1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2023 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from math import exp, log
from fluids.numerics import assert_close, assert_close1d, derivative
from fluids.numerics import numpy as np
from fluids.numerics.polynomial_evaluation import (
exp_horner_stable,
exp_horner_stable_and_der,
exp_horner_stable_and_der2,
exp_horner_stable_and_der3,
exp_horner_stable_ln_tau,
exp_horner_stable_ln_tau_and_der,
exp_horner_stable_ln_tau_and_der2,
horner_domain,
horner_log,
horner_stable,
horner_stable_and_der,
horner_stable_and_der2,
horner_stable_and_der3,
horner_stable_and_der4,
horner_stable_ln_tau,
horner_stable_ln_tau_and_der,
horner_stable_ln_tau_and_der2,
horner_stable_ln_tau_and_der3,
horner_stable_log,
)
from fluids.numerics.polynomial_utils import polynomial_offset_scale
def test_horner():
from fluids.numerics.polynomial_evaluation import horner, horner_and_der2, horner_and_der3, horner_and_der4, horner_backwards
assert_close(horner([1.0, 3.0], 2.0), 5.0, rtol=1e-15)
assert_close(horner_backwards(2.0, [1.0, 3.0]), 5.0, rtol=1e-15)
assert_close(horner([3.0], 2.0), 3.0, rtol=1e-15)
poly = [1.12, 432.32, 325.5342, .235532, 32.235]
assert_close1d(horner_and_der2(poly, 3.0), (14726.109396, 13747.040732, 8553.7884), rtol=1e-15)
assert_close1d(horner_and_der3(poly, 3.0), (14726.109396, 13747.040732, 8553.7884, 2674.56), rtol=1e-15)
poly = [1.12, 432.32, 325.5342, .235532, 32.235, 1.01]
assert_close1d(horner_and_der4(poly, 3.0), (44179.338188, 55967.231592, 53155.446664, 33685.04519999999, 10778.880000000001), rtol=1e-15)
assert_close1d(horner_and_der4(poly, 3.0), [np.polyval(np.polyder(poly,o), 3) for o in range(5)])
def test_exp_horner_backwards():
from fluids.numerics.polynomial_evaluation import (
exp_horner_backwards,
exp_horner_backwards_and_der,
exp_horner_backwards_and_der2,
exp_horner_backwards_and_der3,
)
assert_close((exp_horner_backwards(2.0, [1.0, 3.0])), exp(5.0))
# Test the derivatives
coeffs = [1,.2,.03,.0004,.00005]
x = 1.1
val = exp_horner_backwards(x, coeffs)
assert_close(val, 5.853794011493425)
der_num = derivative(lambda x: exp_horner_backwards(x, coeffs), x, dx=x*8e-7, order=7)
der_ana = exp_horner_backwards_and_der(x, coeffs)[1]
assert_close(der_ana, 35.804145691898384, rtol=1e-10)
assert_close(der_num,der_ana, rtol=1e-10)
der_num = derivative(lambda x: exp_horner_backwards_and_der(x, coeffs)[1], x, dx=x*8e-7, order=7)
der_ana = exp_horner_backwards_and_der2(x, coeffs)[2]
assert_close(der_ana, 312.0678014926728, rtol=1e-10)
assert_close(der_num,der_ana, rtol=1e-10)
der_num = derivative(lambda x: exp_horner_backwards_and_der2(x, coeffs)[2], x, dx=x*8e-7, order=7)
der_ana = exp_horner_backwards_and_der3(x, coeffs)[3]
assert_close(der_ana, 3208.8680487693714, rtol=1e-10)
assert_close(der_num,der_ana, rtol=1e-10)
def test_horner_backwards_ln_tau():
from fluids.numerics.polynomial_evaluation import (
horner_backwards_ln_tau,
horner_backwards_ln_tau_and_der,
horner_backwards_ln_tau_and_der2,
horner_backwards_ln_tau_and_der3,
)
coeffs = [9.661381155485653, 224.16316385569456, 2195.419519751738, 11801.26111760343, 37883.05110910901, 74020.46380982929, 87244.40329893673, 69254.45831263301, 61780.155823216155]
Tc = 591.75
val = horner_backwards_ln_tau(500.0, Tc, coeffs)
assert_close(val, 24168.867169087476)
T = 300.0
val = horner_backwards_ln_tau(T, Tc, coeffs)
assert_close(val, 37900.38881665646)
der_num = derivative(lambda T: horner_backwards_ln_tau(T, Tc, coeffs), T, dx=T*8e-7, order=7)
der_ana = horner_backwards_ln_tau_and_der(T, Tc, coeffs)[1]
assert_close(der_ana, -54.63227984184944, rtol=1e-10)
assert_close(der_num,der_ana, rtol=1e-10)
der_num = derivative(lambda T: horner_backwards_ln_tau_and_der(T, Tc, coeffs)[1], T, dx=T*8e-7, order=7)
der_ana = horner_backwards_ln_tau_and_der2(T, Tc, coeffs)[2]
assert_close(der_ana, 0.037847046150971016, rtol=1e-10)
assert_close(der_num,der_ana, rtol=1e-8)
der_num = derivative(lambda T: horner_backwards_ln_tau_and_der2(T, Tc, coeffs)[2], T, dx=T*160e-7, order=7)
der_ana = horner_backwards_ln_tau_and_der3(T, Tc, coeffs)[3]
assert_close(der_ana, -0.001920502581912092, rtol=1e-10)
assert_close(der_num,der_ana, rtol=1e-10)
assert 0 == horner_backwards_ln_tau(600.0, Tc, coeffs)
assert_close1d(horner_backwards_ln_tau_and_der(600.0, Tc, coeffs), (0.0, 0.0))
assert_close1d(horner_backwards_ln_tau_and_der2(600.0, Tc, coeffs), (0.0, 0.0, 0.0))
assert_close1d(horner_backwards_ln_tau_and_der3(600.0, Tc, coeffs), (0.0, 0.0, 0.0, 0.0))
def test_exp_horner_backwards_ln_tau():
from fluids.numerics.polynomial_evaluation import exp_horner_backwards_ln_tau, exp_horner_backwards_ln_tau_and_der, exp_horner_backwards_ln_tau_and_der2
# Coefficients for water from REFPROP, fit
cs=[-1.2616237655927602e-05, -0.0004061873638525952, -0.005563382112542401, -0.04240531802937599, -0.19805733513004808, -0.5905741856310869, -1.1388001144550794, -0.1477584393673108, -2.401287527958821]
Tc = 647.096
T = 300.0
expect = 0.07175344047522199
val = exp_horner_backwards_ln_tau(T, Tc, cs)
assert_close(val, expect, rtol=1e-9)
assert 0 == exp_horner_backwards_ln_tau(Tc, Tc, cs)
expect_der = -0.000154224581713238
val, der = exp_horner_backwards_ln_tau_and_der(T, Tc, cs)
assert_close(der, expect_der, rtol=1e-13)
assert_close(val, expect, rtol=1e-9)
val, der, der2 = exp_horner_backwards_ln_tau_and_der2(T, Tc, cs)
assert_close(der, expect_der, rtol=1e-13)
assert_close(val, expect, rtol=1e-9)
expect_der2 = -5.959538970287795e-07
assert_close(der2, expect_der2, rtol=1e-13)
assert 0 == exp_horner_backwards_ln_tau(Tc+1, Tc, cs)
assert_close1d(exp_horner_backwards_ln_tau_and_der(1000.0, Tc, cs), (0.0, 0.0))
assert_close1d(exp_horner_backwards_ln_tau_and_der2(1000.0, Tc, cs), (0.0, 0.0, 0.0))
def test_horner_domain():
test_stable_coeffs = [28.0163226043884, 24.92038363551981, -7.469247118451516, 16.400149851861975, 67.52558234042988, 176.7837155284216]
xmin, xmax = (162.0, 570.0)
x = 300
expect = 157.0804912518053
calc = horner_domain(x, test_stable_coeffs, xmin, xmax)
assert_close(calc, expect, rtol=1e-14)
def test_horner_stable():
x = 300
test_stable_coeffs = [28.0163226043884, 24.92038363551981, -7.469247118451516, 16.400149851861975, 67.52558234042988, 176.7837155284216]
xmin, xmax = (162.0, 570.0)
expect = 157.0804912518053
offset, scale = polynomial_offset_scale(xmin, xmax)
calc = horner_stable(x, test_stable_coeffs, offset, scale)
assert_close(calc, expect, rtol=1e-14)
der_num = derivative(horner_stable, x, args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
der_analytical = horner_stable_and_der(x, test_stable_coeffs, offset, scale)[1]
assert_close(der_analytical, 0.25846754626830115, rtol=1e-14)
assert_close(der_num, der_analytical, rtol=1e-7)
der_num = derivative(lambda *args: horner_stable_and_der(*args)[1], x,
args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
der_analytical = horner_stable_and_der2(x, test_stable_coeffs, offset, scale)[2]
assert_close(der_analytical, 0.0014327609525395784, rtol=1e-14)
assert_close(der_num, der_analytical, rtol=1e-7)
der_num = derivative(lambda *args: horner_stable_and_der2(*args)[-1], x,
args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
der_analytical = horner_stable_and_der3(x, test_stable_coeffs, offset, scale)[-1]
assert_close(der_analytical, -7.345952769973301e-06, rtol=1e-14)
assert_close(der_num, der_analytical, rtol=1e-7)
der_num = derivative(lambda *args: horner_stable_and_der3(*args)[-1], x,
args=(test_stable_coeffs, offset, scale), dx=x*1e-7)
der_analytical = horner_stable_and_der4(x, test_stable_coeffs, offset, scale)[-1]
assert_close(der_analytical, -2.8269861583547557e-07, rtol=1e-14)
assert_close(der_num, der_analytical, rtol=1e-7)
five_vals = horner_stable_and_der4(x, test_stable_coeffs, offset, scale)
assert_close1d(five_vals, (157.0804912518053, 0.25846754626830115, 0.0014327609525395784, -7.345952769973301e-06, -2.8269861583547557e-07), rtol=1e-14)
four_vals = horner_stable_and_der3(x, test_stable_coeffs, offset, scale)
assert_close1d(four_vals, (157.0804912518053, 0.25846754626830115, 0.0014327609525395784, -7.345952769973301e-06), rtol=1e-14)
three_vals = horner_stable_and_der2(x, test_stable_coeffs, offset, scale)
assert_close1d(three_vals, (157.0804912518053, 0.25846754626830115, 0.0014327609525395784), rtol=1e-14)
two_vals = horner_stable_and_der(x, test_stable_coeffs, offset, scale)
assert_close1d(two_vals, (157.0804912518053, 0.25846754626830115), rtol=1e-14)
def test_stablepoly_ln_tau():
Tmin, Tmax, Tc = 178.18, 591.74, 591.75
coeffs = [-0.00854738149791956, 0.05600738152861595, -0.30758192972280085, 1.6848304651211947, -8.432931053161155, 37.83695791102946, -150.87603890354512, 526.4891248463246, -1574.7593541151946, 3925.149223414621, -7826.869059381197, 11705.265444382389, -11670.331914006258, 5817.751307862842]
expect = 24498.131947494512
expect_d, expect_d2, expect_d3 = -100.77476796035525, -0.6838185833621794, -0.012093191888904656
xmin, xmax = log(1-Tmin/Tc), log(1-Tmax/Tc)
offset, scale = polynomial_offset_scale(xmin, xmax)
T = 500.0
calc = horner_stable_ln_tau(T, Tc, coeffs, offset, scale)
assert_close(expect, calc)
assert_close(horner_stable_ln_tau(700.0, Tc, coeffs, offset, scale), 0.0)
calc2 = horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale)
assert_close(expect, calc2[0])
assert_close(expect_d, calc2[1])
assert_close1d(horner_stable_ln_tau_and_der(700.0, Tc, coeffs, offset, scale), (0.0, 0.0))
calc3 = horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale)
assert_close(expect, calc3[0])
assert_close(expect_d, calc3[1])
assert_close(expect_d2, calc3[2])
assert_close1d(horner_stable_ln_tau_and_der2(700.0, Tc, coeffs, offset, scale), (0.0, 0.0, 0.0))
calc4 = horner_stable_ln_tau_and_der3(T, Tc, coeffs, offset, scale)
assert_close(expect, calc4[0])
assert_close(expect_d, calc4[1])
assert_close(expect_d2, calc4[2])
assert_close(expect_d3, calc4[3])
assert_close1d(horner_stable_ln_tau_and_der3(700.0, Tc, coeffs, offset, scale), (0.0, 0.0, 0.0, 0.0))
def test_exp_stablepoly_fit():
xmin, xmax = 309.0, 591.72
coeffs = [0.008603558174828078, 0.007358688688856427, -0.016890323025782954, -0.005289197721114957, -0.0028824712174469625, 0.05130960832946553, -0.12709896610233662, 0.37774977659528036, -0.9595325030688526, 2.7931528759840174, 13.10149649770156]
x = 400
offset, scale = polynomial_offset_scale(xmin, xmax)
expect = 157191.01706242564
calc = exp_horner_stable(x, coeffs, offset, scale)
assert_close(calc, expect, rtol=1e-14)
der_num = derivative(exp_horner_stable, x, args=(coeffs, offset, scale), dx=x*1e-7)
der_analytical = exp_horner_stable_and_der(x, coeffs, offset, scale)[1]
assert_close(der_num, der_analytical, rtol=1e-7)
assert_close(der_analytical, 4056.436943642117, rtol=1e-14)
der_num = derivative(lambda *args: exp_horner_stable_and_der(*args)[1], x,
args=(coeffs, offset, scale), dx=x*1e-7)
der_analytical = exp_horner_stable_and_der2(x, coeffs, offset, scale)[-1]
assert_close(der_analytical, 81.32645570045084, rtol=1e-14)
assert_close(der_num, der_analytical, rtol=1e-7)
der_num = derivative(lambda *args: exp_horner_stable_and_der2(*args)[-1], x,
args=(coeffs, offset, scale), dx=x*1e-7)
der_analytical = exp_horner_stable_and_der3(x, coeffs, offset, scale)[-1]
assert_close(der_num, der_analytical, rtol=1e-7)
assert_close(der_analytical, 1.103603650822488, rtol=1e-14)
vals = exp_horner_stable_and_der3(x, coeffs, offset, scale)
assert_close1d(vals, (157191.01706242564, 4056.436943642117, 81.32645570045084, 1.103603650822488), rtol=1e-14)
vals = exp_horner_stable_and_der2(x, coeffs, offset, scale)
assert_close1d(vals, (157191.01706242564, 4056.436943642117, 81.32645570045084), rtol=1e-14)
vals = exp_horner_stable_and_der(x, coeffs, offset, scale)
assert_close1d(vals, (157191.01706242564, 4056.436943642117), rtol=1e-14)
def test_exp_stablepoly_fit_ln_tau():
coeffs = [0.011399360373616219, -0.014916568994522095, -0.06881296308711171, 0.0900153056718409, 0.19066633691545576, -0.24937350547406822, -0.3148389292182401, 0.41171834646956995, 0.3440581845934503, -0.44989947455906076, -0.2590532901358529, 0.33869134876113094, 0.1391329435696207, -0.18195230788023764, -0.050437145563137165, 0.06583166394466389, 0.01685157036382634, -0.022266583863000733, 0.003539388708205138, -0.005171064606571463, 0.012264455189935575, -0.018085676249990357, 0.026950795197264732, -0.04077120220662778, 0.05786417011592615, -0.07222889554773304, 0.07433570330647113, -0.05829288696590232, -3.7182636506596722, -5.844828481765601]
Tmin, Tmax, Tc = 233.22, 646.15, 647.096
xmin, xmax = log(1-Tmin/Tc), log(1-Tmax/Tc)
offset, scale = polynomial_offset_scale(xmin, xmax)
T = 500
expect = 0.03126447402046822
expect_d, expect_d2 = -0.0002337992205182661, -1.0453011134030858e-07
calc = exp_horner_stable_ln_tau(T, Tc, coeffs, offset, scale)
assert_close(expect, calc)
assert 0 == exp_horner_stable_ln_tau(700, Tc, coeffs, offset, scale)
calc2 = exp_horner_stable_ln_tau_and_der(T, Tc, coeffs, offset, scale)
assert (0,0) == exp_horner_stable_ln_tau_and_der(700, Tc, coeffs, offset, scale)
assert_close(expect, calc2[0])
assert_close(expect_d, calc2[1])
calc3 = exp_horner_stable_ln_tau_and_der2(T, Tc, coeffs, offset, scale)
assert (0,0, 0) == exp_horner_stable_ln_tau_and_der2(700, Tc, coeffs, offset, scale)
assert_close(expect, calc3[0])
assert_close(expect_d, calc3[1])
assert_close(expect_d2, calc3[2])
def test_horner_log():
coeffs = [1.0, 2.0, 3.0]
calc = horner_log(coeffs, 5.3, 4.5)
expect = 40.22161020291425
assert_close(calc, expect, rtol=1e-13)
def test_horner_stable_log():
# Have yet to be able to get coeffs for horner_stable_log directly
# Would work with mpmath for sure though
int_T_stable_coeffs = [3.2254691548856482, 6.923549962582991, 1.5349425170308109, -1.2154278928596742, 0.2691917024300867, 0.08207134574884214, -0.00891350763588927, -0.14463666181618448, 0.20857726049059955, -0.16593159587411, 0.034375567510854466, 0.0906937625089119, -0.0049590621229368415, -0.11605604886860361, -0.23898450392809112, 0.5368870089626024, 0.1796614633975993, -0.7638508609027873, -0.07854882554664272, 0.7411591719079632, -0.06004401012118543, -0.45423261676213483, 0.13111045246315745, 0.11263751330617959, -0.04919816763192376]
int_T_log_coeff = 33.94307866530405
offset = -1.2872369320147412
scale= 0.0011436184660073706
calc = horner_stable_log(300, int_T_stable_coeffs, offset, scale, int_T_log_coeff)
assert_close(calc, 193.51466126959178)
|