File: fluids_test.c

package info (click to toggle)
python-fluids 1.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 13,108 kB
  • sloc: python: 59,520; f90: 481; lisp: 342; ansic: 337; cpp: 228; ruby: 145; haskell: 118; perl: 106; makefile: 59; javascript: 49
file content (430 lines) | stat: -rw-r--r-- 14,940 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include <math.h>

// Helper function to initialize Python and import fluids
PyObject* init_fluids(void) {
    Py_Initialize();
    PyObject* module = PyImport_ImportModule("fluids");
    if (!module) {
        PyErr_Print();
        fprintf(stderr, "Failed to import fluids module\n");
        return NULL;
    }
    return module;
}

// Helper to measure time in microseconds
long long microseconds_now(void) {
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    return (long long)ts.tv_sec * 1000000LL + ts.tv_nsec / 1000LL;
}

void test_atmosphere(PyObject* fluids) {
    printf("\nTesting atmosphere at 5000m elevation:\n");
    
    // Create ATMOSPHERE_1976 instance
    PyObject* atm_class = PyObject_GetAttrString(fluids, "ATMOSPHERE_1976");
    if (!atm_class) {
        PyErr_Print();
        return;
    }
    
    PyObject* args = PyTuple_New(0);
    PyObject* kwargs = PyDict_New();
    PyDict_SetItemString(kwargs, "Z", PyFloat_FromDouble(5000));
    
    PyObject* atm = PyObject_Call(atm_class, args, kwargs);
    if (!atm) {
        PyErr_Print();
        Py_DECREF(args);
        Py_DECREF(kwargs);
        Py_DECREF(atm_class);
        return;
    }
    
    // Test various properties
    PyObject* temp = PyObject_GetAttrString(atm, "T");
    PyObject* pressure = PyObject_GetAttrString(atm, "P");
    PyObject* density = PyObject_GetAttrString(atm, "rho");
    PyObject* gravity = PyObject_GetAttrString(atm, "g");
    PyObject* viscosity = PyObject_GetAttrString(atm, "mu");
    PyObject* conductivity = PyObject_GetAttrString(atm, "k");
    PyObject* sonic = PyObject_GetAttrString(atm, "v_sonic");
    
    printf("✓ Temperature: %.4f\n", PyFloat_AsDouble(temp));
    printf("✓ Pressure: %.4f\n", PyFloat_AsDouble(pressure));
    printf("✓ Density: %.6f\n", PyFloat_AsDouble(density));
    printf("✓ Gravity: %.6f\n", PyFloat_AsDouble(gravity));
    printf("✓ Viscosity: %.6e\n", PyFloat_AsDouble(viscosity));
    printf("✓ Thermal conductivity: %.4f\n", PyFloat_AsDouble(conductivity));
    printf("✓ Sonic velocity: %.4f\n", PyFloat_AsDouble(sonic));
    
    // Test static gravity method
    PyObject* gravity_method = PyObject_GetAttrString(atm_class, "gravity");
    PyObject* gravity_args = PyTuple_New(0);
    PyObject* gravity_kwargs = PyDict_New();
    PyDict_SetItemString(gravity_kwargs, "Z", PyFloat_FromDouble(1E5));
    
    PyObject* high_gravity = PyObject_Call(gravity_method, gravity_args, gravity_kwargs);
    printf("✓ High altitude gravity: %.6f\n", PyFloat_AsDouble(high_gravity));
    
    // Cleanup
    Py_DECREF(temp);
    Py_DECREF(pressure);
    Py_DECREF(density);
    Py_DECREF(gravity);
    Py_DECREF(viscosity);
    Py_DECREF(conductivity);
    Py_DECREF(sonic);
    Py_DECREF(gravity_method);
    Py_DECREF(gravity_args);
    Py_DECREF(gravity_kwargs);
    Py_DECREF(high_gravity);
    Py_DECREF(atm);
    Py_DECREF(args);
    Py_DECREF(kwargs);
    Py_DECREF(atm_class);
}

void test_expanded_reynolds(PyObject* fluids) {
    printf("\nTesting Reynolds number calculations:\n");
    
    // Get Reynolds function
    PyObject* reynolds_func = PyObject_GetAttrString(fluids, "Reynolds");
    if (!reynolds_func) {
        PyErr_Print();
        return;
    }
    
    // Test with density and viscosity
    PyObject* args1 = PyTuple_New(0);
    PyObject* kwargs1 = PyDict_New();
    PyDict_SetItemString(kwargs1, "V", PyFloat_FromDouble(2.5));
    PyDict_SetItemString(kwargs1, "D", PyFloat_FromDouble(0.25));
    PyDict_SetItemString(kwargs1, "rho", PyFloat_FromDouble(1.1613));
    PyDict_SetItemString(kwargs1, "mu", PyFloat_FromDouble(1.9E-5));
    
    PyObject* re1 = PyObject_Call(reynolds_func, args1, kwargs1);
    double re1_val = PyFloat_AsDouble(re1);
    printf("✓ Re (with rho, mu): %.4f\n", re1_val);
    assert(fabs(re1_val - 38200.6579) < 0.1);
    
    // Test with kinematic viscosity
    PyObject* args2 = PyTuple_New(0);
    PyObject* kwargs2 = PyDict_New();
    PyDict_SetItemString(kwargs2, "V", PyFloat_FromDouble(2.5));
    PyDict_SetItemString(kwargs2, "D", PyFloat_FromDouble(0.25));
    PyDict_SetItemString(kwargs2, "nu", PyFloat_FromDouble(1.636e-05));
    
    PyObject* re2 = PyObject_Call(reynolds_func, args2, kwargs2);
    double re2_val = PyFloat_AsDouble(re2);
    printf("✓ Re (with nu): %.4f\n", re2_val);
    assert(fabs(re2_val - 38202.934) < 0.1);
    
    // Cleanup
    Py_DECREF(reynolds_func);
    Py_DECREF(args1);
    Py_DECREF(kwargs1);
    Py_DECREF(re1);
    Py_DECREF(args2);
    Py_DECREF(kwargs2);
    Py_DECREF(re2);
}

void test_psd(PyObject* fluids) {
    printf("\nTesting particle size distribution functionality:\n");
    
    // Get particle_size_distribution module
    PyObject* psd_module = PyObject_GetAttrString(fluids, "particle_size_distribution");
    if (!psd_module) {
        PyErr_Print();
        return;
    }
    
    // Create discrete PSD
    PyObject* psd_class = PyObject_GetAttrString(psd_module, "ParticleSizeDistribution");
    if (!psd_class) {
        PyErr_Print();
        Py_DECREF(psd_module);
        return;
    }
    
    // Create lists for ds and numbers
    PyObject* ds_list = PyList_New(15);
    double ds[] = {240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 
                   2141, 2676, 3345, 4181, 5226, 6532};
    for (int i = 0; i < 15; i++) {
        PyList_SetItem(ds_list, i, PyFloat_FromDouble(ds[i]));
    }
    
    PyObject* numbers_list = PyList_New(14);
    double numbers[] = {65, 119, 232, 410, 629, 849, 990, 981, 825, 
                       579, 297, 111, 21, 1};
    for (int i = 0; i < 14; i++) {
        PyList_SetItem(numbers_list, i, PyFloat_FromDouble(numbers[i]));
    }
    
    PyObject* args = PyTuple_New(0);
    PyObject* kwargs = PyDict_New();
    PyDict_SetItemString(kwargs, "ds", ds_list);
    PyDict_SetItemString(kwargs, "fractions", numbers_list);
    PyDict_SetItemString(kwargs, "order", PyLong_FromLong(0));
    
    PyObject* psd = PyObject_Call(psd_class, args, kwargs);
    printf("✓ Created discrete PSD\n");
    
    // Test mean sizes
    PyObject* mean_size_method = PyObject_GetAttrString(psd, "mean_size");
    PyObject* mean_args = PyTuple_Pack(2, PyLong_FromLong(2), PyLong_FromLong(1));
    PyObject* d21 = PyObject_Call(mean_size_method, mean_args, NULL);
    printf("✓ Size-weighted mean diameter: %.4f\n", PyFloat_AsDouble(d21));
    
    PyObject* mean_args2 = PyTuple_Pack(2, PyLong_FromLong(1), PyLong_FromLong(0));
    PyObject* d10 = PyObject_Call(mean_size_method, mean_args2, NULL);
    printf("✓ Arithmetic mean diameter: %.4f\n", PyFloat_AsDouble(d10));
    
    // Test percentile calculations
    PyObject* dn_method = PyObject_GetAttrString(psd, "dn");
    PyObject* d10_args = PyTuple_Pack(1, PyFloat_FromDouble(0.1));
    PyObject* d90_args = PyTuple_Pack(1, PyFloat_FromDouble(0.9));
    
    PyObject* d10_percentile = PyObject_Call(dn_method, d10_args, NULL);
    PyObject* d90_percentile = PyObject_Call(dn_method, d90_args, NULL);
    
    printf("✓ D10: %.4f\n", PyFloat_AsDouble(d10_percentile));
    printf("✓ D90: %.4f\n", PyFloat_AsDouble(d90_percentile));
    
    // Cleanup
    Py_DECREF(psd_module);
    Py_DECREF(psd_class);
    Py_DECREF(ds_list);
    Py_DECREF(numbers_list);
    Py_DECREF(args);
    Py_DECREF(kwargs);
    Py_DECREF(psd);
    Py_DECREF(mean_size_method);
    Py_DECREF(mean_args);
    Py_DECREF(d21);
    Py_DECREF(mean_args2);
    Py_DECREF(d10);
    Py_DECREF(dn_method);
    Py_DECREF(d10_args);
    Py_DECREF(d90_args);
    Py_DECREF(d10_percentile);
    Py_DECREF(d90_percentile);
}

void test_fluids(PyObject* fluids) {
    printf("Running fluids tests from C...\n");

    // Get version
    PyObject* version = PyObject_GetAttrString(fluids, "__version__");
    if (version) {
        const char* version_str = PyUnicode_AsUTF8(version);
        printf("✓ Successfully imported fluids\n");
        printf("✓ Fluids version: %s\n", version_str);
        Py_DECREF(version);
    }

    // Test Reynolds number calculation
    PyObject* reynolds_func = PyObject_GetAttrString(fluids, "Reynolds");
    if (reynolds_func) {
        PyObject* args = PyTuple_New(0);
        PyObject* kwargs = PyDict_New();
        PyDict_SetItemString(kwargs, "V", PyFloat_FromDouble(2.5));
        PyDict_SetItemString(kwargs, "D", PyFloat_FromDouble(0.1));
        PyDict_SetItemString(kwargs, "rho", PyFloat_FromDouble(1000));
        PyDict_SetItemString(kwargs, "mu", PyFloat_FromDouble(0.001));
        
        PyObject* result = PyObject_Call(reynolds_func, args, kwargs);
        if (result) {
            double re = PyFloat_AsDouble(result);
            printf("✓ Reynolds number calculation successful: %f\n", re);
            assert(re > 0);
            Py_DECREF(result);
        }
        
        Py_DECREF(args);
        Py_DECREF(kwargs);
        Py_DECREF(reynolds_func);
    }
}

void benchmark_fluids(PyObject* fluids) {
    printf("\nRunning benchmarks:\n");
    
    // Get friction_factor function
    PyObject* friction_func = PyObject_GetAttrString(fluids, "friction_factor");
    if (!friction_func) {
        PyErr_Print();
        return;
    }

    // Get TANK class
    PyObject* tank_class = PyObject_GetAttrString(fluids, "TANK");
    if (!tank_class) {
        PyErr_Print();
        Py_DECREF(friction_func);
        return;
    }

    // Benchmark friction_factor
    printf("\nBenchmarking friction_factor:\n");
    long long start = microseconds_now();
    
    for(int i = 0; i < 1000000; i++) {
        PyObject* args = PyTuple_New(0);
        PyObject* kwargs = PyDict_New();
        PyDict_SetItemString(kwargs, "Re", PyFloat_FromDouble(1e5));
        PyDict_SetItemString(kwargs, "eD", PyFloat_FromDouble(0.0001));
        
        PyObject* result = PyObject_Call(friction_func, args, kwargs);
        
        Py_DECREF(result);
        Py_DECREF(args);
        Py_DECREF(kwargs);
    }
    
    long long duration = microseconds_now() - start;
    printf("Time for 1e6 friction_factor calls: %lld microseconds\n", duration);
    printf("Average time per call: %.6f microseconds\n", duration / 1000000.0);

    // Benchmark TANK creation
    printf("\nBenchmarking TANK creation:\n");
    start = microseconds_now();
    
    for(int i = 0; i < 1000; i++) {
        PyObject* args = PyTuple_New(0);
        PyObject* kwargs = PyDict_New();
        PyDict_SetItemString(kwargs, "L", PyFloat_FromDouble(3));
        PyDict_SetItemString(kwargs, "D", PyFloat_FromDouble(5));
        PyDict_SetItemString(kwargs, "horizontal", Py_False);
        PyDict_SetItemString(kwargs, "sideA", PyUnicode_FromString("torispherical"));
        PyDict_SetItemString(kwargs, "sideB", PyUnicode_FromString("torispherical"));
        PyDict_SetItemString(kwargs, "sideA_f", PyFloat_FromDouble(1));
        PyDict_SetItemString(kwargs, "sideA_k", PyFloat_FromDouble(0.1));
        PyDict_SetItemString(kwargs, "sideB_f", PyFloat_FromDouble(1));
        PyDict_SetItemString(kwargs, "sideB_k", PyFloat_FromDouble(0.1));
        
        PyObject* tank = PyObject_Call(tank_class, args, kwargs);
        
        Py_DECREF(tank);
        Py_DECREF(args);
        Py_DECREF(kwargs);
    }
    
    duration = microseconds_now() - start;
    printf("Average time per tank creation: %.6f microseconds\n", duration / 1000.0);

    Py_DECREF(friction_func);
    Py_DECREF(tank_class);
}

void test_tank(PyObject* fluids) {
    printf("\nTesting tank calculations:\n");
    
    // Get TANK class
    PyObject* tank_class = PyObject_GetAttrString(fluids, "TANK");
    if (!tank_class) {
        PyErr_Print();
        return;
    }
    
    // Test basic tank creation
    PyObject* args1 = PyTuple_New(0);
    PyObject* kwargs1 = PyDict_New();
    PyDict_SetItemString(kwargs1, "V", PyFloat_FromDouble(10));
    PyDict_SetItemString(kwargs1, "L_over_D", PyFloat_FromDouble(0.7));
    PyDict_SetItemString(kwargs1, "sideB", PyUnicode_FromString("conical"));
    PyDict_SetItemString(kwargs1, "horizontal", Py_False);
    
    PyObject* T1 = PyObject_Call(tank_class, args1, kwargs1);
    if (!T1) {
        PyErr_Print();
        goto cleanup1;
    }
    
    PyObject* length = PyObject_GetAttrString(T1, "L");
    PyObject* diameter = PyObject_GetAttrString(T1, "D");
    printf("✓ Tank length: %.6f\n", PyFloat_AsDouble(length));
    printf("✓ Tank diameter: %.6f\n", PyFloat_AsDouble(diameter));
    
    // Test torispherical tank
    PyObject* args2 = PyTuple_New(0);
    PyObject* kwargs2 = PyDict_New();
    PyDict_SetItemString(kwargs2, "L", PyFloat_FromDouble(3));
    PyDict_SetItemString(kwargs2, "D", PyFloat_FromDouble(5));
    PyDict_SetItemString(kwargs2, "horizontal", Py_False);
    PyDict_SetItemString(kwargs2, "sideA", PyUnicode_FromString("torispherical"));
    PyDict_SetItemString(kwargs2, "sideB", PyUnicode_FromString("torispherical"));
    PyDict_SetItemString(kwargs2, "sideA_f", PyFloat_FromDouble(1));
    PyDict_SetItemString(kwargs2, "sideA_k", PyFloat_FromDouble(0.1));
    PyDict_SetItemString(kwargs2, "sideB_f", PyFloat_FromDouble(1));
    PyDict_SetItemString(kwargs2, "sideB_k", PyFloat_FromDouble(0.1));
    
    PyObject* DIN = PyObject_Call(tank_class, args2, kwargs2);
    if (!DIN) {
        PyErr_Print();
        goto cleanup2;
    }
    
    // Get max height
    PyObject* h_max = PyObject_GetAttrString(DIN, "h_max");
    printf("✓ Tank max height: %.6f\n", PyFloat_AsDouble(h_max));
    
    // Test h_from_V method
    PyObject* h_from_V = PyObject_GetAttrString(DIN, "h_from_V");
    PyObject* h_args = PyTuple_Pack(1, PyFloat_FromDouble(40));
    PyObject* h_result = PyObject_CallObject(h_from_V, h_args);
    printf("✓ Height at V=40: %.6f\n", PyFloat_AsDouble(h_result));
    
    // Test V_from_h method
    PyObject* V_from_h = PyObject_GetAttrString(DIN, "V_from_h");
    PyObject* v_args = PyTuple_Pack(1, PyFloat_FromDouble(4.1));
    PyObject* v_result = PyObject_CallObject(V_from_h, v_args);
    printf("✓ Volume at h=4.1: %.5f\n", PyFloat_AsDouble(v_result));
    
    // Cleanup
    Py_DECREF(v_result);
    Py_DECREF(v_args);
    Py_DECREF(V_from_h);
    Py_DECREF(h_result);
    Py_DECREF(h_args);
    Py_DECREF(h_from_V);
    Py_DECREF(h_max);
    Py_DECREF(DIN);
cleanup2:
    Py_DECREF(args2);
    Py_DECREF(kwargs2);
    Py_DECREF(diameter);
    Py_DECREF(length);
    Py_DECREF(T1);
cleanup1:
    Py_DECREF(args1);
    Py_DECREF(kwargs1);
    Py_DECREF(tank_class);
}

int main() {
    PyObject* fluids = init_fluids();
    if (!fluids) {
        return 1;
    }

    test_fluids(fluids);
    test_atmosphere(fluids);
    test_tank(fluids);
    test_expanded_reynolds(fluids);
    test_psd(fluids);
    benchmark_fluids(fluids);

    Py_DECREF(fluids);
    Py_Finalize();
    printf("\nAll tests completed!\n");
    return 0;
}