1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling.
Copyright (C) 2016, 2017 Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import pytest
from fluids.numerics import assert_close, assert_close1d, linspace
from fluids.two_phase_voidage import (
Armand,
Baroczy,
Beattie_Whalley,
Chisholm_Armand,
Chisholm_voidage,
Cicchitti,
Dix,
Domanski_Didion,
Duckler,
Fauske,
Fourar_Bories,
Graham,
Gregory_Scott,
Guzhov,
Harms,
Huq_Loth,
Kawahara,
Kopte_Newell_Chato,
Lin_Kwok,
Lockhart_Martinelli_Xtt,
McAdams,
Nicklin_Wilkes_Davidson,
Nishino_Yamazaki,
Rouhani_1,
Rouhani_2,
Smith,
Steiner,
Sun_Duffey_Peng,
Tandon_Varma_Gupta,
Thom,
Turner_Wallis,
Woldesemayat_Ghajar,
Xu_Fang_voidage,
Yashar,
Zivi,
density_two_phase,
gas_liquid_viscosity,
gas_liquid_viscosity_methods,
homogeneous,
liquid_gas_voidage,
liquid_gas_voidage_methods,
two_phase_voidage_experimental,
)
def test_Thom():
# >>> from sympy import *
# >>> x, rhol, rhog, mug, mul = symbols('x, rhol, rhog, mug, mul')
# >>> Z = (rhol/rhog)**Rational(555,1000)*(mug/mul)**Rational(111,1000)
# >>> gamma = Z**1.6
# >>> alpha = (gamma*x/(1 + x*(gamma-1)))
# >>> alpha
# x*((mug/mul)**(111/1000)*(rhol/rhog)**(111/200))**1.6/(x*(((mug/mul)**(111/1000)*(rhol/rhog)**(111/200))**1.6 - 1) + 1)
# >>> alpha.subs([(x, .4), (rhol, 800), (rhog, 2.5), (mul, 1E-3), (mug, 1E-5)])
# 0.980138792146901
assert_close(Thom(.4, 800, 2.5, 1E-3, 1E-5), 0.9801482164042417)
def test_Zivi():
assert_close(Zivi(.4, 800, 2.5), 0.9689339909056356)
def test_Smith():
assert_close(Smith(.4, 800, 2.5), 0.959981235534199)
# Quick test function, to ensure results are the same regardless of
# the form of the expression
def Smith2(x, rhol, rhog):
K = 0.4
first = 1 + rhog/rhol*K*(1/x-1)
second = rhog/rhol*(1-K)*(1/x-1)
third = ((rhol/rhog + K*(1/x-1))/(1 + K*(1/x -1)))**0.5
return (first + second*third)**-1
alpha_1 = [Smith(i, 800, 2.5) for i in linspace(1E-9,.99)]
alpha_2 = [Smith2(i, 800, 2.5) for i in linspace(1E-9, .99)]
assert_close1d(alpha_1, alpha_2)
def test_Fauske():
assert_close(Fauske(.4, 800, 2.5), 0.9226347262627932)
def test_Chisholm_voidage():
assert_close(Chisholm_voidage(.4, 800, 2.5), 0.949525900374774)
def test_Turner_Wallis():
assert_close(Turner_Wallis(.4, 800, 2.5, 1E-3, 1E-5), 0.8384824581634625)
### Section 2
def test_homogeneous():
assert_close(homogeneous(.4, 800, 2.5), 0.995334370139969)
assert_close(homogeneous(1, 800, 2.5), 1)
assert_close(homogeneous(0, 800, 2.5), 0)
# 1./(1. + (1-x)/x*(rhog/rhol))
def test_Chisholm_Armand():
assert_close(Chisholm_Armand(.4, 800, 2.5), 0.9357814394262114)
def test_Armand():
assert_close(Armand(.4, 800, 2.5), 0.8291135303265941)
def test_Nishino_Yamazaki():
assert_close(Nishino_Yamazaki(.4, 800, 2.5), 0.931694583962682)
def test_Guzhov():
assert_close(Guzhov(.4, 800, 2.5, 1, .3), 0.7626030108534588)
def test_Kawahara():
alphas_calc = [Kawahara(.4, 800, 2.5, D) for D in [0.001, 100E-6, 1E-7]]
alphas_exp = [0.8291135303265941, 0.9276148194410238, 0.8952146812696503]
assert_close1d(alphas_calc, alphas_exp)
### Drift flux models
def test_Lockhart_Martinelli_Xtt():
assert_close(Lockhart_Martinelli_Xtt(0.4, 800, 2.5, 1E-3, 1E-5), 0.12761659240532292)
assert_close(Lockhart_Martinelli_Xtt(0.4, 800, 2.5, 1E-3, 1E-5, n=0.2), 0.12761659240532292)
def test_Baroczy():
assert_close(Baroczy(.4, 800, 2.5, 1E-3, 1E-5), 0.9453544598460807)
def test_Tandon_Varma_Gupta():
alphas_calc = [Tandon_Varma_Gupta(.4, 800, 2.5, 1E-3, 1E-5, m, 0.3) for m in [1, .1]]
assert_close1d(alphas_calc, [0.9228265670341428, 0.8799794756817589])
def test_Harms():
assert_close(Harms(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3), 0.9653289762907554)
def test_Domanski_Didion():
assert_close(Domanski_Didion(.4, 800, 2.5, 1E-3, 1E-5), 0.9355795597059169)
assert_close(Domanski_Didion(.002, 800, 2.5, 1E-3, 1E-5), 0.32567078492010837)
def test_Graham():
assert_close(Graham(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3), 0.6403336287530644)
assert 0 == Graham(.4, 800, 2.5, 1E-3, 1E-5, m=.001, D=0.3)
def test_Yashar():
assert_close(Yashar(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3), 0.7934893185789146)
def test_Huq_Loth():
assert_close(Huq_Loth(.4, 800, 2.5), 0.9593868838476147)
def test_Kopte_Newell_Chato():
assert_close(Kopte_Newell_Chato(.4, 800, 2.5, m=1, D=0.3), 0.6864466770087425)
assert_close(Kopte_Newell_Chato(.4, 800, 2.5, m=.01, D=0.3), 0.995334370139969)
def test_Steiner():
assert_close(Steiner(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3), 0.895950181381335)
def test_Rouhani_1():
assert_close(Rouhani_1(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3), 0.8588420244136714)
def test_Rouhani_2():
assert_close(Rouhani_2(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3), 0.44819733138968865)
def test_Nicklin_Wilkes_Davidson():
assert_close(Nicklin_Wilkes_Davidson(0.4, 800., 2.5, m=1, D=0.3), 0.6798826626721431)
def test_Gregory_Scott():
assert_close(Gregory_Scott(0.4, 800., 2.5), 0.8364154370924108)
def test_Dix():
assert_close(Dix(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3), 0.8268737961156514)
def test_Sun_Duffey_Peng():
assert_close(Sun_Duffey_Peng(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3, P=1E5, Pc=7E6), 0.7696546506515833)
def test_Woldesemayat_Ghajar():
assert_close(Woldesemayat_Ghajar(0.4, 800., 2.5, sigma=0.2, m=1, D=0.3, P=1E6, angle=45.0), 0.7640815513429202)
def test_Xu_Fang_voidage():
assert_close(Xu_Fang_voidage(0.4, 800., 2.5, m=1, D=0.3), 0.9414660089942093)
def test_liquid_gas_voidage():
voidage = liquid_gas_voidage(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, sigma=0.0487, D=0.05)
assert_close(voidage, 0.9744097632663492)
kwargs = dict(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, sigma=0.0487, D=0.05, P=1e5, Pc=1e7)
for m in liquid_gas_voidage_methods(**kwargs):
liquid_gas_voidage(Method=m, **kwargs)
with pytest.raises(Exception):
liquid_gas_voidage(Method='BADMETHOD', **kwargs)
assert len(liquid_gas_voidage_methods(**kwargs)) == 29
def test_density_two_phase():
assert_close(density_two_phase(.4, 800.0, 2.5), 481.0)
def test_two_phase_voidage_experimental():
alpha = two_phase_voidage_experimental(481.0, 800.0, 2.5)
assert_close(alpha, 0.4)
def test_Beattie_Whalley():
mu = Beattie_Whalley(x=0.4, mul=1E-3, mug=1E-5, rhol=850.0, rhog=1.2)
assert_close(mu, 1.7363806909512365e-05)
def test_McAdams():
mu = McAdams(x=0.4, mul=1E-3, mug=1E-5)
assert_close(mu, 2.4630541871921184e-05)
def test_Cicchitti():
mu = Cicchitti(x=0.4, mul=1E-3, mug=1E-5)
assert_close(mu, 0.000604)
def test_Lin_Kwok():
mu = Lin_Kwok(x=0.4, mul=1E-3, mug=1E-5)
assert_close(mu, 3.515119398126066e-05)
def test_Fourar_Bories():
mu = Fourar_Bories(x=0.4, mul=1E-3, mug=1E-5, rhol=850.0, rhog=1.2)
assert_close(mu, 2.127617150298565e-05)
def tets_Duckler():
mu = Duckler(x=0.4, mul=1E-3, mug=1E-5, rhol=850.0, rhog=1.2)
assert_close(mu, 1.2092040385066917e-05)
def Duckler1(x, mul, mug, rhol, rhog):
# Effective property models for homogeneous two-phase flows.
# different formulation
rhom = 1./(x/rhog + (1. - x)/rhol)
return rhom*(x*(mug/rhog) + (1. - x)*mul/rhol)
mu = Duckler1(x=0.4, mul=1E-3, mug=1E-5, rhol=850.0, rhog=1.2)
assert_close(mu, 1.2092040385066917e-05)
def test_gas_liquid_viscosity():
mu = gas_liquid_viscosity(x=0.4, mul=1E-3, mug=1E-5)
assert_close(2.4630541871921184e-05, mu)
mu = gas_liquid_viscosity(x=0.4, mul=1E-3, mug=1E-5, rhol=850.0, rhog=1.2, Method='Duckler')
assert_close(mu, 1.2092040385066917e-05)
simple_methods = gas_liquid_viscosity_methods()
assert list(sorted(simple_methods)) == list(sorted(['McAdams', 'Cicchitti', 'Lin Kwok']))
all_methods = gas_liquid_viscosity_methods(rhol=1000.0, rhog=2.)
all_methods_expect = ['Beattie Whalley', 'Fourar Bories', 'Duckler', 'McAdams', 'Cicchitti', 'Lin Kwok']
assert list(sorted(all_methods)) == list(sorted(all_methods_expect))
for m in all_methods_expect:
gas_liquid_viscosity(x=0.4, mul=1E-3, mug=1E-5, rhol=850.0, rhog=1.2, Method=m)
with pytest.raises(Exception):
gas_liquid_viscosity(x=0.4, mul=1E-3, mug=1E-5, Method='NOTAMETHOD')
|