File: test_numerics_polynomial_evaluation.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (337 lines) | stat: -rw-r--r-- 16,586 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2023 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

from math import exp, log

from fluids.numerics import assert_close, assert_close1d, derivative
from fluids.numerics import numpy as np
from fluids.numerics.polynomial_evaluation import (
    exp_horner_stable,
    exp_horner_stable_and_der,
    exp_horner_stable_and_der2,
    exp_horner_stable_and_der3,
    exp_horner_stable_ln_tau,
    exp_horner_stable_ln_tau_and_der,
    exp_horner_stable_ln_tau_and_der2,
    horner_domain,
    horner_log,
    horner_stable,
    horner_stable_and_der,
    horner_stable_and_der2,
    horner_stable_and_der3,
    horner_stable_and_der4,
    horner_stable_ln_tau,
    horner_stable_ln_tau_and_der,
    horner_stable_ln_tau_and_der2,
    horner_stable_ln_tau_and_der3,
    horner_stable_log,
)
from fluids.numerics.polynomial_utils import polynomial_offset_scale


def test_horner():
    from fluids.numerics.polynomial_evaluation import horner, horner_and_der2, horner_and_der3, horner_and_der4, horner_backwards
    assert_close(horner([1.0, 3.0], 2.0), 5.0, rtol=1e-15)
    assert_close(horner_backwards(2.0, [1.0, 3.0]), 5.0, rtol=1e-15)
    assert_close(horner([3.0], 2.0), 3.0, rtol=1e-15)

    poly = [1.12, 432.32, 325.5342, .235532, 32.235]
    assert_close1d(horner_and_der2(poly, 3.0), (14726.109396, 13747.040732, 8553.7884), rtol=1e-15)
    assert_close1d(horner_and_der3(poly, 3.0), (14726.109396, 13747.040732, 8553.7884, 2674.56), rtol=1e-15)

    poly = [1.12, 432.32, 325.5342, .235532, 32.235, 1.01]
    assert_close1d(horner_and_der4(poly, 3.0), (44179.338188, 55967.231592, 53155.446664, 33685.04519999999, 10778.880000000001), rtol=1e-15)
    assert_close1d(horner_and_der4(poly, 3.0), [np.polyval(np.polyder(poly,o), 3) for o in range(5)])


def test_exp_horner_backwards():
    from fluids.numerics.polynomial_evaluation import (
        exp_horner_backwards,
        exp_horner_backwards_and_der,
        exp_horner_backwards_and_der2,
        exp_horner_backwards_and_der3,
    )
    assert_close((exp_horner_backwards(2.0, [1.0, 3.0])), exp(5.0))

    # Test the derivatives
    coeffs = [1,.2,.03,.0004,.00005]
    x = 1.1
    val = exp_horner_backwards(x, coeffs)
    assert_close(val, 5.853794011493425)

    der_num = derivative(lambda x: exp_horner_backwards(x, coeffs), x, dx=x*8e-7, order=7)
    der_ana = exp_horner_backwards_and_der(x, coeffs)[1]
    assert_close(der_ana, 35.804145691898384, rtol=1e-10)
    assert_close(der_num,der_ana, rtol=1e-10)

    der_num = derivative(lambda x: exp_horner_backwards_and_der(x, coeffs)[1], x, dx=x*8e-7, order=7)
    der_ana = exp_horner_backwards_and_der2(x, coeffs)[2]
    assert_close(der_ana, 312.0678014926728, rtol=1e-10)
    assert_close(der_num,der_ana, rtol=1e-10)

    der_num = derivative(lambda x: exp_horner_backwards_and_der2(x, coeffs)[2], x, dx=x*8e-7, order=7)
    der_ana = exp_horner_backwards_and_der3(x, coeffs)[3]
    assert_close(der_ana, 3208.8680487693714, rtol=1e-10)
    assert_close(der_num,der_ana, rtol=1e-10)



def test_horner_backwards_ln_tau():
    from fluids.numerics.polynomial_evaluation import (
        horner_backwards_ln_tau,
        horner_backwards_ln_tau_and_der,
        horner_backwards_ln_tau_and_der2,
        horner_backwards_ln_tau_and_der3,
    )
    coeffs = [9.661381155485653, 224.16316385569456, 2195.419519751738, 11801.26111760343, 37883.05110910901, 74020.46380982929, 87244.40329893673, 69254.45831263301, 61780.155823216155]
    Tc = 591.75
    val = horner_backwards_ln_tau(500.0, Tc, coeffs)
    assert_close(val, 24168.867169087476)

    T = 300.0
    val = horner_backwards_ln_tau(T, Tc, coeffs)
    assert_close(val, 37900.38881665646)

    der_num = derivative(lambda T: horner_backwards_ln_tau(T, Tc, coeffs), T, dx=T*8e-7, order=7)
    der_ana = horner_backwards_ln_tau_and_der(T, Tc, coeffs)[1]
    assert_close(der_ana, -54.63227984184944, rtol=1e-10)
    assert_close(der_num,der_ana, rtol=1e-10)

    der_num = derivative(lambda T: horner_backwards_ln_tau_and_der(T, Tc, coeffs)[1], T, dx=T*8e-7, order=7)
    der_ana = horner_backwards_ln_tau_and_der2(T, Tc, coeffs)[2]
    assert_close(der_ana, 0.037847046150971016, rtol=1e-10)
    assert_close(der_num,der_ana, rtol=1e-8)

    der_num = derivative(lambda T: horner_backwards_ln_tau_and_der2(T, Tc, coeffs)[2], T, dx=T*160e-7, order=7)
    der_ana = horner_backwards_ln_tau_and_der3(T, Tc, coeffs)[3]
    assert_close(der_ana, -0.001920502581912092, rtol=1e-10)
    assert_close(der_num,der_ana, rtol=1e-10)

    assert 0 == horner_backwards_ln_tau(600.0, Tc, coeffs)
    assert_close1d(horner_backwards_ln_tau_and_der(600.0, Tc, coeffs), (0.0, 0.0))
    assert_close1d(horner_backwards_ln_tau_and_der2(600.0, Tc, coeffs), (0.0, 0.0, 0.0))
    assert_close1d(horner_backwards_ln_tau_and_der3(600.0, Tc, coeffs), (0.0, 0.0, 0.0, 0.0))


def test_exp_horner_backwards_ln_tau():
    from fluids.numerics.polynomial_evaluation import exp_horner_backwards_ln_tau, exp_horner_backwards_ln_tau_and_der, exp_horner_backwards_ln_tau_and_der2
    # Coefficients for water from REFPROP, fit
    cs=[-1.2616237655927602e-05, -0.0004061873638525952, -0.005563382112542401, -0.04240531802937599, -0.19805733513004808, -0.5905741856310869, -1.1388001144550794, -0.1477584393673108, -2.401287527958821]
    Tc = 647.096
    T = 300.0
    expect = 0.07175344047522199
    val = exp_horner_backwards_ln_tau(T, Tc, cs)
    assert_close(val, expect, rtol=1e-9)

    assert 0 == exp_horner_backwards_ln_tau(Tc, Tc, cs)

    expect_der = -0.000154224581713238
    val, der = exp_horner_backwards_ln_tau_and_der(T, Tc, cs)
    assert_close(der, expect_der, rtol=1e-13)
    assert_close(val, expect, rtol=1e-9)


    val, der, der2 = exp_horner_backwards_ln_tau_and_der2(T, Tc, cs)
    assert_close(der, expect_der, rtol=1e-13)
    assert_close(val, expect, rtol=1e-9)
    expect_der2 = -5.959538970287795e-07
    assert_close(der2, expect_der2, rtol=1e-13)

    assert 0 == exp_horner_backwards_ln_tau(Tc+1, Tc, cs)
    assert_close1d(exp_horner_backwards_ln_tau_and_der(1000.0, Tc, cs), (0.0, 0.0))
    assert_close1d(exp_horner_backwards_ln_tau_and_der2(1000.0, Tc, cs), (0.0, 0.0, 0.0))

def test_horner_domain():
    test_stable_coeffs = [28.0163226043884, 24.92038363551981, -7.469247118451516, 16.400149851861975, 67.52558234042988, 176.7837155284216]
    xmin, xmax = (162.0, 570.0)
    x = 300
    expect = 157.0804912518053
    calc = horner_domain(x, test_stable_coeffs, xmin, xmax)
    assert_close(calc, expect, rtol=1e-14)


def test_horner_stable():
    x = 300

    test_stable_coeffs = [28.0163226043884, 24.92038363551981, -7.469247118451516, 16.400149851861975, 67.52558234042988, 176.7837155284216]
    xmin, xmax = (162.0, 570.0)
    expect = 157.0804912518053
    offset, scale = polynomial_offset_scale(xmin, xmax)
    calc = horner_stable(x, test_stable_coeffs, offset, scale)
    assert_close(calc, expect, rtol=1e-14)

    der_num = derivative(horner_stable, x, args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
    der_analytical = horner_stable_and_der(x, test_stable_coeffs, offset, scale)[1]
    assert_close(der_analytical, 0.25846754626830115, rtol=1e-14)
    assert_close(der_num, der_analytical, rtol=1e-7)


    der_num = derivative(lambda *args: horner_stable_and_der(*args)[1], x,
                         args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
    der_analytical = horner_stable_and_der2(x, test_stable_coeffs, offset, scale)[2]
    assert_close(der_analytical, 0.0014327609525395784, rtol=1e-14)
    assert_close(der_num, der_analytical, rtol=1e-7)


    der_num = derivative(lambda *args: horner_stable_and_der2(*args)[-1], x,
                         args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
    der_analytical = horner_stable_and_der3(x, test_stable_coeffs, offset, scale)[-1]
    assert_close(der_analytical, -7.345952769973301e-06, rtol=1e-14)
    assert_close(der_num, der_analytical, rtol=1e-7)


    der_num = derivative(lambda *args: horner_stable_and_der3(*args)[-1], x,
                         args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
    der_analytical = horner_stable_and_der4(x, test_stable_coeffs, offset, scale)[-1]
    assert_close(der_analytical, -2.8269861583547557e-07, rtol=1e-14)
    assert_close(der_num, der_analytical, rtol=1e-7)

    five_vals = horner_stable_and_der4(x, test_stable_coeffs, offset, scale)
    assert_close1d(five_vals, (157.0804912518053, 0.25846754626830115, 0.0014327609525395784, -7.345952769973301e-06, -2.8269861583547557e-07), rtol=1e-14)

    four_vals = horner_stable_and_der3(x, test_stable_coeffs, offset, scale)
    assert_close1d(four_vals, (157.0804912518053, 0.25846754626830115, 0.0014327609525395784, -7.345952769973301e-06), rtol=1e-14)

    three_vals = horner_stable_and_der2(x, test_stable_coeffs, offset, scale)
    assert_close1d(three_vals, (157.0804912518053, 0.25846754626830115, 0.0014327609525395784), rtol=1e-14)

    two_vals = horner_stable_and_der(x, test_stable_coeffs, offset, scale)
    assert_close1d(two_vals, (157.0804912518053, 0.25846754626830115), rtol=1e-14)

def test_stablepoly_ln_tau():
    Tmin, Tmax, Tc = 178.18, 591.74, 591.75
    coeffs = [-0.00854738149791956, 0.05600738152861595, -0.30758192972280085, 1.6848304651211947, -8.432931053161155, 37.83695791102946, -150.87603890354512, 526.4891248463246, -1574.7593541151946, 3925.149223414621, -7826.869059381197, 11705.265444382389, -11670.331914006258, 5817.751307862842]

    expect = 24498.131947494512
    expect_d, expect_d2, expect_d3 = -100.77476796035525, -0.6838185833621794, -0.012093191888904656
    xmin, xmax = log(1-Tmin/Tc), log(1-Tmax/Tc)

    offset, scale = polynomial_offset_scale(xmin, xmax)
    T = 500.0

    calc = horner_stable_ln_tau(T, Tc, coeffs, offset, scale)
    assert_close(expect, calc)
    assert_close(horner_stable_ln_tau(700.0, Tc, coeffs, offset, scale), 0.0)

    calc2 = horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale)
    assert_close(expect, calc2[0])
    assert_close(expect_d, calc2[1])

    assert_close1d(horner_stable_ln_tau_and_der(700.0, Tc, coeffs, offset, scale), (0.0, 0.0))



    calc3 = horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale)
    assert_close(expect, calc3[0])
    assert_close(expect_d, calc3[1])
    assert_close(expect_d2, calc3[2])
    assert_close1d(horner_stable_ln_tau_and_der2(700.0, Tc, coeffs, offset, scale), (0.0, 0.0, 0.0))


    calc4 = horner_stable_ln_tau_and_der3(T, Tc, coeffs, offset, scale)
    assert_close(expect, calc4[0])
    assert_close(expect_d, calc4[1])
    assert_close(expect_d2, calc4[2])
    assert_close(expect_d3, calc4[3])
    assert_close1d(horner_stable_ln_tau_and_der3(700.0, Tc, coeffs, offset, scale), (0.0, 0.0, 0.0, 0.0))

def test_exp_stablepoly_fit():
    xmin, xmax = 309.0, 591.72
    coeffs = [0.008603558174828078, 0.007358688688856427, -0.016890323025782954, -0.005289197721114957, -0.0028824712174469625, 0.05130960832946553, -0.12709896610233662, 0.37774977659528036, -0.9595325030688526, 2.7931528759840174, 13.10149649770156]
    x = 400
    offset, scale = polynomial_offset_scale(xmin, xmax)
    expect = 157191.01706242564
    calc = exp_horner_stable(x, coeffs, offset, scale)
    assert_close(calc, expect, rtol=1e-14)

    der_num = derivative(exp_horner_stable, x, args=(coeffs, offset, scale), dx=x*1e-7)
    der_analytical = exp_horner_stable_and_der(x, coeffs, offset, scale)[1]
    assert_close(der_num, der_analytical, rtol=1e-7)
    assert_close(der_analytical, 4056.436943642117, rtol=1e-14)

    der_num = derivative(lambda *args: exp_horner_stable_and_der(*args)[1], x,
                         args=(coeffs, offset, scale), dx=x*1e-7)
    der_analytical = exp_horner_stable_and_der2(x, coeffs, offset, scale)[-1]
    assert_close(der_analytical, 81.32645570045084, rtol=1e-14)
    assert_close(der_num, der_analytical, rtol=1e-7)


    der_num = derivative(lambda *args: exp_horner_stable_and_der2(*args)[-1], x,
                         args=(coeffs, offset, scale), dx=x*1e-7)
    der_analytical = exp_horner_stable_and_der3(x, coeffs, offset, scale)[-1]
    assert_close(der_num, der_analytical, rtol=1e-7)
    assert_close(der_analytical, 1.103603650822488, rtol=1e-14)

    vals = exp_horner_stable_and_der3(x, coeffs, offset, scale)
    assert_close1d(vals, (157191.01706242564, 4056.436943642117, 81.32645570045084, 1.103603650822488), rtol=1e-14)

    vals = exp_horner_stable_and_der2(x, coeffs, offset, scale)
    assert_close1d(vals, (157191.01706242564, 4056.436943642117, 81.32645570045084), rtol=1e-14)
    vals = exp_horner_stable_and_der(x, coeffs, offset, scale)
    assert_close1d(vals, (157191.01706242564, 4056.436943642117), rtol=1e-14)

def test_exp_stablepoly_fit_ln_tau():
    coeffs = [0.011399360373616219, -0.014916568994522095, -0.06881296308711171, 0.0900153056718409, 0.19066633691545576, -0.24937350547406822, -0.3148389292182401, 0.41171834646956995, 0.3440581845934503, -0.44989947455906076, -0.2590532901358529, 0.33869134876113094, 0.1391329435696207, -0.18195230788023764, -0.050437145563137165, 0.06583166394466389, 0.01685157036382634, -0.022266583863000733, 0.003539388708205138, -0.005171064606571463, 0.012264455189935575, -0.018085676249990357, 0.026950795197264732, -0.04077120220662778, 0.05786417011592615, -0.07222889554773304, 0.07433570330647113, -0.05829288696590232, -3.7182636506596722, -5.844828481765601]
    Tmin, Tmax, Tc = 233.22, 646.15, 647.096
    xmin, xmax = log(1-Tmin/Tc), log(1-Tmax/Tc)
    offset, scale = polynomial_offset_scale(xmin, xmax)

    T = 500
    expect = 0.03126447402046822
    expect_d, expect_d2 = -0.0002337992205182661, -1.0453011134030858e-07
    calc = exp_horner_stable_ln_tau(T, Tc, coeffs, offset, scale)
    assert_close(expect, calc)
    assert 0 == exp_horner_stable_ln_tau(700, Tc, coeffs, offset, scale)

    calc2 = exp_horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale)
    assert (0,0) == exp_horner_stable_ln_tau_and_der(700, Tc, coeffs, offset, scale)
    assert_close(expect, calc2[0])
    assert_close(expect_d, calc2[1])


    calc3 = exp_horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale)
    assert (0,0, 0) == exp_horner_stable_ln_tau_and_der2(700, Tc, coeffs, offset, scale)
    assert_close(expect, calc3[0])
    assert_close(expect_d, calc3[1])
    assert_close(expect_d2, calc3[2])




def test_horner_log():
    coeffs = [1.0, 2.0, 3.0]
    calc = horner_log(coeffs, 5.3, 4.5)
    expect = 40.22161020291425
    assert_close(calc, expect, rtol=1e-13)


def test_horner_stable_log():
    # Have yet to be able to get coeffs for horner_stable_log directly
    # Would work with mpmath for sure though
    int_T_stable_coeffs = [3.2254691548856482, 6.923549962582991, 1.5349425170308109, -1.2154278928596742, 0.2691917024300867, 0.08207134574884214, -0.00891350763588927, -0.14463666181618448, 0.20857726049059955, -0.16593159587411, 0.034375567510854466, 0.0906937625089119, -0.0049590621229368415, -0.11605604886860361, -0.23898450392809112, 0.5368870089626024, 0.1796614633975993, -0.7638508609027873, -0.07854882554664272, 0.7411591719079632, -0.06004401012118543, -0.45423261676213483, 0.13111045246315745, 0.11263751330617959, -0.04919816763192376]

    int_T_log_coeff = 33.94307866530405
    offset = -1.2872369320147412
    scale= 0.0011436184660073706

    calc = horner_stable_log(300, int_T_stable_coeffs, offset, scale, int_T_log_coeff)
    assert_close(calc, 193.51466126959178)