthiness and not not None
kwargs = {'L': 2.0, 'horizontal': False, 'L_over_D': None,
'V': None, 'sideA': 'ellipsoidal', 'sideB': 'ellipsoidal',
'sideA_a': 0.0, 'sideB_a': 1e-06, 'sideA_a_ratio': None,
'sideB_a_ratio': None, 'sideA_f': None, 'sideA_k': None,
'sideB_f': None, 'sideB_k': None}
assert_close(TANK(D=.5, **kwargs).V_total, 0.39269921259841806, rtol=1e-11)
# case that failed once
kwargs = {'D': 0.5, 'L': 2.0, 'horizontal': False, 'L_over_D': None,
'V': None, 'sideA': 'ellipsoidal', 'sideB': 'ellipsoidal',
'sideA_a': 0.0, 'sideB_a': 0.0, 'sideA_a_ratio': None,
'sideB_a_ratio': None, 'sideA_f': None, 'sideA_k': None,
'sideB_f': None, 'sideB_k': None}
TANK(**kwargs)
def assert_TANKs_equal(T1, T2):
for k, v in T1.__dict__.items():
if isinstance(v, (float, int)):
assert_close(v, T2.__dict__[k])
else:
assert v == T2.__dict__[k]
def test_add_thickness():
t = 1e-4
T1 = TANK(L=3, D=.6, sideA='ellipsoidal', sideA_a = .2, sideB='conical', sideB_a=0.5)
T1 = T1.add_thickness(t)
T2 = TANK(L=3+2*t, D=.6+2*t, sideA='ellipsoidal', sideA_a = .2+t, sideB='conical', sideB_a=0.5+t)
assert_TANKs_equal(T1, T2)
# Also add a test that there are no default values for `k` and `f` when the tank is not torispherical
# and the `a` ratios are correctly calculated not default values
for T in (T1, T2):
assert T.sideA_f is None
assert T.sideA_k is None
assert T.sideB_f is None
assert T.sideB_k is None
assert_close(T.sideA_a_ratio, 0.3333888703765412)
assert_close(T.sideB_a_ratio, 0.8332222592469177)
t = .1
T1 = TANK(L=3, D=.6, sideA='spherical', sideA_a = .2, sideB='guppy', sideB_a=0.5)
T1 = T1.add_thickness(t)
T2 = TANK(L=3+2*t, D=.6+2*t, sideA='spherical', sideA_a = .2+t, sideB='guppy', sideB_a=0.5+t)
assert_TANKs_equal(T1, T2)
for T in (T1, T2):
assert T.sideA_f is None
assert T.sideA_k is None
assert T.sideB_f is None
assert T.sideB_k is None
assert_close(T.sideA_a_ratio, 0.375)
assert_close(T.sideB_a_ratio, .75)
# Torispherical as well
t = .15311351231
T1 = TANK(L=3, D=.6, sideA='torispherical', sideB='torispherical',
sideA_f=0.9, sideA_k=0.17)
T1 = T1.add_thickness(t)
T2 = TANK(L=3+2*t, D=.6+2*t, sideA='torispherical', sideA_f=0.9, sideA_k=0.17, sideB='torispherical')
assert_TANKs_equal(T1, T2)
@pytest.mark.slow
def test_geometry_tank_chebyshev():
# Test auto set Chebyshev table
T = TANK(L=1.2, L_over_D=3.5)
assert_close(T.h_from_V(T.V_total, 'chebyshev'), T.h_max)
assert_close(T.h_from_V(.1, 'chebyshev'), 0.2901805880470152, rtol=1e-4)
assert_close(T.h_from_V(.05, 'chebyshev'), 0.15830377515496144, rtol=1e-4)
assert_close(T.h_from_V(.02, 'chebyshev'), 0.08101343184833742, rtol=1e-4)
T = TANK(L=1.2, L_over_D=3.5)
assert_close(T.V_from_h(T.h_max, 'chebyshev'), T.V_total)
@pytest.mark.slow
def test_geometry_tank_fuzz_h_from_V():
T = TANK(L=1.2, L_over_D=3.5, sideA='torispherical', sideB='torispherical', sideA_f=1., horizontal=True, sideA_k=0.06, sideB_f=1., sideB_k=0.06)
T.set_chebyshev_approximators(deg_forward=100, deg_backwards=600)
# test V_from_h - pretty easy to get right
for h in linspace(0, T.h_max, 30):
# It's the top and the bottom of the tank that works poorly
V1 = T.V_from_h(h, 'full')
V2 = T.V_from_h(h, 'chebyshev')
assert_close(V1, V2, rtol=1E-7, atol=1E-7)
with pytest.raises(Exception):
T.V_from_h(1E-5, 'NOTAMETHOD')
# reverse - the spline is also pretty easy, with a limited number of points
# when the required precision is low
T.set_table(n=150)
for V in linspace(0, T.V_total, 30):
h1 = T.h_from_V(V, 'brenth')
h2 = T.h_from_V(V, 'spline')
assert_close(h1, h2, rtol=1E-5, atol=1E-6)
h3 = T.h_from_V(V, 'chebyshev')
# Even with a 600-degree polynomial, there will be failures if N
# is high enough, but the tolerance should just be lowered
assert_close(h1, h3, rtol=1E-7, atol=1E-7)
with pytest.raises(Exception):
T.h_from_V(1E-5, 'NOTAMETHOD')
def test_basic():
psi = sphericity(10., 2.)
assert_close(psi, 0.767663317071005)
a_r = aspect_ratio(.2, 2.)
assert_close(a_r, 0.1)
f_circ = circularity(1.5, .1)
assert_close(f_circ, 1884.9555921538756)
A = A_cylinder(0.01, .1)
assert_close(A, 0.0032986722862692833)
V = V_cylinder(0.01, .1)
assert_close(V, 7.853981633974484e-06)
A = A_hollow_cylinder(0.005, 0.01, 0.1)
assert_close(A, 0.004830198704894308)
V = V_hollow_cylinder(0.005, 0.01, 0.1)
assert_close(V, 5.890486225480862e-06)
A = A_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)])
assert_close(A, 0.004830198704894308)
V = V_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)])
assert_close(V, 5.890486225480862e-06)
def test_HelicalCoil():
for kwargs in [{'Do': 30, 'H': 20, 'pitch': 5, 'Dt':2},
{'Do': 30, 'N': 4, 'pitch': 5, 'Dt':2},
{'Do': 30, 'N': 4, 'H': 20, 'Dt':2},
{'Do_total': 32, 'N': 4, 'H': 20, 'Dt':2},
{'Do_total': 32, 'N': 4, 'H_total': 22, 'Dt':2}]:
a = HelicalCoil(Di=1.8, **kwargs)
assert_close(a.N, 4)
assert_close(a.H, 20)
assert_close(a.H_total, 22)
assert_close(a.Do_total, 32)
assert_close(a.pitch, 5)
assert_close(a.tube_length, 377.5212621504738)
assert_close(a.surface_area, 2372.0360474917497)
# Other parameters
assert_close(a.curvature, 0.06)
assert_close(a.helix_angle, 0.053001960689651316)
assert_close(a.tube_circumference, 94.24777960769379)
assert_close(a.total_inlet_area, 3.141592653589793)
assert_close(a.total_volume, 1186.0180237458749)
# with Di specified
assert_close(a.Di, 1.8)
assert_close(a.inner_surface_area, 2134.832442742575)
assert_close(a.inlet_area, 2.5446900494077327)
assert_close(a.inner_volume, 960.6745992341587)
assert_close(a.annulus_area, 0.5969026041820604)
assert_close(a.annulus_volume, 225.3434245117162)
# Fusion 360 agrees with the tube length.
# It says the SA should be 2370.3726964956063057
# Hopefully its own calculation is flawed
# Test successfully creating a helix with
HelicalCoil(Di=1.8, Do=30, H=20, pitch=2, Dt=2)
with pytest.raises(Exception):
HelicalCoil(Di=1.8, Do=30, H=20, pitch=1.999, Dt=2)
with pytest.raises(Exception):
HelicalCoil(Di=1.8, Do=30, H=20, N=10.0001, Dt=2)
# Test Dt < Do
HelicalCoil(Do=10, H=30, N=2, Dt=10)
with pytest.raises(Exception):
HelicalCoil(Do=10, H=30, N=2, Dt=10.00000001)
with pytest.raises(Exception):
HelicalCoil(Do_total=20-1E-9, H=30, N=3., Dt=10.000)
def test_PlateExchanger():
ex = PlateExchanger(amplitude=5E-4, wavelength=3.7E-3, length=1.2, width=.3, d_port=.05, plates=51)
assert ex.plate_exchanger_identifier == 'L3.7A0.5B45-45'
assert_close(ex.amplitude, 0.0005)
assert_close(ex.a, 0.0005)
assert_close(ex.b, 0.001)
assert_close(ex.wavelength, 3.7E-3)
assert_close(ex.pitch, 3.7E-3)
assert ex.chevron_angle == 45
assert ex.chevron_angles == (45, 45)
assert ex.inclination_angle == 45
assert_close(ex.plate_corrugation_aspect_ratio, 0.5405405405405406)
assert_close(ex.gamma, 0.5405405405405406)
assert_close(ex.plate_enlargement_factor, 1.1611862034509677)
assert_close(ex.D_eq, 0.002)
assert_close(ex.D_hydraulic, 0.0017223766473078426)
assert_close(ex.length_port, 1.25)
assert_close(ex.A_plate_surface, 0.41802703324234836)
assert_close(ex.A_heat_transfer, 20.483324628875071)
assert_close(ex.A_channel_flow, 0.0003)
assert ex.channels == 50
assert ex.channels_per_fluid == 25
ex = PlateExchanger(amplitude=5E-4, wavelength=3.7E-3, length=1.2, width=.3, d_port=.05, plates=51, chevron_angles=(30, 60))
assert ex.chevron_angle == 45
assert ex.chevron_angles == (30, 60)
ex = PlateExchanger(amplitude=5E-4, wavelength=3.7E-3)
def plate_enlargement_factor_numerical(amplitude, wavelength):
from scipy.integrate import quad
lambda1 = wavelength
b = amplitude
gamma = 4*b/lambda1
def to_int(s):
return (1 + (gamma*pi/2)**2*cos(2*pi/lambda1*s)**2)**0.5
main = quad(to_int, 0, lambda1)[0]
return main/lambda1
def test_plate_enhancement_factor():
def plate_enlargement_factor_approx(amplitude, wavelength):
# Approximate formula
lambda1 = wavelength
b = amplitude
A = 2*pi*b/lambda1
return 1/6.*(1 + (1 + A**2)**0.5 + 4*(1 + 0.5*A**2)**0.5)
# 1.218 in VDI example
phi = plate_enlargement_factor_approx(amplitude=0.002, wavelength=0.0126)
assert_close(phi, 1.217825410973735)
assert_close(phi, 1.218, rtol=1E-3)
phi = plate_enlargement_factor_numerical(amplitude=0.002, wavelength=0.0126)
assert_close(phi, 1.2149896289702244)
@pytest.mark.fuzz
@pytest.mark.slow
def test_plate_enhancement_factor_fuzz():
# Confirm it's correct to within 1E-7
for x in linspace(1E-5, 100, 3):
for y in linspace(1E-5, 100, 3):
a = plate_enlargement_factor(x, y)
b = plate_enlargement_factor_numerical(x, y)
assert_close(a, b, rtol=1E-7)
def test_RectangularFinExchanger():
PFE = RectangularFinExchanger(0.03, 0.001, 0.012)
assert_close(PFE.fin_height, 0.03)
assert_close(PFE.fin_thickness, 0.001)
assert_close(PFE.fin_spacing, 0.012)
# calculated values
assert_close(PFE.channel_height, 0.029)
assert_close(PFE.blockage_ratio, 0.8861111111111111)
assert_close(PFE.fin_count, 83.33333333333333)
assert_close(PFE.Dh, 0.01595)
assert_close(PFE.channel_width, 0.011)
# with layers, plate thickness, width, and length (fully defined)
PFE = RectangularFinExchanger(0.03, 0.001, 0.012, length=1.2, width=2.401, plate_thickness=.005, layers=40)
assert_close(PFE.A_HX_layer, 19.2)
assert_close(PFE.layer_fin_count, 200)
assert_close(PFE.A_HX, 768.0)
assert_close(PFE.height, 1.4+.005)
assert_close(PFE.volume, 4.048085999999999)
assert_close(PFE.A_specific_HX, 189.71928956054794)
def test_RectangularOffsetStripFinExchanger():
ROSFE = RectangularOffsetStripFinExchanger(fin_length=.05, fin_height=.01, fin_thickness=.003, fin_spacing=.05)
assert_close(ROSFE.fin_length, 0.05)
assert_close(ROSFE.fin_height, 0.01)
assert_close(ROSFE.fin_thickness, 0.003)
assert_close(ROSFE.fin_spacing, 0.05)
assert_close(ROSFE.blockage_ratio, 0.348)
assert_close(ROSFE.blockage_ratio_Kim, 0.34199999999999997)
assert_close(ROSFE.alpha, 5)
assert_close(ROSFE.delta, 0.06)
assert_close(ROSFE.gamma, 0.06)
assert_close(ROSFE.A_channel, 0.000329)
# assert_close(ROSFE.SA_fin, 0.005574)
assert_close(ROSFE.Dh, 0.011804808037316112)
assert_close(ROSFE.Dh_Kays_London, 0.012185185185185186)
assert_close(ROSFE.Dh_Joshi_Webb, 0.011319367879456085)
# With layers, plate thickness, width (fully defined)
# ROSFE = RectangularOffsetStripFinExchanger(fin_length=.05, fin_height=.01, fin_thickness=.003, fin_spacing=.05, length=1.2, width=2.401, plate_thickness=.005, layers=40)
# assert_close(ROSFE.A_HX_layer, 0.267552)
def test_HyperbolicCoolingTower():
pass
def test_circle_segment_h_from_A():
assert_close(circle_segment_h_from_A(1.3, 4.5), 0.6128105860337293, rtol=1e-13)
assert_close(circle_segment_h_from_A(D=20, A=137.113), 8.99999918630794, rtol=1e-13)
# Point at low area
assert_close(circle_segment_h_from_A(D=20, A=.006), 0.010042502885593678, rtol=1e-10)
# Note that as A becomes too low, the result becomes highly sensitive to the trig routine. A=1e-7 for D = 20 was too low.
# Special cases
assert circle_segment_h_from_A(0.0, 4.5) == 0.0
assert_close(circle_segment_h_from_A(pi/4*4.5**2/2, 4.5), 2.25, rtol=1e-13)
def test_TANK_bug_tolerance():
obj = TANK(L_over_D=3.0, V=100, horizontal=True, sideA='torispherical', sideB='torispherical',sideA_f=1.0, sideA_k=0.06, sideB_f=1.0, sideB_k=0.06)
assert_close(obj.V_from_h(obj.h_max*100.0/100), obj.V)
assert_close(obj.A_cross_sectional(0), 0.0)
assert_close(obj.A_cross_sectional(obj.h_max), 0.0)
import numpy as np
out = obj.SA_from_h(np.float64(2.2744641661437752))
assert_close(out, 81.77418568825574)
|