1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import pytest
from fluids.constants import hp
from fluids.numerics import assert_close, assert_close1d
from fluids.pump import (
Corripio_motor_efficiency,
Corripio_pump_efficiency,
CountryPower,
CSA_motor_efficiency,
VFD_efficiency,
current_ideal,
electrical_plug_types,
industrial_power,
motor_efficiency_underloaded,
motor_round_size,
nema_high_P,
nema_min_P,
nema_sizes,
nema_sizes_hp,
residential_power,
residential_power_frequencies,
specific_diameter,
specific_speed,
speed_synchronous,
voltages_1_phase_residential,
voltages_3_phase,
)
def test_Corripio_pump_efficiency():
eta = Corripio_pump_efficiency(461./15850.323)
assert_close(eta, 0.7058888670951621)
def test_Corripio_motor_efficiency():
eta = Corripio_motor_efficiency(137*745.7)
assert_close(eta, 0.9128920875679222)
def test_VFD_efficiency():
eta = VFD_efficiency(10*hp)
assert_close(eta, 0.96)
eta = VFD_efficiency(100*hp, load=0.5)
assert_close(eta, 0.96)
# Lower bound, 3 hp; upper bound, 400 hp; 0.016 load bound
etas = VFD_efficiency(1*hp), VFD_efficiency(500*hp), VFD_efficiency(8*hp, load=0.01)
assert_close1d(etas, [0.94, 0.97, 0.386])
hp_sum = sum(nema_sizes_hp)
assert_close(hp_sum, 3356.333333333333)
W_sum = sum(nema_sizes)
assert_close(W_sum, 2502817.33565396)
def test_motor_round_size():
sizes = [motor_round_size(i) for i in [.1*hp, .25*hp, 1E5, 3E5]]
sizes_calc = [186.42496789556753, 186.42496789556753, 111854.98073734052, 335564.94221202156]
assert_close1d(sizes, sizes_calc)
with pytest.raises(Exception):
motor_round_size(1E100)
def test_CSA_motor_efficiency():
nema_high_P_calcs = [CSA_motor_efficiency(k*hp, high_efficiency=True, closed=i, poles=j) for i in [True, False] for j in [2, 4, 6] for k in nema_high_P]
nema_high_Ps = [0.77, 0.84, 0.855, 0.865, 0.885, 0.885, 0.885, 0.895, 0.902, 0.91, 0.91, 0.917, 0.917, 0.924, 0.93, 0.936, 0.936, 0.941, 0.95, 0.95, 0.954, 0.954, 0.855, 0.865, 0.865, 0.895, 0.895, 0.895, 0.895, 0.917, 0.917, 0.924, 0.93, 0.936, 0.936, 0.941, 0.945, 0.95, 0.954, 0.954, 0.954, 0.958, 0.962, 0.962, 0.825, 0.875, 0.885, 0.895, 0.895, 0.895, 0.895, 0.91, 0.91, 0.917, 0.917, 0.93, 0.93, 0.941, 0.941, 0.945, 0.945, 0.95, 0.95, 0.958, 0.958, 0.958, 0.77, 0.84, 0.855, 0.855, 0.865, 0.865, 0.865, 0.885, 0.895, 0.902, 0.91, 0.917, 0.917, 0.924, 0.93, 0.936, 0.936, 0.936, 0.941, 0.941, 0.95, 0.95, 0.855, 0.865, 0.865, 0.895, 0.895, 0.895, 0.895, 0.91, 0.917, 0.93, 0.93, 0.936, 0.941, 0.941, 0.945, 0.95, 0.95, 0.954, 0.954, 0.958, 0.958, 0.958, 0.825, 0.865, 0.875, 0.885, 0.895, 0.895, 0.895, 0.902, 0.917, 0.917, 0.924, 0.93, 0.936, 0.941, 0.941, 0.945, 0.945, 0.95, 0.95, 0.954, 0.954, 0.954]
assert_close1d(nema_high_P_calcs, nema_high_Ps)
nema_min_P_calcs = [CSA_motor_efficiency(k*hp, high_efficiency=False, closed=i, poles=j) for i in [True, False] for j in [2, 4, 6, 8] for k in nema_min_P]
nema_min_Ps = [0.755, 0.825, 0.84, 0.855, 0.855, 0.875, 0.875, 0.885, 0.895, 0.902, 0.902, 0.91, 0.91, 0.917, 0.924, 0.93, 0.93, 0.936, 0.945, 0.945, 0.95, 0.95, 0.954, 0.954, 0.954, 0.954, 0.954, 0.954, 0.825, 0.84, 0.84, 0.875, 0.875, 0.875, 0.875, 0.895, 0.895, 0.91, 0.91, 0.924, 0.924, 0.93, 0.93, 0.936, 0.941, 0.945, 0.945, 0.95, 0.95, 0.95, 0.95, 0.954, 0.954, 0.954, 0.954, 0.958, 0.8, 0.855, 0.865, 0.875, 0.875, 0.875, 0.875, 0.895, 0.895, 0.902, 0.902, 0.917, 0.917, 0.93, 0.93, 0.936, 0.936, 0.941, 0.941, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.74, 0.77, 0.825, 0.84, 0.84, 0.855, 0.855, 0.855, 0.885, 0.885, 0.895, 0.895, 0.91, 0.91, 0.917, 0.917, 0.93, 0.93, 0.936, 0.936, 0.941, 0.941, 0.945, 0.945, 0.945, 0.945, 0.945, 0.945, 0.755, 0.825, 0.84, 0.84, 0.84, 0.855, 0.855, 0.875, 0.885, 0.895, 0.902, 0.91, 0.91, 0.917, 0.924, 0.93, 0.93, 0.93, 0.936, 0.936, 0.945, 0.945, 0.945, 0.95, 0.95, 0.954, 0.958, 0.958, 0.825, 0.84, 0.84, 0.865, 0.865, 0.875, 0.875, 0.885, 0.895, 0.91, 0.91, 0.917, 0.924, 0.93, 0.93, 0.936, 0.941, 0.941, 0.945, 0.95, 0.95, 0.95, 0.954, 0.954, 0.954, 0.954, 0.958, 0.958, 0.8, 0.84, 0.855, 0.865, 0.865, 0.875, 0.875, 0.885, 0.902, 0.902, 0.91, 0.917, 0.924, 0.93, 0.93, 0.936, 0.936, 0.941, 0.941, 0.945, 0.945, 0.945, 0.954, 0.954, 0.954, 0.954, 0.954, 0.954, 0.74, 0.755, 0.855, 0.865, 0.865, 0.875, 0.875, 0.885, 0.895, 0.895, 0.902, 0.902, 0.91, 0.91, 0.917, 0.924, 0.936, 0.936, 0.936, 0.936, 0.936, 0.936, 0.945, 0.945, 0.945, 0.945, 0.945, 0.945]
assert_close1d(nema_min_P_calcs, nema_min_Ps)
def test_motor_efficiency_underloaded():
full_efficiencies = [motor_efficiency_underloaded(P*hp, .99) for P in (0.5, 2.5, 7, 12, 42, 90)]
assert_close1d(full_efficiencies, [1, 1, 1, 1, 1, 1])
low_efficiencies = [motor_efficiency_underloaded(P*hp, .25) for P in (0.5, 2.5, 7, 12, 42, 90)]
low_ans = [0.6761088414400706, 0.7581996772085579, 0.8679397648030529, 0.9163243775499996, 0.9522559064662419, 0.9798906308690559]
assert_close1d(low_efficiencies, low_ans)
def test_specific_speed():
nS = specific_speed(0.0402, 100.0, 3550.0)
assert_close(nS, 22.50823182748925)
def test_specific_diameter():
Ds = specific_diameter(Q=0.1, H=10., D=0.1)
assert_close(Ds, 0.5623413251903491)
def test_speed_synchronous():
s1, s2 = speed_synchronous(50.0, poles=12), speed_synchronous(60.0, poles=2)
assert_close1d([s1, s2], [500, 3600])
def test_current_ideal():
I = current_ideal(V=120.0, P=1E4, PF=1.0, phase=1)
assert_close(I, 83.33333333333333)
I = current_ideal(V=208, P=1E4, PF=1, phase=3)
assert_close(I, 27.757224480270473)
I = current_ideal(V=208, P=1E4, PF=0.95, phase=3)
assert_close(I,29.218131031863656)
with pytest.raises(Exception):
current_ideal(V=208, P=1E4, PF=0.95, phase=5)
def test_power_sources():
assert sum(map(ord, electrical_plug_types)) == 1001
assert len(electrical_plug_types) == 14
assert sum(voltages_1_phase_residential) == 1262
assert len(voltages_1_phase_residential) == 8
assert sum(voltages_3_phase) == 3800
assert len(voltages_3_phase) == 13
assert residential_power_frequencies == [50, 60]
assert sum([i.voltage for i in residential_power.values()]) == 42071
assert sum([i.freq for i in residential_power.values()]) == 10530
assert len(residential_power) == 203
ca = residential_power['ca']
assert (ca.voltage, ca.freq, ca.plugs) == (120, 60, ('A', 'B'))
assert sum([sum(i.voltage) for i in industrial_power.values()]) == 82144
assert sum([i.freq for i in industrial_power.values()]) == 10210
assert len(industrial_power) == 197
ca = industrial_power['ca']
assert (ca.voltage, ca.freq) == ((120, 208, 240, 480, 347, 600), 60)
def test_CountryPower():
a = CountryPower(plugs=('C', 'F', 'M', 'N'), voltage=230.0, freq=50.0, country="South Africa")
assert type(a) is CountryPower
assert type(a.voltage) is float
assert type(a.freq) is float
CountryPower(plugs=('G',), voltage=240, freq=50, country="Seychelles")
CountryPower(plugs=('C', 'F'), voltage=230, freq=50, country="Armenia")
CountryPower(plugs=('D', 'G', 'J', 'K', 'L'), voltage=230, freq=50, country="Maldives")
|