1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2018 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
from math import log10
import pytest
import fluids
from fluids.numerics import assert_close, assert_close1d, assert_close2d, isclose, logspace
from fluids.particle_size_distribution import (
ISO_3310_1_R10,
ISO_3310_1_R20,
ISO_3310_1_R20_3,
ISO_3310_1_R40_3,
ASTM_E11_sieves,
ISO_3310_1_sieves,
ParticleSizeDistribution,
PSDCustom,
PSDInterpolated,
PSDLognormal,
cdf_Gates_Gaudin_Schuhman,
cdf_lognormal,
cdf_Rosin_Rammler,
pdf_Gates_Gaudin_Schuhman,
pdf_Gates_Gaudin_Schuhman_basis_integral,
pdf_lognormal,
pdf_lognormal_basis_integral,
pdf_Rosin_Rammler,
pdf_Rosin_Rammler_basis_integral,
psd_spacing,
)
try:
from random import uniform
except:
pass
def test_ASTM_E11_sieves():
sieves = ASTM_E11_sieves.values()
tot = sum([i.d_wire for i in sieves])
assert_close(tot, 0.105963384)
tot = sum([i.opening for i in sieves])
assert_close(tot, 0.9876439999999999)
assert len(ASTM_E11_sieves) == 56
# Test but do not validate these properties
tot = 0.0
for attr in ['Y_variation_avg', 'X_variation_max', 'max_opening', 'd_wire', 'd_wire_min', 'd_wire_max', 'opening', 'opening_inch']:
tot += sum(getattr(i, attr) for i in sieves)
def test_ISO_3310_2_sieves():
sieves = ISO_3310_1_sieves.values()
tot = sum([i.d_wire for i in sieves])
assert_close(tot, 0.17564599999999997)
tot = sum([i.opening for i in sieves])
assert_close(tot, 1.5205579999999994)
assert len(ISO_3310_1_sieves) == 99
# Test but do not validate these properties
tot = 0.0
for attr in ['Y_variation_avg', 'X_variation_max', 'd_wire', 'd_wire_min', 'd_wire_max', 'opening']:
tot += sum(getattr(i, attr) for i in sieves)
for l in [ISO_3310_1_R20_3, ISO_3310_1_R20, ISO_3310_1_R10, ISO_3310_1_R40_3]:
for i in l:
assert i.designation in ISO_3310_1_sieves
def test_ParticleSizeDistribution_basic():
ds = [240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532]
numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
number_fractions = [0.010640039286298903, 0.01947945653953184, 0.03797675560648224, 0.06711409395973154, 0.102962841708954, 0.13897528237027337, 0.16205598297593715, 0.160582746767065, 0.13504665247994763, 0.09477819610410869, 0.048616794892781146, 0.01816991324275659, 0.0034375511540350305, 0.0001636929120969062]
length_fractions = [0.0022265080273913248, 0.005405749400984079, 0.013173675010801534, 0.02909808308708846, 0.05576732372469186, 0.09403390879219536, 0.1370246122004729, 0.16966553692650058, 0.17831420382670332, 0.15641421494054603, 0.10028800800464328, 0.046849963047687335, 0.011078803825079166, 0.0006594091852147985]
area_fractions = [0.0003643458522227456, 0.0011833425086503686, 0.0036047198267710797, 0.009951607879295004, 0.023826910138492176, 0.05018962198499494, 0.09139246506396961, 0.1414069073893575, 0.18572285033413602, 0.20362023102799823, 0.16318760564859225, 0.09528884410476045, 0.028165197280747324, 0.0020953509600122053]
fractions = [4.8560356399310335e-05, 0.00021291794698947167, 0.0008107432330218852, 0.0027975134942445257, 0.00836789808490677, 0.02201901107895143, 0.05010399231412809, 0.0968727835386488, 0.15899879607747244, 0.2178784903712532, 0.21825921197532888, 0.159302671180342, 0.05885464261922434, 0.0054727677290887945]
fraction_cdf = [4.856035639931034e-05, 0.0002614783033887821, 0.0010722215364106676, 0.003869735030655194, 0.012237633115561966, 0.0342566441945134, 0.0843606365086415, 0.18123342004729032, 0.34023221612476284, 0.5581107064960161, 0.7763699184713451, 0.9356725896516871, 0.9945272322709114, 1.0000000000000002]
area_cdf = [0.00036434585222274563, 0.0015476883608731143, 0.005152408187644195, 0.015104016066939202, 0.038930926205431385, 0.08912054819042634, 0.18051301325439598, 0.3219199206437535, 0.5076427709778896, 0.7112630020058879, 0.8744506076544801, 0.9697394517592406, 0.9979046490399879, 1.0]
length_cdf = [0.0022265080273913248, 0.007632257428375404, 0.020805932439176937, 0.0499040155262654, 0.10567133925095726, 0.1997052480431526, 0.3367298602436255, 0.506395397170126, 0.6847096009968294, 0.8411238159373755, 0.9414118239420188, 0.9882617869897061, 0.9993405908147853, 1.0000000000000002]
number_cdf = [0.010640039286298902, 0.030119495825830737, 0.06809625143231296, 0.13521034539204452, 0.2381731871009985, 0.3771484694712718, 0.5392044524472088, 0.6997871992142738, 0.8348338516942214, 0.9296120477983301, 0.9782288426911112, 0.9963987559338677, 0.9998363070879027, 0.9999999999999997]
opts = [
{'fractions': numbers, 'cdf': False, 'order': 0},
{'fractions': number_fractions, 'cdf': False, 'order': 0},
{'fractions': length_fractions, 'cdf': False, 'order': 1},
{'fractions': area_fractions, 'cdf': False, 'order': 2},
{'fractions': fractions, 'cdf': False, 'order': 3},
{'fractions': fraction_cdf, 'cdf': True, 'order': 3},
{'fractions': area_cdf, 'cdf': True, 'order': 2},
{'fractions': length_cdf, 'cdf': True, 'order': 1},
{'fractions': number_cdf, 'cdf': True, 'order': 0}]
for opt in opts:
asme_e799 = ParticleSizeDistribution(ds=ds, **opt)
d10 = asme_e799.mean_size(1, 0)
assert_close(d10, 1459.3725650679328)
d21 = asme_e799.mean_size(2, 1)
assert_close(d21, 1857.7888572055529)
d20 = asme_e799.mean_size(2, 0)
assert_close(d20, 1646.5740462835831)
d32 = asme_e799.mean_size(3, 2)
assert_close(d32, 2269.3210317450453)
# This one is rounded to 2280 in ASME - weird
d31 = asme_e799.mean_size(3, 1)
assert_close(d31, 2053.2703977309357)
# This one is rounded to 2060 in ASME - weird
d30 = asme_e799.mean_size(3, 0)
assert_close(d30, 1832.39665294744)
d43 = asme_e799.mean_size(4, 3)
assert_close(d43, 2670.751954612969)
# The others are, rounded to the nearest 10, correct.
# There's something weird about the end points of some intermediate values of
# D3 and D4. Likely just rounding issues.
vol_percents_exp = [0.005, 0.021, 0.081, 0.280, 0.837, 2.202, 5.010, 9.687, 15.900, 21.788, 21.826, 15.930, 5.885, 0.547]
assert vol_percents_exp == [round(i*100, 3) for i in asme_e799.fractions]
assert_close1d(asme_e799.fractions, fractions)
assert_close1d(asme_e799.number_fractions, number_fractions)
# i, i distributions
d00 = asme_e799.mean_size(0, 0)
assert_close(d00, 1278.7057976023061)
d11 = asme_e799.mean_size(1, 1)
assert_close(d11, 1654.6665309027303)
d22 = asme_e799.mean_size(2, 2)
assert_close(d22, 2054.3809583432208)
d33 = asme_e799.mean_size(3, 3)
assert_close(d33, 2450.886241250387)
d44 = asme_e799.mean_size(4, 4)
assert_close(d44, 2826.0471682278476)
vssa = asme_e799.vssa
assert_close(vssa, 0.0026656187302839165)
def test_pdf_lognormal():
import scipy.stats
pdf = pdf_lognormal(d=1E-4, d_characteristic=1E-5, s=1.1)
assert_close(pdf, 405.5420921156425, rtol=1E-12)
pdf_sp = scipy.stats.lognorm.pdf(x=1E-4/1E-5, s=1.1)/1E-5
assert_close(pdf_sp, pdf)
assert 0.0 == pdf_lognormal(d=0, d_characteristic=1E-5, s=1.1)
# Check we can get down almost to zero
pdf = pdf_lognormal(d=3.7E-24, d_characteristic=1E-5, s=1.1)
assert_close(pdf, 4.842842147909424e-301, atol=1e-200)
def test_cdf_lognormal():
import scipy.stats
cdf = cdf_lognormal(d=1E-4, d_characteristic=1E-5, s=1.1)
assert_close(cdf, 0.98183698757981763)
cdf_sp = scipy.stats.lognorm.cdf(x=1E-4/1E-5, s=1.1)
assert_close(cdf, cdf_sp)
assert cdf_lognormal(d=1e300, d_characteristic=1E-5, s=1.1) == 1.0
assert cdf_lognormal(d=0, d_characteristic=1E-5, s=1.1) == 0.0
def test_pdf_lognormal_basis_integral():
ans = pdf_lognormal_basis_integral(d=1E-4, d_characteristic=1E-5, s=1.1, n=-2)
assert_close(ans, 56228306549.263626)
# Some things:
ans = pdf_lognormal_basis_integral(d=1E-100, d_characteristic=1E-5, s=1.1, n=-2)
ans2 = pdf_lognormal_basis_integral(d=1E-120, d_characteristic=1E-5, s=1.1, n=-2)
assert_close(ans, ans2, rtol=1E-12)
# Couldn't get the limit for pdf_lognormal_basis_integral when d = 0
# # with Sympy Or wolfram
@pytest.mark.scipy
@pytest.mark.fuzz
@pytest.mark.slow
def test_pdf_lognormal_basis_integral_fuzz():
from scipy.integrate import quad
# The actual integral testing
analytical_vales = []
numerical_values = []
for n in [-3, -2, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]:
# Errors at -2 (well, prevision loss anyway)
for d_max in [1e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 6e-2, 7e-2, 8e-2, 1e-1]:
d_max = d_max/100 # Make d smaller
analytical = (pdf_lognormal_basis_integral(d_max, d_characteristic=1E-5, s=1.1, n=n)
- pdf_lognormal_basis_integral(1e-20, d_characteristic=1E-5, s=1.1, n=n))
to_int = lambda d : d**n*pdf_lognormal(d, d_characteristic=1E-5, s=1.1)
points = logspace(log10(d_max/1000), log10(d_max*.999), 40)
numerical = quad(to_int, 1e-9, d_max, points=points)[0] # points=points
analytical_vales.append(analytical)
numerical_values.append(numerical)
assert_close1d(analytical_vales, numerical_values, rtol=2E-6)
def test_cdf_Gates_Gaudin_Schuhman():
'''
d, d_max, n, m = symbols('d, d_max, n, m')
expr = (d/d_max)**n
pdf = diff(expr, d)
'''
cdf = cdf_Gates_Gaudin_Schuhman(d=2E-4, d_characteristic=1E-3, m=2.3)
assert_close(cdf, 0.024681354508800397)
cdf = cdf_Gates_Gaudin_Schuhman(d=1.01e-3, d_characteristic=1E-3, m=2.3)
assert_close(cdf, 1)
def test_pdf_Gates_Gaudin_Schuhman():
pdf = pdf_Gates_Gaudin_Schuhman(d=2E-4, d_characteristic=1E-3, m=2.3)
assert_close(pdf, 283.8355768512045)
pdf = pdf_Gates_Gaudin_Schuhman(d=2E-3, d_characteristic=1E-3, m=2.3)
assert_close(pdf, 0)
def test_pdf_Gates_Gaudin_Schuhman_basis_integral():
ans = pdf_Gates_Gaudin_Schuhman_basis_integral(d=0, d_characteristic=1e-3, m=2.3, n=5)
assert_close(ans, 0)
ans = pdf_Gates_Gaudin_Schuhman_basis_integral(d=1e-3, d_characteristic=1e-3, m=2.3, n=5)
assert_close(ans, 3.1506849315068495e-16)
@pytest.mark.scipy
@pytest.mark.slow
@pytest.mark.fuzz
def test_pdf_Gates_Gaudin_Schuhman_basis_integral_fuzz():
from scipy.integrate import quad
"""Note: Test takes 10x longer with the quad/points.
"""
analytical_vales = []
numerical_values = []
for n in [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]:
# Errors at -2 (well, prevision loss anyway)
for d_max in [1e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 6e-2, 7e-2, 8e-2, 1e-1]:
d_max = d_max/100 # d cannot be larger than d_max
analytical = (pdf_Gates_Gaudin_Schuhman_basis_integral(d_max, 1E-3, 2.3, n)
- pdf_Gates_Gaudin_Schuhman_basis_integral(1E-20, 1E-3, 2.3, n))
to_int = lambda d : d**n*pdf_Gates_Gaudin_Schuhman(d, 1E-3, 2.3)
numerical = quad(to_int, 1E-20, d_max)[0] # points=points
analytical_vales.append(analytical)
numerical_values.append(numerical)
# The precision here is amazing actually, 1e-14 passes
# assert_close1d(analytical, numerical, rtol=1E-7)
assert_close1d(analytical_vales, numerical_values, rtol=1E-7)
def test_cdf_Rosin_Rammler():
cdf = cdf_Rosin_Rammler(5E-2, 200.0, 2.0)
assert_close(cdf, 0.3934693402873667)
def test_pdf_Rosin_Rammler():
'''
from sympy import *
d, k, n = symbols('d, k, n')
model = 1 - exp(-k*d**n)
print(latex(diff(model, d)))
'''
from scipy.integrate import quad
pdf = pdf_Rosin_Rammler(1E-3, 200.0, 2.0)
assert_close(pdf, 0.3999200079994667)
# quad
to_quad = lambda d: pdf_Rosin_Rammler(d, 200.0, 2.0)
cdf_int = quad(to_quad, 0, 5e-2)[0]
cdf_known = cdf_Rosin_Rammler(5E-2, 200, 2)
assert_close(cdf_int, cdf_known)
assert_close(1, quad(to_quad, 0, 5)[0])
assert 0 == pdf_Rosin_Rammler(0, 200, 2)
def test_pdf_Rosin_Rammler_basis_integral():
ans = pdf_Rosin_Rammler_basis_integral(5E-2, 200.0, 2.0, 3)
assert_close(ans, -0.00045239898439007338)
# Test no error
pdf_Rosin_Rammler_basis_integral(0, 200, 2, 3)
@pytest.mark.slow
@pytest.mark.fuzz
def test_pdf_Rosin_Rammler_basis_integral_fuzz():
from scipy.integrate import quad
for n in [1.0, 2.0, 3.0]:
# Lower d_maxes have
for d_max in [ 1e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 6e-2, 7e-2, 8e-2, 1e-1]:
analytical = (pdf_Rosin_Rammler_basis_integral(d_max, 200, 2, n)
- pdf_Rosin_Rammler_basis_integral(1E-20, 200, 2, n))
to_int = lambda d : d**n*pdf_Rosin_Rammler(d, 200, 2)
points = logspace(log10(d_max/2000), log10(d_max*.999), 30)
numerical = quad(to_int, 1E-20, d_max, points=points)[0]
assert_close(analytical, numerical, rtol=1E-5)
def testPSDLognormal_meshes():
a = PSDLognormal(s=0.5, d_characteristic=5E-6)
ds_expect = [5.011872336272722e-07, 6.309573444801932e-07, 7.943282347242815e-07, 1e-06]
ds = a.ds_discrete(d_max=1e-6, method='R10', pts=4)
assert_close1d(ds_expect, ds)
ds = a.ds_discrete(d_min=1e-6, method='R10', pts=4)
assert_close1d(ds, [1e-06, 1.2589254117941672e-06, 1.5848931924611134e-06, 1.9952623149688796e-06])
@pytest.mark.fuzz
@pytest.mark.slow
def test_PSDLognormal_mean_sizes_numerical():
'''Takes like 1 second. Should not run normally.
Not how things should be done, just a proof of concept.
'''
# ISO standard example, done numerically
a = PSDLognormal(s=0.5, d_characteristic=5E-6)
ds = a.ds_discrete(d_max=1, pts=1E5)
fractions = a.fractions_discrete(ds)
disc = ParticleSizeDistribution(ds=ds, fractions=fractions, order=3)
d20 = disc.mean_size(2, 0)
assert_close(d20, 3.033E-6, rtol=0, atol=1E-9)
d10 = disc.mean_size(1, 0)
assert_close(d10, 2.676E-6, rtol=0, atol=1E-9)
d21 = disc.mean_size(2, 1)
assert_close(d21, 3.436E-6, rtol=0, atol=1E-9)
d32 = disc.mean_size(3, 2)
# Does match, need 6E6 pts to get the last digit to round right
assert_close(d32, 4.412E-6, rtol=0, atol=1E-9)
d43 = disc.mean_size(4, 3)
assert_close(d43, 5.666E-6, rtol=0, atol=1E-9)
d33 = disc.mean_size(3.0, 3.0)
assert_close(d33, 5.000E-6, rtol=0, atol=1E-9)
d00 = disc.mean_size(0.0, 0.0)
assert_close(d00, 2.362E-6, rtol=0, atol=1E-9)
@pytest.mark.skipif(fluids.numerics.IS_PYPY, reason="numerical issues with adaptive integrator") # Custom integrator can't handle this
@pytest.mark.slow
def test_PSDCustom_mean_sizes_numerical():
import scipy.stats
distribution = scipy.stats.lognorm(s=0.5, scale=5E-6)
disc = PSDCustom(distribution)
d20 = disc.mean_size(2, 0)
assert_close(d20, 3.0326532985631672e-06, rtol=5e-7)
d10 = disc.mean_size(1, 0)
assert_close(d10, 2.6763071425949508e-06, rtol=1e-6)
d21 = disc.mean_size(2, 1)
assert_close(d21, 3.4364463939548618e-06, rtol=1e-7)
d32 = disc.mean_size(3, 2)
assert_close(d32, 4.4124845129229773e-06, rtol=1E-7)
d43 = disc.mean_size(4, 3)
assert_close(d43, 5.6657422653341318e-06, rtol=1E-3)
def test_PSDLognormal_mean_sizes_analytical():
disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
d20 = disc.mean_size(2, 0)
assert_close(d20, 3.033E-6, rtol=0, atol=1E-9)
assert_close(d20, 3.0326532985631672e-06, rtol=1E-12)
assert_close(d20, disc.mean_size_ISO(2, 0), rtol=1E-12)
d10 = disc.mean_size(1, 0)
assert_close(d10, 2.676E-6, rtol=0, atol=1E-9)
assert_close(d10, 2.6763071425949508e-06, rtol=1E-12)
assert_close(d10, disc.mean_size_ISO(1, 0), rtol=1E-12)
d21 = disc.mean_size(2, 1)
assert_close(d21, 3.436E-6, rtol=0, atol=1E-9)
assert_close(d21, 3.4364463939548618e-06, rtol=1E-12)
assert_close(d21, disc.mean_size_ISO(1, 1), rtol=1E-12)
d32 = disc.mean_size(3, 2)
assert_close(d32, 4.412E-6, rtol=0, atol=1E-9)
assert_close(d32, 4.4124845129229773e-06, rtol=1E-12)
assert_close(d32, disc.mean_size_ISO(1, 2), rtol=1E-12)
d43 = disc.mean_size(4, 3)
assert_close(d43, 5.666E-6, rtol=0, atol=1E-9)
assert_close(d43, 5.6657422653341318e-06, rtol=1E-12)
assert_close(d43, disc.mean_size_ISO(1, 3), rtol=1E-12)
assert_close(disc.vssa, 1359778.1436801916)
# There guys - need more work
d33 = disc.mean_size(3.0, 3.0)
assert_close(d33, 5.000E-6, rtol=0, atol=1E-6)
#
d00 = disc.mean_size(0.0, 0.0)
assert_close(d00, 2.362E-6, rtol=1e-4)
def test_PSDLognormal_ds_discrete():
ds_discrete_expect = [2.4920844782646124e-07, 5.870554386661556e-07, 1.3829149496067687e-06, 3.2577055451375563e-06, 7.674112874286059e-06, 1.8077756749742233e-05, 4.258541598963051e-05, 0.0001003176268004454]
dist = PSDLognormal(s=0.5, d_characteristic=5E-6)
# Test the defaults
assert_close1d(dist.ds_discrete(pts=8), ds_discrete_expect, rtol=1e-4)
ds_discrete_expect = [1e-07, 1.389495494373139e-07, 1.9306977288832497e-07, 2.6826957952797275e-07, 3.727593720314938e-07, 5.179474679231213e-07, 7.196856730011514e-07, 1e-06]
# Test end and minimum points
assert_close1d(dist.ds_discrete(d_min=1e-7, d_max=1e-6, pts=8), ds_discrete_expect, rtol=1e-12)
def test_PSDLognormal_ds_discrete():
# Test the cdf discrete
dist = PSDLognormal(s=0.5, d_characteristic=5E-6)
ds = dist.ds_discrete(d_min=1e-7, d_max=1e-6, pts=8)
ans = dist.fractions_discrete(ds)
fractions_expect = [2.55351295663786e-15, 3.831379657981415e-13, 3.762157252396037e-11, 2.41392961175535e-09, 1.01281244724305e-07, 2.7813750147487326e-06, 5.004382447515443e-05, 0.00059054208024234]
assert_close1d(fractions_expect, ans, rtol=1e-3)
def test_PSDLognormal_dn():
disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
# Test input of 1
ans = disc.dn(1)
# The answer can vary quite a lot near the end, so it is safest just to
# compare with the reverse, plugging it back to cdf
assert_close(disc.cdf(ans), 1, rtol=1E-12)
# assert_close(ans, 0.0002964902595794474)
# Test zero input
assert_close(disc.dn(0), 0)
# Test 50% input
ans = disc.dn(.5)
assert_close(ans, 5.0e-06, rtol=1E-6)
with pytest.raises(Exception):
disc.dn(1.5)
with pytest.raises(Exception):
disc.dn(-.5)
# Other orders of n - there is no comparison data for this yet!!
assert_close(disc.pdf(1E-5), disc.pdf(1E-5, 3))
assert_close(disc.pdf(1E-5, 2), 13468.122877854335)
assert_close(disc.pdf(1E-5, 1), 4628.2482296943508)
assert_close(disc.pdf(1E-5, 0), 1238.6613794833427)
# Some really large s tests - found some issues with this
dist = PSDLognormal(s=4, d_characteristic=5E-6)
assert_close(dist.dn(1e-15), 8.220922763476676e-20, rtol=1e-1)
assert_close(dist.dn(.99999999), 28055.285560763594)
assert_close(dist.dn(1e-9), 1.904197766691136e-16, rtol=1e-4)
assert_close(dist.dn(1-1e-9), 131288.88851649483, rtol=1e-4)
def test_PSDLognormal_dn_order_0_1_2():
'''Simple point to test where the order of n should be 0
Yes, the integrals need this many points (which makes them slow) to get
the right accuracy. They've been tested and reduced already quite a bit.
'''
from scipy.integrate import quad
# test 2, 0 -> 2, 0
disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
to_int = lambda d: d**2*disc.pdf(d=d, n=0)
points = [5E-6*i for i in logspace(log10(.1), log10(50), 8)]
ans_numerical = (quad(to_int, 1E-7, 5E-3, points=points)[0])**0.5
ans_analytical = 3.0326532985631672e-06
# The integral is able to give over to decimals!
assert_close(ans_numerical, ans_analytical, rtol=1E-10)
# test 2, 1 -> 1, 1 integrated pdf
to_int = lambda d: d*disc.pdf(d=d, n=1)
ans_numerical = (quad(to_int, 1E-7, 5E-3, points=points)[0])**1
ans_analytical = 3.4364463939548618e-06
assert_close(ans_numerical, ans_analytical, rtol=1E-10)
# test 3, 2 -> 1, 2 integrated pdf
to_int = lambda d: d*disc.pdf(d=d, n=2)
ans_numerical = (quad(to_int, 1E-7, 5E-3, points=points)[0])**1
ans_analytical = 4.4124845129229773e-06
assert_close(ans_numerical, ans_analytical, rtol=1E-8)
def test_PSDLognormal_cdf_orders():
# Test cdf of different orders a bunch
disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
# 16 x 4 = 64 points
# had 1e-7 here too as a diameter but too many numerical issues, too sensitive to rounding
# errors
ds = [2E-6, 3E-6, 4E-6, 5E-6, 6E-6, 7E-6, 1E-5, 2E-5, 3E-5, 5E-5, 7E-5, 1E-4, 2E-4, 4E-4, 1E-3]
ans_expect = [[ 0.36972511868508068, 0.68379899882263917, 0.8539928088656249, 0.93319279873114203, 0.96888427729983861, 0.98510775165387254, 0.99805096305713792, 0.9999903391682271, 0.99999981474719135, 0.99999999948654394, 0.99999999999391231, 0.99999999999996592, 1.0, 1.0, 1.0],
[ 0.20254040832522924, 0.49136307673913149, 0.71011232639847854, 0.84134474606854293, 0.91381737643345484, 0.95283088619207579, 0.99149043874391107, 0.99991921875653167, 0.99999771392273817, 0.99999998959747816, 0.99999999982864851, 0.99999999999863987, 1.0, 1.0, 1.0000000000000002],
[ 0.091334595732478097, 0.30095658738958564, 0.52141804648990697, 0.69146246127401301, 0.80638264936531323, 0.87959096325267294, 0.9703723506333426, 0.999467162897961, 0.99997782059383122, 0.99999983475152954, 0.99999999622288382, 0.99999999995749711, 0.99999999999999833, 1.0000000000000002, 1.0000000000000002],
[ 0.033432418408916864, 0.15347299656473007, 0.3276949357115424, 0.5, 0.64231108623683952, 0.74950869138681098, 0.91717148099830148, 0.99721938213769046, 0.99983050191355338, 0.99999793935660408, 0.99999993474010451, 0.99999999896020164, 0.99999999999991951, 1.0, 1.0]]
calc = []
for n in range(0, 4):
calc.append([disc.cdf(i, n=n) for i in ds])
assert_close2d(ans_expect, calc, rtol=1E-9)
def test_PSDLognormal_cdf_vs_pdf():
from scipy.integrate import quad
# test PDF against CDF
disc = PSDLognormal(s=0.5, d_characteristic=5E-6)
ans_calc = []
ans_expect = []
for i in range(5):
# Pick a random start
start = uniform(0, 1)
end = uniform(start, 1)
d_start = disc.dn(start)
d_end = disc.dn(end)
delta = disc.cdf(d_end) - disc.cdf(d_start)
delta_numerical = quad(disc.pdf, d_start, d_end)[0]
ans_calc.append(delta_numerical)
ans_expect.append(delta)
assert_close1d(ans_calc, ans_expect)
def test_PSD_lognormal_truncated():
psd = PSDLognormal(s=0.5, d_characteristic=5E-6, d_max=1e-5, d_min=1e-6, order=3)
assert_close(psd.dn(1), 1e-5)
assert_close(psd.dn(0), 1e-6)
assert_close(psd.cdf(psd.dn(0.5)), 0.5) # No longer at d_characteristic
# Check the cdf limits of the truncated distribution
ds = [1e-8, 1e-7, 1e-6, 2e-6, 5e-6, 9e-6, 1e-5, 1e-4, 1e-3]
ans = psd.fractions_discrete(ds)
ans_expect = [0.0, 0.0, 0.0, 0.03577517221380477, 0.5090598176028703, 0.41473614196545805, 0.04042886821786684, 0.0, 0.0]
assert sum(ans) == 1
assert_close1d(ans, ans_expect)
pdfs = [psd.pdf(i) for i in ds]
pdfs_expect = [0.0, 0.0, 4896.6230234795203, 81190.803665720552, 174110.24040947447, 48468.576095204902, 33302.599459012476, 0.0, 0.0]
assert_close1d(pdfs, pdfs_expect)
# Check the mean_size calculations - this is right
assert_close(psd.mean_size(3, 2), 4.1817574249337556e-06)
@pytest.mark.fuzz
@pytest.mark.slow
def test_PSD_lognormal_truncated_mean_size():
from scipy.integrate import quad
psd = PSDLognormal(s=0.5, d_characteristic=5E-6, d_max=1e-5, d_min=1e-6, order=3)
def psd_mean_size_numeric_truncated(psd, p, q):
pow1 = q - psd.order
to_int = lambda d : d**pow1*psd.pdf(d)
denominator = quad(to_int, psd.d_min, psd.d_max)[0]
# denominator = self._pdf_basis_integral_definite(d_min=self.d_minimum, d_max=self.d_excessive, n=pow1)
root_power = p - q
pow3 = p - psd.order
# numerator = self._pdf_basis_integral_definite(d_min=self.d_minimum, d_max=self.d_excessive, n=pow3)
to_int = lambda d : d**pow3*psd.pdf(d)
numerator = quad(to_int, psd.d_min, psd.d_max)[0]
return (numerator/denominator)**(1.0/(root_power))
# It really works!
for p in range(-3, 4):
for q in range(-3, 4):
if p != q:
assert_close(psd.mean_size(p, q), psd_mean_size_numeric_truncated(psd, p, q))
@pytest.mark.slow
def test_PSD_PSDlognormal_area_length_count():
'''Compare the average difference between the analytical values for a
lognormal distribution with those of a discretized form of it.Note simply
adding more points did not tend to help reduce the error.
For the particle count case, 700 points has the lowest error.
fractions_discrete is still the slowest part.
'''
import numpy as np
dist = PSDLognormal(s=0.5, d_characteristic=5E-6)
ds = dist.ds_discrete(pts=700, d_min=2E-7, d_max=1E-4)
fractions = dist.fractions_discrete(ds)
psd = ParticleSizeDistribution(ds=ds, fractions=fractions, order=3)
# Trim a few at the start and end
ans = np.array(psd.number_fractions)[5:-5]/np.array(dist.fractions_discrete(ds, n=0))[5:-5]
avg_err = sum(np.abs(ans - 1.0))/len(ans)
assert 5E-4 > avg_err
ans = np.array(psd.length_fractions)[5:-5]/np.array(dist.fractions_discrete(ds, n=1))[5:-5]
avg_err = sum(np.abs(ans - 1.0))/len(ans)
assert 1E-4 > avg_err
ans = np.array(psd.area_fractions)[5:-5]/np.array(dist.fractions_discrete(ds, n=2))[5:-5]
avg_err = sum(np.abs(ans - 1.0))/len(ans)
assert 1E-4 > avg_err
def test_PSDInterpolated_pchip():
'''For this test, ds is the same length as fractions, and we begin the series with the zero point.
Half the test is spend on the `dn` solver tests, and the other half is just
that these tests are slow.
'''
import numpy as np
ds = [360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532]
ds = np.array(ds)/1e6
numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
dist = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
psd = PSDInterpolated(dist.Dis, dist.fractions)
assert len(psd.fractions) == len(psd.ds)
assert len(psd.fractions) == 15
# test fractions_discrete vs input
assert_close1d(psd.fractions_discrete(ds), dist.fractions)
# test cdf_discrete
assert_close1d(psd.cdf_discrete(ds), psd.fraction_cdf[1:])
# test that dn solves backwards for exactly the right value - slow
cumulative_fractions = np.cumsum(dist.fractions)
ds_for_fractions = np.array([psd.dn(f) for f in cumulative_fractions])
assert_close1d(ds, ds_for_fractions)
# test _pdf
test_pdf = psd._pdf(1e-3)
assert_close(test_pdf, 106.28284463095554)
# test _cdf
test_cdf = psd._cdf(1e-3)
assert_close(test_cdf, 0.02278897476363087)
# test _pdf_basis_integral
test_int = psd._pdf_basis_integral(1e-3, 2)
assert_close(test_int, 1.509707233427664e-08)
# Check that the 0 point is created and the points and fractions are the same
assert_close1d(psd.ds, [0] + ds.tolist())
assert_close1d(psd.fractions, [0] + dist.fractions)
# test mean_size
test_mean = psd.mean_size(3, 2)
assert_close(test_mean, 0.002211577679574544)
def test_PSDInterpolated_discrete_range_pts():
import numpy as np
ds = [360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532]
ds = [i*1e-6 for i in ds]
numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
# test fractions_discrete vs input
assert_close1d(psd.fractions_discrete(ds), psd.fractions)
# test cdf_discrete
assert_close1d(psd.cdf_discrete(ds), psd.interpolated.fraction_cdf[1:])
# test that dn solves backwards for exactly the right value
cumulative_fractions = np.cumsum(psd.fractions)
ds_for_fractions = np.array([psd.dn(f) for f in cumulative_fractions])
assert_close1d(ds, ds_for_fractions)
# test _pdf
test_pdf = psd.pdf(1e-3)
assert_close(test_pdf, 106.28284463095554)
# test _cdf
test_cdf = psd.cdf(1e-3)
assert_close(test_cdf, 0.02278897476363087)
# test _pdf_basis_integral
test_int = psd._pdf_basis_integral(1e-3, 2)
assert_close(test_int, 1.509707233427664e-08)
assert not isclose(psd.mean_size(3, 2), psd.interpolated.mean_size(3, 2))
def test_PSDInterpolated_discrete():
import numpy as np
ds = 1E-6*np.array([240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532])
numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
dn_05 = psd.dn(0.5)
assert_close(dn_05, 0.002526452452632658)
assert_close(psd.cdf(dn_05), 0.5, rtol=1e-4)
assert_close(psd.cdf(0.002, 4), 0.18010145594167873, rtol=5e-3)
assert_close(psd.pdf(0.002, 2), 466.42761174380007, rtol=5e-3)
assert_close(psd.pdf(0.002526452452632658), 408.4774528377241, rtol=1e-2)
assert_close(psd.mean_size(1, 0), psd.interpolated.mean_size(1, 0), rtol=0.05)
assert_close(psd.cdf(100), 1)
assert_close(psd.cdf(psd.dn(1)), 1)
def test_psd_spacing():
ans_log = psd_spacing(d_min=1, d_max=10, pts=4, method='logarithmic')
ans_log_expect = [1.0, 2.154434690031884, 4.641588833612778, 10.0]
assert_close1d(ans_log, ans_log_expect)
ans_lin = psd_spacing(d_min=0, d_max=10, pts=4, method='linear')
ans_lin_expect = [0.0, 3.3333333333333335, 6.666666666666667, 10.0]
assert_close1d(ans_lin, ans_lin_expect)
with pytest.raises(Exception):
psd_spacing(d_min=0, d_max=10, pts=8, method='R5')
with pytest.raises(Exception):
psd_spacing(d_min=5e-5, d_max=5e-4, method='BADMETHOD')
# This example from an iso standard, ISO 9276-2 2014
ans_R5 = psd_spacing(d_max=25, pts=8, method='R5')
ans_R5_expect = [0.9952679263837426, 1.5773933612004825, 2.499999999999999, 3.9622329811527823, 6.279716078773949, 9.95267926383743, 15.77393361200483, 25]
assert_close1d(ans_R5, ans_R5_expect)
ans_R5_reversed = psd_spacing(d_min=0.9952679263837426, pts=8, method='R5')
assert_close1d(ans_R5_reversed, ans_R5_expect)
ans_R5_float = psd_spacing(d_max=25, pts=8, method='R5.00000001')
assert_close1d(ans_R5_float, ans_R5_expect)
ans = psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1')
ans_expect = [5e-05, 5.3e-05, 5.6e-05, 6.3e-05, 7.1e-05, 7.5e-05, 8e-05, 9e-05, 0.0001, 0.000106, 0.000112, 0.000125, 0.00014, 0.00015, 0.00016, 0.00018, 0.0002, 0.000212, 0.000224, 0.00025, 0.00028, 0.0003, 0.000315, 0.000355, 0.0004, 0.000425, 0.00045, 0.0005, 0.00056, 0.0006, 0.00063, 0.00071, 0.0008, 0.00085, 0.0009, 0.001]
assert_close1d(ans, ans_expect)
assert [] == psd_spacing(d_min=0, d_max=1e-6, method='ISO 3310-1')
assert [] == psd_spacing(d_min=1, d_max=1e2, method='ISO 3310-1')
assert psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1 R20')
assert psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1 R20/3')
assert psd_spacing(d_min=5e-5, d_max=1e-3, method='ISO 3310-1 R40/3')
assert psd_spacing(d_min=0e-5, d_max=1e-3, method='ISO 3310-1 R10')
ds = psd_spacing(d_min=1e-5, d_max=1e-4, method='ASTM E11')
ds_expect = [2e-05, 2.5e-05, 3.2e-05, 3.8e-05, 4.5e-05, 5.3e-05, 6.3e-05, 7.5e-05, 9e-05]
assert_close1d(ds, ds_expect)
def test_example_integer_power_issue():
diameters = [2, 5, 10, 15, 20, 30, 40, 50] # Particle diameters in micrometers (µm)
volume_percentages = [5, 10, 20, 25, 20, 10, 5, 5] # Volume % in each size class
cement_psd = ParticleSizeDistribution(ds=diameters, fractions=volume_percentages, order=3)
val = cement_psd.pdf(4.61538459884405e-08, n=2)
assert val is not None
def test_PSD_numpy_input():
import numpy as np
ds = np.array([240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532])
numbers = np.array([65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1])
psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
assert type(psd.mean_size(2, 1)) is float
assert type(psd.mean_size(1, 0)) is float
assert type(psd.mean_size(3, 2)) is float
assert type(psd.mean_size(4, 3)) is float
assert type(psd.dn(0.1)) is float
assert type(psd.dn(0.9)) is float
assert type(psd.pdf(1000)) is float
assert type(psd.cdf(5000)) is float
psd = PSDLognormal(s=0.5, d_characteristic=5E-6)
assert type(psd.pdf(1e-6)) is float
assert type(psd.cdf(7e-6)) is float
assert type(psd.dn(0.1)) is float
assert type(psd.mean_size(3, 2)) is float
ds_discrete = psd.ds_discrete(pts=8)
fractions_discrete = psd.fractions_discrete(ds_discrete)
psd_discrete = ParticleSizeDistribution(ds=ds_discrete, fractions=fractions_discrete, order=3)
assert type(psd_discrete.mean_size(3, 2)) is float
assert type(psd.vssa) is float
assert type(psd.dn(.9) - psd.dn(0.1)) is float
assert type((psd.dn(.9) - psd.dn(0.1))/psd.dn(0.5)) is float
assert type(psd.dn(0.75)/psd.dn(0.25)) is float
assert type(psd.dn(0.9)/psd.dn(0.1)) is float
|