File: test_particle_size_distribution.py

package info (click to toggle)
python-fluids 1.0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,384 kB
  • sloc: python: 59,459; f90: 1,033; javascript: 49; makefile: 47
file content (838 lines) | stat: -rw-r--r-- 35,059 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

from math import log10

import pytest

import fluids
from fluids.numerics import assert_close, assert_close1d, assert_close2d, isclose, logspace
from fluids.particle_size_distribution import (
    ISO_3310_1_R10,
    ISO_3310_1_R20,
    ISO_3310_1_R20_3,
    ISO_3310_1_R40_3,
    ASTM_E11_sieves,
    ISO_3310_1_sieves,
    ParticleSizeDistribution,
    PSDCustom,
    PSDInterpolated,
    PSDLognormal,
    cdf_Gates_Gaudin_Schuhman,
    cdf_lognormal,
    cdf_Rosin_Rammler,
    pdf_Gates_Gaudin_Schuhman,
    pdf_Gates_Gaudin_Schuhman_basis_integral,
    pdf_lognormal,
    pdf_lognormal_basis_integral,
    pdf_Rosin_Rammler,
    pdf_Rosin_Rammler_basis_integral,
    psd_spacing,
)

try:
    from random import uniform
except:
    pass


def test_ASTM_E11_sieves():
    sieves = ASTM_E11_sieves.values()
    tot = sum([i.d_wire for i in sieves])
    assert_close(tot, 0.105963384)

    tot = sum([i.opening for i in sieves])
    assert_close(tot, 0.9876439999999999)

    assert len(ASTM_E11_sieves) == 56

    # Test but do not validate these properties
    tot = 0.0
    for attr in ['Y_variation_avg', 'X_variation_max', 'max_opening', 'd_wire', 'd_wire_min', 'd_wire_max', 'opening', 'opening_inch']:
        tot += sum(getattr(i, attr) for i in sieves)

def test_ISO_3310_2_sieves():
    sieves = ISO_3310_1_sieves.values()
    tot = sum([i.d_wire for i in sieves])
    assert_close(tot, 0.17564599999999997)

    tot = sum([i.opening for i in sieves])
    assert_close(tot, 1.5205579999999994)

    assert len(ISO_3310_1_sieves) == 99

    # Test but do not validate these properties
    tot = 0.0
    for attr in ['Y_variation_avg', 'X_variation_max', 'd_wire', 'd_wire_min', 'd_wire_max', 'opening']:
        tot += sum(getattr(i, attr) for i in sieves)

    for l in [ISO_3310_1_R20_3, ISO_3310_1_R20, ISO_3310_1_R10, ISO_3310_1_R40_3]:
        for i in l:
            assert i.designation in ISO_3310_1_sieves



def test_ParticleSizeDistribution_basic():
    ds = [240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532]
    numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
    number_fractions = [0.010640039286298903, 0.01947945653953184, 0.03797675560648224, 0.06711409395973154, 0.102962841708954, 0.13897528237027337, 0.16205598297593715, 0.160582746767065, 0.13504665247994763, 0.09477819610410869, 0.048616794892781146, 0.01816991324275659, 0.0034375511540350305, 0.0001636929120969062]
    length_fractions = [0.0022265080273913248, 0.005405749400984079, 0.013173675010801534, 0.02909808308708846, 0.05576732372469186, 0.09403390879219536, 0.1370246122004729, 0.16966553692650058, 0.17831420382670332, 0.15641421494054603, 0.10028800800464328, 0.046849963047687335, 0.011078803825079166, 0.0006594091852147985]
    area_fractions = [0.0003643458522227456, 0.0011833425086503686, 0.0036047198267710797, 0.009951607879295004, 0.023826910138492176, 0.05018962198499494, 0.09139246506396961, 0.1414069073893575, 0.18572285033413602, 0.20362023102799823, 0.16318760564859225, 0.09528884410476045, 0.028165197280747324, 0.0020953509600122053]
    fractions = [4.8560356399310335e-05, 0.00021291794698947167, 0.0008107432330218852, 0.0027975134942445257, 0.00836789808490677, 0.02201901107895143, 0.05010399231412809, 0.0968727835386488, 0.15899879607747244, 0.2178784903712532, 0.21825921197532888, 0.159302671180342, 0.05885464261922434, 0.0054727677290887945]

    fraction_cdf = [4.856035639931034e-05, 0.0002614783033887821, 0.0010722215364106676, 0.003869735030655194, 0.012237633115561966, 0.0342566441945134, 0.0843606365086415, 0.18123342004729032, 0.34023221612476284, 0.5581107064960161, 0.7763699184713451, 0.9356725896516871, 0.9945272322709114, 1.0000000000000002]
    area_cdf = [0.00036434585222274563, 0.0015476883608731143, 0.005152408187644195, 0.015104016066939202, 0.038930926205431385, 0.08912054819042634, 0.18051301325439598, 0.3219199206437535, 0.5076427709778896, 0.7112630020058879, 0.8744506076544801, 0.9697394517592406, 0.9979046490399879, 1.0]
    length_cdf = [0.0022265080273913248, 0.007632257428375404, 0.020805932439176937, 0.0499040155262654, 0.10567133925095726, 0.1997052480431526, 0.3367298602436255, 0.506395397170126, 0.6847096009968294, 0.8411238159373755, 0.9414118239420188, 0.9882617869897061, 0.9993405908147853, 1.0000000000000002]
    number_cdf = [0.010640039286298902, 0.030119495825830737, 0.06809625143231296, 0.13521034539204452, 0.2381731871009985, 0.3771484694712718, 0.5392044524472088, 0.6997871992142738, 0.8348338516942214, 0.9296120477983301, 0.9782288426911112, 0.9963987559338677, 0.9998363070879027, 0.9999999999999997]

    opts = [
            {'fractions': numbers, 'cdf': False, 'order': 0},

            {'fractions': number_fractions, 'cdf': False, 'order': 0},
            {'fractions': length_fractions, 'cdf': False, 'order': 1},
            {'fractions': area_fractions, 'cdf': False, 'order': 2},
            {'fractions': fractions, 'cdf': False, 'order': 3},

            {'fractions': fraction_cdf, 'cdf': True, 'order': 3},
            {'fractions': area_cdf, 'cdf': True, 'order': 2},
            {'fractions': length_cdf, 'cdf': True, 'order': 1},
            {'fractions': number_cdf, 'cdf': True, 'order': 0}]

    for opt in opts:
        asme_e799 = ParticleSizeDistribution(ds=ds, **opt)

        d10 = asme_e799.mean_size(1, 0)
        assert_close(d10, 1459.3725650679328)

        d21 = asme_e799.mean_size(2, 1)
        assert_close(d21, 1857.7888572055529)
        d20 = asme_e799.mean_size(2, 0)
        assert_close(d20, 1646.5740462835831)

        d32 = asme_e799.mean_size(3, 2)
        assert_close(d32, 2269.3210317450453)
        # This one is rounded to 2280 in ASME - weird

        d31 = asme_e799.mean_size(3, 1)
        assert_close(d31, 2053.2703977309357)
        # This one is rounded to 2060 in ASME - weird

        d30 = asme_e799.mean_size(3, 0)
        assert_close(d30, 1832.39665294744)

        d43 = asme_e799.mean_size(4, 3)
        assert_close(d43, 2670.751954612969)
        # The others are, rounded to the nearest 10, correct.
        # There's something weird about the end points of some intermediate values of
        #  D3 and D4. Likely just rounding issues.

        vol_percents_exp = [0.005, 0.021, 0.081, 0.280, 0.837, 2.202, 5.010, 9.687, 15.900, 21.788, 21.826, 15.930, 5.885, 0.547]
        assert vol_percents_exp == [round(i*100, 3) for i in asme_e799.fractions]

        assert_close1d(asme_e799.fractions, fractions)
        assert_close1d(asme_e799.number_fractions, number_fractions)

        # i, i distributions
        d00 = asme_e799.mean_size(0, 0)
        assert_close(d00, 1278.7057976023061)

        d11 = asme_e799.mean_size(1, 1)
        assert_close(d11, 1654.6665309027303)

        d22 = asme_e799.mean_size(2, 2)
        assert_close(d22, 2054.3809583432208)

        d33 = asme_e799.mean_size(3, 3)
        assert_close(d33, 2450.886241250387)

        d44 = asme_e799.mean_size(4, 4)
        assert_close(d44, 2826.0471682278476)

        vssa = asme_e799.vssa
        assert_close(vssa, 0.0026656187302839165)


def test_pdf_lognormal():
    import scipy.stats
    pdf = pdf_lognormal(d=1E-4, d_characteristic=1E-5, s=1.1)
    assert_close(pdf, 405.5420921156425, rtol=1E-12)

    pdf_sp = scipy.stats.lognorm.pdf(x=1E-4/1E-5, s=1.1)/1E-5
    assert_close(pdf_sp, pdf)

    assert 0.0 == pdf_lognormal(d=0, d_characteristic=1E-5, s=1.1)

    # Check we can get down almost to zero
    pdf = pdf_lognormal(d=3.7E-24, d_characteristic=1E-5, s=1.1)
    assert_close(pdf, 4.842842147909424e-301, atol=1e-200)


def test_cdf_lognormal():
    import scipy.stats
    cdf = cdf_lognormal(d=1E-4, d_characteristic=1E-5, s=1.1)
    assert_close(cdf, 0.98183698757981763)

    cdf_sp = scipy.stats.lognorm.cdf(x=1E-4/1E-5, s=1.1)
    assert_close(cdf, cdf_sp)

    assert cdf_lognormal(d=1e300, d_characteristic=1E-5, s=1.1) == 1.0
    assert cdf_lognormal(d=0, d_characteristic=1E-5, s=1.1) == 0.0


def test_pdf_lognormal_basis_integral():
    ans = pdf_lognormal_basis_integral(d=1E-4, d_characteristic=1E-5, s=1.1, n=-2)
    assert_close(ans, 56228306549.263626)

    # Some things:
    ans = pdf_lognormal_basis_integral(d=1E-100, d_characteristic=1E-5, s=1.1, n=-2)
    ans2 = pdf_lognormal_basis_integral(d=1E-120, d_characteristic=1E-5, s=1.1, n=-2)
    assert_close(ans, ans2, rtol=1E-12)

    # Couldn't get the limit for pdf_lognormal_basis_integral when d = 0
    # # with Sympy Or wolfram

@pytest.mark.scipy
@pytest.mark.fuzz
@pytest.mark.slow
def test_pdf_lognormal_basis_integral_fuzz():
    from scipy.integrate import quad

    # The actual integral testing
    analytical_vales = []
    numerical_values = []

    for n in [-3, -2, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]:
        # Errors at -2 (well, prevision loss anyway)
        for d_max in [1e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 6e-2, 7e-2, 8e-2, 1e-1]:
            d_max = d_max/100 # Make d smaller
            analytical = (pdf_lognormal_basis_integral(d_max, d_characteristic=1E-5, s=1.1, n=n)
                          - pdf_lognormal_basis_integral(1e-20, d_characteristic=1E-5, s=1.1, n=n))

            to_int = lambda d : d**n*pdf_lognormal(d, d_characteristic=1E-5, s=1.1)
            points = logspace(log10(d_max/1000), log10(d_max*.999), 40)
            numerical = quad(to_int, 1e-9, d_max, points=points)[0] # points=points
            analytical_vales.append(analytical)
            numerical_values.append(numerical)

    assert_close1d(analytical_vales, numerical_values, rtol=2E-6)


def test_cdf_Gates_Gaudin_Schuhman():
    '''
    d, d_max, n, m = symbols('d, d_max, n, m')
    expr = (d/d_max)**n
    pdf = diff(expr, d)
    '''
    cdf = cdf_Gates_Gaudin_Schuhman(d=2E-4, d_characteristic=1E-3, m=2.3)
    assert_close(cdf, 0.024681354508800397)

    cdf = cdf_Gates_Gaudin_Schuhman(d=1.01e-3, d_characteristic=1E-3, m=2.3)
    assert_close(cdf, 1)


def test_pdf_Gates_Gaudin_Schuhman():
    pdf = pdf_Gates_Gaudin_Schuhman(d=2E-4, d_characteristic=1E-3, m=2.3)
    assert_close(pdf, 283.8355768512045)

    pdf = pdf_Gates_Gaudin_Schuhman(d=2E-3, d_characteristic=1E-3, m=2.3)
    assert_close(pdf, 0)


def test_pdf_Gates_Gaudin_Schuhman_basis_integral():
    ans =  pdf_Gates_Gaudin_Schuhman_basis_integral(d=0, d_characteristic=1e-3, m=2.3, n=5)
    assert_close(ans, 0)

    ans = pdf_Gates_Gaudin_Schuhman_basis_integral(d=1e-3, d_characteristic=1e-3, m=2.3, n=5)
    assert_close(ans, 3.1506849315068495e-16)


@pytest.mark.scipy
@pytest.mark.slow
@pytest.mark.fuzz
def test_pdf_Gates_Gaudin_Schuhman_basis_integral_fuzz():
    from scipy.integrate import quad

    """Note: Test takes 10x longer with the quad/points.
    """

    analytical_vales = []
    numerical_values = []

    for n in [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]:
        # Errors at -2 (well, prevision loss anyway)
        for d_max in [1e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 6e-2, 7e-2, 8e-2, 1e-1]:
            d_max = d_max/100 # d cannot be larger than d_max
            analytical = (pdf_Gates_Gaudin_Schuhman_basis_integral(d_max, 1E-3, 2.3, n)
                          - pdf_Gates_Gaudin_Schuhman_basis_integral(1E-20, 1E-3, 2.3, n))

            to_int = lambda d : d**n*pdf_Gates_Gaudin_Schuhman(d, 1E-3, 2.3)
            numerical = quad(to_int, 1E-20, d_max)[0] # points=points
            analytical_vales.append(analytical)
            numerical_values.append(numerical)
            # The precision here is amazing actually, 1e-14 passes
#            assert_close1d(analytical, numerical, rtol=1E-7)
    assert_close1d(analytical_vales, numerical_values, rtol=1E-7)

def test_cdf_Rosin_Rammler():
    cdf = cdf_Rosin_Rammler(5E-2, 200.0, 2.0)
    assert_close(cdf, 0.3934693402873667)


def test_pdf_Rosin_Rammler():
    '''
    from sympy import *
    d, k, n = symbols('d, k, n')
    model = 1 - exp(-k*d**n)
    print(latex(diff(model, d)))
    '''
    from scipy.integrate import quad

    pdf = pdf_Rosin_Rammler(1E-3, 200.0, 2.0)
    assert_close(pdf, 0.3999200079994667)

    # quad
    to_quad = lambda d: pdf_Rosin_Rammler(d, 200.0, 2.0)
    cdf_int = quad(to_quad, 0, 5e-2)[0]
    cdf_known = cdf_Rosin_Rammler(5E-2, 200, 2)
    assert_close(cdf_int, cdf_known)

    assert_close(1, quad(to_quad, 0, 5)[0])

    assert 0 == pdf_Rosin_Rammler(0, 200, 2)


def test_pdf_Rosin_Rammler_basis_integral():

    ans = pdf_Rosin_Rammler_basis_integral(5E-2, 200.0, 2.0, 3)
    assert_close(ans, -0.00045239898439007338)

    # Test no error
    pdf_Rosin_Rammler_basis_integral(0, 200, 2, 3)

@pytest.mark.slow
@pytest.mark.fuzz
def test_pdf_Rosin_Rammler_basis_integral_fuzz():
    from scipy.integrate import quad
    for n in [1.0, 2.0, 3.0]:
        # Lower d_maxes have
        for d_max in [ 1e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 6e-2, 7e-2, 8e-2, 1e-1]:
            analytical = (pdf_Rosin_Rammler_basis_integral(d_max, 200, 2, n)
                          - pdf_Rosin_Rammler_basis_integral(1E-20, 200, 2, n))

            to_int = lambda d : d**n*pdf_Rosin_Rammler(d, 200, 2)
            points = logspace(log10(d_max/2000), log10(d_max*.999), 30)
            numerical = quad(to_int, 1E-20, d_max, points=points)[0]
            assert_close(analytical, numerical, rtol=1E-5)


def testPSDLognormal_meshes():
    a = PSDLognormal(s=0.5, d_characteristic=5E-6)
    ds_expect = [5.011872336272722e-07, 6.309573444801932e-07, 7.943282347242815e-07, 1e-06]
    ds = a.ds_discrete(d_max=1e-6, method='R10', pts=4)
    assert_close1d(ds_expect, ds)

    ds = a.ds_discrete(d_min=1e-6, method='R10', pts=4)
    assert_close1d(ds, [1e-06, 1.2589254117941672e-06, 1.5848931924611134e-06, 1.9952623149688796e-06])


@pytest.mark.fuzz
@pytest.mark.slow
def test_PSDLognormal_mean_sizes_numerical():
    '''Takes like 1 second. Should not run normally.
    Not how things should be done, just a proof of concept.
    '''
    # ISO standard example, done numerically
    a = PSDLognormal(s=0.5, d_characteristic=5E-6)
    ds = a.ds_discrete(d_max=1, pts=1E5)
    fractions = a.fractions_discrete(ds)

    disc = ParticleSizeDistribution(ds=ds, fractions=fractions, order=3)
    d20 = disc.mean_size(2, 0)
    assert_close(d20, 3.033E-6, rtol=0, atol=1E-9)

    d10 = disc.mean_size(1, 0)
    assert_close(d10, 2.676E-6, rtol=0, atol=1E-9)

    d21 = disc.mean_size(2, 1)
    assert_close(d21, 3.436E-6, rtol=0, atol=1E-9)

    d32 = disc.mean_size(3, 2)
    # Does match, need 6E6 pts to get the last digit to round right
    assert_close(d32, 4.412E-6, rtol=0, atol=1E-9)

    d43 = disc.mean_size(4, 3)
    assert_close(d43, 5.666E-6, rtol=0, atol=1E-9)

    d33 = disc.mean_size(3.0, 3.0)
    assert_close(d33, 5.000E-6, rtol=0, atol=1E-9)

    d00 = disc.mean_size(0.0, 0.0)
    assert_close(d00, 2.362E-6, rtol=0, atol=1E-9)

@pytest.mark.skipif(fluids.numerics.IS_PYPY, reason="numerical issues with adaptive integrator") # Custom integrator can't handle this
@pytest.mark.slow
def test_PSDCustom_mean_sizes_numerical():
    import scipy.stats
    distribution = scipy.stats.lognorm(s=0.5, scale=5E-6)
    disc = PSDCustom(distribution)

    d20 = disc.mean_size(2, 0)
    assert_close(d20, 3.0326532985631672e-06, rtol=5e-7)

    d10 = disc.mean_size(1, 0)
    assert_close(d10, 2.6763071425949508e-06, rtol=1e-6)

    d21 = disc.mean_size(2, 1)
    assert_close(d21, 3.4364463939548618e-06, rtol=1e-7)

    d32 = disc.mean_size(3, 2)
    assert_close(d32, 4.4124845129229773e-06, rtol=1E-7)

    d43 = disc.mean_size(4, 3)
    assert_close(d43, 5.6657422653341318e-06, rtol=1E-3)


def test_PSDLognormal_mean_sizes_analytical():
    disc = PSDLognormal(s=0.5, d_characteristic=5E-6)

    d20 = disc.mean_size(2, 0)
    assert_close(d20, 3.033E-6, rtol=0, atol=1E-9)
    assert_close(d20, 3.0326532985631672e-06, rtol=1E-12)
    assert_close(d20, disc.mean_size_ISO(2, 0), rtol=1E-12)


    d10 = disc.mean_size(1, 0)
    assert_close(d10, 2.676E-6, rtol=0, atol=1E-9)
    assert_close(d10, 2.6763071425949508e-06, rtol=1E-12)
    assert_close(d10, disc.mean_size_ISO(1, 0), rtol=1E-12)

    d21 = disc.mean_size(2, 1)
    assert_close(d21, 3.436E-6, rtol=0, atol=1E-9)
    assert_close(d21, 3.4364463939548618e-06, rtol=1E-12)
    assert_close(d21, disc.mean_size_ISO(1, 1), rtol=1E-12)


    d32 = disc.mean_size(3, 2)
    assert_close(d32, 4.412E-6, rtol=0, atol=1E-9)
    assert_close(d32, 4.4124845129229773e-06, rtol=1E-12)
    assert_close(d32, disc.mean_size_ISO(1, 2), rtol=1E-12)

    d43 = disc.mean_size(4, 3)
    assert_close(d43, 5.666E-6, rtol=0, atol=1E-9)
    assert_close(d43, 5.6657422653341318e-06, rtol=1E-12)
    assert_close(d43, disc.mean_size_ISO(1, 3), rtol=1E-12)

    assert_close(disc.vssa, 1359778.1436801916)

    # There guys - need more work
    d33 = disc.mean_size(3.0, 3.0)
    assert_close(d33, 5.000E-6, rtol=0, atol=1E-6)
#
    d00 = disc.mean_size(0.0, 0.0)
    assert_close(d00, 2.362E-6, rtol=1e-4)

def test_PSDLognormal_ds_discrete():
    ds_discrete_expect = [2.4920844782646124e-07, 5.870554386661556e-07, 1.3829149496067687e-06, 3.2577055451375563e-06, 7.674112874286059e-06, 1.8077756749742233e-05, 4.258541598963051e-05, 0.0001003176268004454]
    dist = PSDLognormal(s=0.5, d_characteristic=5E-6)
    # Test the defaults
    assert_close1d(dist.ds_discrete(pts=8), ds_discrete_expect, rtol=1e-4)

    ds_discrete_expect = [1e-07, 1.389495494373139e-07, 1.9306977288832497e-07, 2.6826957952797275e-07, 3.727593720314938e-07, 5.179474679231213e-07, 7.196856730011514e-07, 1e-06]
    # Test end and minimum points
    assert_close1d(dist.ds_discrete(d_min=1e-7, d_max=1e-6, pts=8), ds_discrete_expect, rtol=1e-12)


def test_PSDLognormal_ds_discrete():
    # Test the cdf discrete
    dist = PSDLognormal(s=0.5, d_characteristic=5E-6)
    ds = dist.ds_discrete(d_min=1e-7, d_max=1e-6, pts=8)
    ans = dist.fractions_discrete(ds)
    fractions_expect = [2.55351295663786e-15, 3.831379657981415e-13, 3.762157252396037e-11, 2.41392961175535e-09, 1.01281244724305e-07, 2.7813750147487326e-06, 5.004382447515443e-05, 0.00059054208024234]
    assert_close1d(fractions_expect, ans, rtol=1e-3)


def test_PSDLognormal_dn():
    disc = PSDLognormal(s=0.5, d_characteristic=5E-6)

    # Test input of 1
    ans = disc.dn(1)
    # The answer can vary quite a lot near the end, so it is safest just to
    # compare with the reverse, plugging it back to cdf
    assert_close(disc.cdf(ans), 1, rtol=1E-12)
#    assert_close(ans, 0.0002964902595794474)

    # Test zero input
    assert_close(disc.dn(0), 0)

    # Test 50% input
    ans = disc.dn(.5)
    assert_close(ans,  5.0e-06, rtol=1E-6)

    with pytest.raises(Exception):
        disc.dn(1.5)
    with pytest.raises(Exception):
        disc.dn(-.5)

    # Other orders of n - there is no comparison data for this yet!!
    assert_close(disc.pdf(1E-5), disc.pdf(1E-5, 3))
    assert_close(disc.pdf(1E-5, 2), 13468.122877854335)
    assert_close(disc.pdf(1E-5, 1), 4628.2482296943508)
    assert_close(disc.pdf(1E-5, 0), 1238.6613794833427)

    # Some really large s tests - found some issues with this
    dist = PSDLognormal(s=4, d_characteristic=5E-6)
    assert_close(dist.dn(1e-15), 8.220922763476676e-20, rtol=1e-1)
    assert_close(dist.dn(.99999999), 28055.285560763594)

    assert_close(dist.dn(1e-9), 1.904197766691136e-16, rtol=1e-4)
    assert_close(dist.dn(1-1e-9), 131288.88851649483, rtol=1e-4)



def test_PSDLognormal_dn_order_0_1_2():
    '''Simple point to test where the order of n should be 0

    Yes, the integrals need this many points (which makes them slow) to get
    the right accuracy. They've been tested and reduced already quite a bit.
    '''
    from scipy.integrate import quad
    # test 2, 0 -> 2, 0
    disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
    to_int = lambda d: d**2*disc.pdf(d=d, n=0)
    points  = [5E-6*i for i in logspace(log10(.1), log10(50), 8)]

    ans_numerical = (quad(to_int, 1E-7, 5E-3, points=points)[0])**0.5
    ans_analytical = 3.0326532985631672e-06
    # The integral is able to give over to decimals!
    assert_close(ans_numerical, ans_analytical, rtol=1E-10)

    # test 2, 1 -> 1, 1 integrated pdf

    to_int = lambda d: d*disc.pdf(d=d, n=1)
    ans_numerical = (quad(to_int, 1E-7, 5E-3, points=points)[0])**1
    ans_analytical = 3.4364463939548618e-06
    assert_close(ans_numerical, ans_analytical, rtol=1E-10)

    # test 3, 2 -> 1, 2 integrated pdf

    to_int = lambda d: d*disc.pdf(d=d, n=2)
    ans_numerical = (quad(to_int, 1E-7, 5E-3, points=points)[0])**1
    ans_analytical = 4.4124845129229773e-06
    assert_close(ans_numerical, ans_analytical, rtol=1E-8)


def test_PSDLognormal_cdf_orders():
    # Test cdf of different orders a bunch
    disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
    # 16 x 4 = 64 points
    # had 1e-7 here too as a diameter but too many numerical issues, too sensitive to rounding
    # errors
    ds = [2E-6, 3E-6, 4E-6, 5E-6, 6E-6, 7E-6, 1E-5, 2E-5, 3E-5, 5E-5, 7E-5, 1E-4, 2E-4, 4E-4, 1E-3]
    ans_expect = [[ 0.36972511868508068, 0.68379899882263917, 0.8539928088656249, 0.93319279873114203, 0.96888427729983861, 0.98510775165387254, 0.99805096305713792, 0.9999903391682271, 0.99999981474719135, 0.99999999948654394, 0.99999999999391231, 0.99999999999996592, 1.0, 1.0, 1.0],
                  [ 0.20254040832522924, 0.49136307673913149, 0.71011232639847854, 0.84134474606854293, 0.91381737643345484, 0.95283088619207579, 0.99149043874391107, 0.99991921875653167, 0.99999771392273817, 0.99999998959747816, 0.99999999982864851, 0.99999999999863987, 1.0, 1.0, 1.0000000000000002],
                  [ 0.091334595732478097, 0.30095658738958564, 0.52141804648990697, 0.69146246127401301, 0.80638264936531323, 0.87959096325267294, 0.9703723506333426, 0.999467162897961, 0.99997782059383122, 0.99999983475152954, 0.99999999622288382, 0.99999999995749711, 0.99999999999999833, 1.0000000000000002, 1.0000000000000002],
                  [ 0.033432418408916864, 0.15347299656473007, 0.3276949357115424, 0.5, 0.64231108623683952, 0.74950869138681098, 0.91717148099830148, 0.99721938213769046, 0.99983050191355338, 0.99999793935660408, 0.99999993474010451, 0.99999999896020164, 0.99999999999991951, 1.0, 1.0]]

    calc = []
    for n in range(0, 4):
        calc.append([disc.cdf(i, n=n) for i in ds])

    assert_close2d(ans_expect, calc, rtol=1E-9)


def test_PSDLognormal_cdf_vs_pdf():
    from scipy.integrate import quad

    # test PDF against CDF

    disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
    ans_calc = []
    ans_expect = []
    for i in range(5):
        # Pick a random start
        start = uniform(0, 1)
        end = uniform(start, 1)
        d_start = disc.dn(start)
        d_end = disc.dn(end)

        delta = disc.cdf(d_end) - disc.cdf(d_start)
        delta_numerical = quad(disc.pdf, d_start, d_end)[0]
        ans_calc.append(delta_numerical)
        ans_expect.append(delta)
    assert_close1d(ans_calc, ans_expect)

def test_PSD_lognormal_truncated():
    psd = PSDLognormal(s=0.5, d_characteristic=5E-6, d_max=1e-5, d_min=1e-6, order=3)
    assert_close(psd.dn(1), 1e-5)
    assert_close(psd.dn(0), 1e-6)
    assert_close(psd.cdf(psd.dn(0.5)), 0.5) # No longer at d_characteristic

    # Check the cdf limits of the truncated distribution
    ds = [1e-8, 1e-7, 1e-6, 2e-6, 5e-6, 9e-6, 1e-5, 1e-4, 1e-3]
    ans = psd.fractions_discrete(ds)
    ans_expect = [0.0, 0.0, 0.0, 0.03577517221380477, 0.5090598176028703, 0.41473614196545805, 0.04042886821786684, 0.0, 0.0]
    assert sum(ans) == 1
    assert_close1d(ans, ans_expect)

    pdfs = [psd.pdf(i) for i in ds]
    pdfs_expect = [0.0, 0.0, 4896.6230234795203, 81190.803665720552, 174110.24040947447, 48468.576095204902, 33302.599459012476, 0.0, 0.0]
    assert_close1d(pdfs, pdfs_expect)

    # Check the mean_size calculations - this is right
    assert_close(psd.mean_size(3, 2), 4.1817574249337556e-06)

@pytest.mark.fuzz
@pytest.mark.slow
def test_PSD_lognormal_truncated_mean_size():
    from scipy.integrate import quad

    psd = PSDLognormal(s=0.5, d_characteristic=5E-6, d_max=1e-5, d_min=1e-6, order=3)
    def psd_mean_size_numeric_truncated(psd, p, q):
        pow1 = q - psd.order
        to_int = lambda d : d**pow1*psd.pdf(d)
        denominator = quad(to_int, psd.d_min, psd.d_max)[0]
    #     denominator = self._pdf_basis_integral_definite(d_min=self.d_minimum, d_max=self.d_excessive, n=pow1)
        root_power = p - q
        pow3 = p - psd.order
    #     numerator = self._pdf_basis_integral_definite(d_min=self.d_minimum, d_max=self.d_excessive, n=pow3)
        to_int = lambda d : d**pow3*psd.pdf(d)
        numerator = quad(to_int, psd.d_min, psd.d_max)[0]
        return (numerator/denominator)**(1.0/(root_power))

    # It really works!
    for p in range(-3, 4):
        for q in range(-3, 4):
            if p != q:
                assert_close(psd.mean_size(p, q), psd_mean_size_numeric_truncated(psd, p, q))


@pytest.mark.slow
def test_PSD_PSDlognormal_area_length_count():
    '''Compare the average difference between the analytical values for a
    lognormal distribution with those of a discretized form of it.Note simply
    adding more points did not tend to help reduce the error.
    For the particle count case, 700 points has the lowest error.

    fractions_discrete is still the slowest part.
    '''
    import numpy as np
    dist = PSDLognormal(s=0.5, d_characteristic=5E-6)

    ds = dist.ds_discrete(pts=700, d_min=2E-7, d_max=1E-4)
    fractions = dist.fractions_discrete(ds)
    psd = ParticleSizeDistribution(ds=ds, fractions=fractions, order=3)
    # Trim a few at the start and end
    ans = np.array(psd.number_fractions)[5:-5]/np.array(dist.fractions_discrete(ds, n=0))[5:-5]
    avg_err = sum(np.abs(ans - 1.0))/len(ans)
    assert 5E-4 > avg_err

    ans = np.array(psd.length_fractions)[5:-5]/np.array(dist.fractions_discrete(ds, n=1))[5:-5]
    avg_err = sum(np.abs(ans - 1.0))/len(ans)
    assert 1E-4 > avg_err

    ans = np.array(psd.area_fractions)[5:-5]/np.array(dist.fractions_discrete(ds, n=2))[5:-5]
    avg_err = sum(np.abs(ans - 1.0))/len(ans)
    assert 1E-4 > avg_err

def test_PSDInterpolated_pchip():
    '''For this test, ds is the same length as fractions, and we begin the series with the zero point.

    Half the test is spend on the `dn` solver tests, and the other half is just
    that these tests are slow.
    '''
    import numpy as np
    ds = [360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532]
    ds = np.array(ds)/1e6
    numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
    dist = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
    psd = PSDInterpolated(dist.Dis, dist.fractions)

    assert len(psd.fractions) == len(psd.ds)
    assert len(psd.fractions) == 15
    # test fractions_discrete vs input
    assert_close1d(psd.fractions_discrete(ds), dist.fractions)

    # test cdf_discrete
    assert_close1d(psd.cdf_discrete(ds), psd.fraction_cdf[1:])

    # test that dn solves backwards for exactly the right value - slow
    cumulative_fractions = np.cumsum(dist.fractions)
    ds_for_fractions = np.array([psd.dn(f) for f in cumulative_fractions])
    assert_close1d(ds, ds_for_fractions)

    # test _pdf
    test_pdf = psd._pdf(1e-3)
    assert_close(test_pdf, 106.28284463095554)

    # test _cdf
    test_cdf = psd._cdf(1e-3)
    assert_close(test_cdf, 0.02278897476363087)

    # test _pdf_basis_integral
    test_int = psd._pdf_basis_integral(1e-3, 2)
    assert_close(test_int, 1.509707233427664e-08)

    # Check that the 0 point is created and the points and fractions are the same
    assert_close1d(psd.ds, [0] + ds.tolist())
    assert_close1d(psd.fractions, [0] + dist.fractions)

    # test mean_size
    test_mean = psd.mean_size(3, 2)
    assert_close(test_mean, 0.002211577679574544)


def test_PSDInterpolated_discrete_range_pts():
    import numpy as np
    ds = [360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532]
    ds = [i*1e-6 for i in ds]
    numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
    psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
    # test fractions_discrete vs input
    assert_close1d(psd.fractions_discrete(ds), psd.fractions)

    # test cdf_discrete
    assert_close1d(psd.cdf_discrete(ds), psd.interpolated.fraction_cdf[1:])
    # test that dn solves backwards for exactly the right value
    cumulative_fractions = np.cumsum(psd.fractions)
    ds_for_fractions = np.array([psd.dn(f) for f in cumulative_fractions])
    assert_close1d(ds, ds_for_fractions)


    # test _pdf
    test_pdf = psd.pdf(1e-3)
    assert_close(test_pdf, 106.28284463095554)

    # test _cdf
    test_cdf = psd.cdf(1e-3)
    assert_close(test_cdf, 0.02278897476363087)

    # test _pdf_basis_integral
    test_int = psd._pdf_basis_integral(1e-3, 2)
    assert_close(test_int, 1.509707233427664e-08)

    assert not isclose(psd.mean_size(3, 2), psd.interpolated.mean_size(3, 2))

def test_PSDInterpolated_discrete():
    import numpy as np
    ds = 1E-6*np.array([240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532])
    numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
    psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)

    dn_05 = psd.dn(0.5)
    assert_close(dn_05, 0.002526452452632658)

    assert_close(psd.cdf(dn_05), 0.5, rtol=1e-4)
    assert_close(psd.cdf(0.002, 4), 0.18010145594167873, rtol=5e-3)
    assert_close(psd.pdf(0.002, 2), 466.42761174380007, rtol=5e-3)

    assert_close(psd.pdf(0.002526452452632658), 408.4774528377241, rtol=1e-2)

    assert_close(psd.mean_size(1, 0), psd.interpolated.mean_size(1, 0), rtol=0.05)
    assert_close(psd.cdf(100), 1)

    assert_close(psd.cdf(psd.dn(1)), 1)


def test_psd_spacing():
    ans_log = psd_spacing(d_min=1, d_max=10, pts=4, method='logarithmic')
    ans_log_expect = [1.0, 2.154434690031884, 4.641588833612778, 10.0]
    assert_close1d(ans_log, ans_log_expect)

    ans_lin = psd_spacing(d_min=0, d_max=10, pts=4, method='linear')
    ans_lin_expect = [0.0, 3.3333333333333335, 6.666666666666667, 10.0]
    assert_close1d(ans_lin, ans_lin_expect)

    with pytest.raises(Exception):
        psd_spacing(d_min=0, d_max=10, pts=8, method='R5')

    with pytest.raises(Exception):
        psd_spacing(d_min=5e-5, d_max=5e-4, method='BADMETHOD')

    # This example from an iso standard, ISO 9276-2 2014
    ans_R5 = psd_spacing(d_max=25, pts=8, method='R5')
    ans_R5_expect = [0.9952679263837426, 1.5773933612004825, 2.499999999999999, 3.9622329811527823, 6.279716078773949, 9.95267926383743, 15.77393361200483, 25]
    assert_close1d(ans_R5, ans_R5_expect)
    ans_R5_reversed = psd_spacing(d_min=0.9952679263837426, pts=8, method='R5')
    assert_close1d(ans_R5_reversed, ans_R5_expect)

    ans_R5_float = psd_spacing(d_max=25, pts=8, method='R5.00000001')
    assert_close1d(ans_R5_float, ans_R5_expect)

    ans = psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1')
    ans_expect = [5e-05, 5.3e-05, 5.6e-05, 6.3e-05, 7.1e-05, 7.5e-05, 8e-05, 9e-05, 0.0001, 0.000106, 0.000112, 0.000125, 0.00014, 0.00015, 0.00016, 0.00018, 0.0002, 0.000212, 0.000224, 0.00025, 0.00028, 0.0003, 0.000315, 0.000355, 0.0004, 0.000425, 0.00045, 0.0005, 0.00056, 0.0006, 0.00063, 0.00071, 0.0008, 0.00085, 0.0009, 0.001]
    assert_close1d(ans, ans_expect)
    assert [] == psd_spacing(d_min=0, d_max=1e-6, method='ISO 3310-1')
    assert [] == psd_spacing(d_min=1, d_max=1e2, method='ISO 3310-1')

    assert psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1 R20')
    assert psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1 R20/3')
    assert psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1 R40/3')
    assert psd_spacing(d_min=0e-5, d_max=1e-3, method='ISO 3310-1 R10')

    ds = psd_spacing(d_min=1e-5, d_max=1e-4, method='ASTM E11')
    ds_expect = [2e-05, 2.5e-05, 3.2e-05, 3.8e-05, 4.5e-05, 5.3e-05, 6.3e-05, 7.5e-05, 9e-05]
    assert_close1d(ds, ds_expect)


def test_example_integer_power_issue():
    diameters = [2, 5, 10, 15, 20, 30, 40, 50]  # Particle diameters in micrometers (µm)
    volume_percentages = [5, 10, 20, 25, 20, 10, 5, 5]  # Volume % in each size class
    cement_psd = ParticleSizeDistribution(ds=diameters, fractions=volume_percentages, order=3)
    val = cement_psd.pdf(4.61538459884405e-08, n=2)
    assert val is not None

def test_PSD_numpy_input():
    import numpy as np
    ds = np.array([240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532])
    numbers = np.array([65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1])

    psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)

    assert type(psd.mean_size(2, 1)) is float
    assert type(psd.mean_size(1, 0)) is float
    assert type(psd.mean_size(3, 2)) is float
    assert type(psd.mean_size(4, 3)) is float

    assert type(psd.dn(0.1)) is float
    assert type(psd.dn(0.9)) is float

    assert type(psd.pdf(1000)) is float
    assert type(psd.cdf(5000)) is float

    psd = PSDLognormal(s=0.5, d_characteristic=5E-6)

    assert type(psd.pdf(1e-6)) is float
    assert type(psd.cdf(7e-6)) is float
    assert type(psd.dn(0.1)) is float
    assert type(psd.mean_size(3, 2)) is float

    ds_discrete = psd.ds_discrete(pts=8)
    fractions_discrete = psd.fractions_discrete(ds_discrete)
    psd_discrete = ParticleSizeDistribution(ds=ds_discrete, fractions=fractions_discrete, order=3)

    assert type(psd_discrete.mean_size(3, 2)) is float

    assert type(psd.vssa) is float
    assert type(psd.dn(.9) - psd.dn(0.1)) is float
    assert type((psd.dn(.9) - psd.dn(0.1))/psd.dn(0.5)) is float
    assert type(psd.dn(0.75)/psd.dn(0.25)) is float
    assert type(psd.dn(0.9)/psd.dn(0.1)) is float