File: check_fluids_can_be_called_from_r.R

package info (click to toggle)
python-fluids 1.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 13,108 kB
  • sloc: python: 59,520; f90: 481; lisp: 342; ansic: 337; cpp: 228; ruby: 145; haskell: 118; perl: 106; makefile: 59; javascript: 49
file content (209 lines) | stat: -rw-r--r-- 7,343 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
 
# Install and load reticulate
library(reticulate)

# Function to run all tests
test_fluids <- function() {
  tryCatch({
    # 1. Test import
    fluids <- import("fluids")
    print("✓ Successfully imported fluids")
    
    # 2. Test version access
    version <- py_get_attr(fluids, "__version__")
    print(paste("✓ Fluids version:", version))
    
    # 3. Test basic Reynolds number calculation
    Re <- fluids$Reynolds(V=2.5, D=0.1, rho=1000, mu=0.001)
    print(paste("✓ Reynolds number calculation successful:", Re))
    stopifnot(Re > 0)  # Basic sanity check
    
    # 4. Test friction factor calculation
    fd <- fluids$friction_factor(Re=1e5, eD=0.0001)
    print(paste("✓ Friction factor calculation successful:", fd))
    stopifnot(fd > 0 && fd < 1)  # Basic range check
    
    print("\nAll tests completed successfully!")
    
  }, error = function(e) {
    print(paste("Error occurred:", e$message))
    stop("Test suite failed")
  })
}
test_atmosphere <- function() {
  tryCatch({
    fluids <- import("fluids")
    # Test ATMOSPHERE_1976 class
    atm <- fluids$ATMOSPHERE_1976(Z=5000)
    
    # Test basic properties
    print("Testing atmosphere at 5000m elevation:")
    print(paste("✓ Temperature:", round(atm$T, 4)))
    print(paste("✓ Pressure:", round(atm$P, 4)))
    print(paste("✓ Density:", round(atm$rho, 6)))
    
    # Test derived properties
    print(paste("✓ Gravity:", round(atm$g, 6)))
    print(paste("✓ Viscosity:", formatC(atm$mu, format="e", digits=6)))
    print(paste("✓ Thermal conductivity:", round(atm$k, 6)))
    print(paste("✓ Sonic velocity:", round(atm$v_sonic, 4)))
    
    # Test static methods
    g_high <- fluids$ATMOSPHERE_1976$gravity(Z=1E5)
    print(paste("✓ High altitude gravity:", round(g_high, 6)))
    
    v_sonic <- fluids$ATMOSPHERE_1976$sonic_velocity(T=300)
    print(paste("✓ Sonic velocity at 300K:", round(v_sonic, 4)))
    
    mu_400 <- fluids$ATMOSPHERE_1976$viscosity(T=400)
    print(paste("✓ Viscosity at 400K:", formatC(mu_400, format="e", digits=6)))
    
    k_400 <- fluids$ATMOSPHERE_1976$thermal_conductivity(T=400)
    print(paste("✓ Thermal conductivity at 400K:", round(k_400, 6)))
  }, error = function(e) {
    print(paste("Error in atmosphere tests:", e$message))
    stop("Atmosphere test suite failed")
  })
}
test_tank <- function() {
  tryCatch({
    fluids <- import("fluids")
    # Test basic tank creation
    T1 <- fluids$TANK(V=10, L_over_D=0.7, sideB='conical', horizontal=FALSE)
    print("\nTesting tank calculations:")
    print(paste("✓ Tank length:", round(T1$L, 6)))
    print(paste("✓ Tank diameter:", round(T1$D, 6)))
    
    # Test ellipsoidal tank
    tank_ellip <- fluids$TANK(D=10, V=500, horizontal=FALSE, 
                             sideA='ellipsoidal', sideB='ellipsoidal', 
                             sideA_a=1, sideB_a=1)
    print(paste("✓ Ellipsoidal tank L:", round(tank_ellip$L, 6)))
    
    # Test torispherical tank
    DIN <- fluids$TANK(L=3, D=5, horizontal=FALSE, 
                       sideA='torispherical', sideB='torispherical',
                       sideA_f=1, sideA_k=0.1, sideB_f=1, sideB_k=0.1)
    print(paste("✓ Tank representation:", capture.output(print(DIN))))
    print(paste("✓ Tank max height:", round(DIN$h_max, 6)))
    print(paste("✓ Height at V=40:", round(DIN$h_from_V(40), 6)))
    print(paste("✓ Volume at h=4.1:", round(DIN$V_from_h(4.1), 5)))
    print(paste("✓ Surface area at h=2.1:", round(DIN$SA_from_h(2.1), 5)))
    
  }, error = function(e) {
    print(paste("Error in tank tests:", e$message))
    stop("Tank test suite failed")
  })
}
# Test function for Reynolds number calculations
test_reynolds <- function() {
  tryCatch({
    print("\nTesting Reynolds number calculations:")
    fluids <- import("fluids")
    
    # Test with density and viscosity
    Re1 <- fluids$Reynolds(V=2.5, D=0.25, rho=1.1613, mu=1.9E-5)
    print(paste("✓ Re (with rho, mu):", round(Re1, 4)))
    stopifnot(abs(Re1 - 38200.6579) < 0.1)
    
    # Test with kinematic viscosity
    Re2 <- fluids$Reynolds(V=2.5, D=0.25, nu=1.636e-05)
    print(paste("✓ Re (with nu):", round(Re2, 4)))
    stopifnot(abs(Re2 - 38202.934) < 0.1)
    
  }, error = function(e) {
    print(paste("Error in Reynolds tests:", e$message))
    stop("Reynolds test suite failed")
  })
}

# Test function for particle size distributions
test_psd <- function() {
  tryCatch({
    print("\nTesting particle size distribution functionality:")
    fluids <- import("fluids")

    # Create a discrete PSD
    ds <- c(240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532)
    numbers <- c(65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1)
    
    psd <- fluids$particle_size_distribution$ParticleSizeDistribution(
      ds=ds, 
      fractions=numbers, 
      order=0
    )
    print("✓ Created discrete PSD")
    
    # Test mean sizes
    d21 <- psd$mean_size(2, 1)
    print(paste("✓ Size-weighted mean diameter:", round(d21, 4)))
    stopifnot(abs(d21 - 1857.788) < 0.1)
    
    d10 <- psd$mean_size(1, 0)
    print(paste("✓ Arithmetic mean diameter:", round(d10, 4)))
    stopifnot(abs(d10 - 1459.372) < 0.1)
    
    # Test percentile calculations
    d10_percentile <- psd$dn(0.1)
    d90_percentile <- psd$dn(0.9)
    print(paste("✓ D10:", round(d10_percentile, 4)))
    print(paste("✓ D90:", round(d90_percentile, 4)))
    
    # Test probability functions
    pdf_val <- psd$pdf(1000)
    cdf_val <- psd$cdf(5000)
    print(paste("✓ PDF at 1000:", formatC(pdf_val, format="e", digits=4)))
    print(paste("✓ CDF at 5000:", round(cdf_val, 6)))
    
    # Test lognormal distribution
    psd_log <- fluids$particle_size_distribution$PSDLognormal(s=0.5, d_characteristic=5E-6)
    print("✓ Created lognormal PSD")
    
    vssa <- psd_log$vssa
    print(paste("✓ Volume specific surface area:", round(vssa, 2)))
    
    span <- psd_log$dn(0.9) - psd_log$dn(0.1)
    print(paste("✓ Span:", formatC(span, format="e", digits=4)))
    
    ratio_7525 <- psd_log$dn(0.75)/psd_log$dn(0.25)
    print(paste("✓ D75/D25 ratio:", round(ratio_7525, 6)))
    
  }, error = function(e) {
    print(paste("Error in PSD tests:", e$message))
    stop("PSD test suite failed")
  })
}
benchmark_fluids <- function() {
  fluids <- import("fluids")
  cat("\nRunning benchmarks:\n")
  
  # Benchmark friction factor calculation
  cat("\nBenchmarking friction_factor:\n")
  t1 <- system.time({
    for(i in 1:10000) {
      fluids$friction_factor(Re=1e5, eD=0.0001)
    }
  })
  cat(sprintf("Time for 10000 friction_factor calls: %.6f seconds\n", t1["elapsed"]))
  cat(sprintf("Average time per call: %.6f seconds\n", t1["elapsed"]/10000))
  
  # Benchmark tank creation
  cat("\nBenchmarking TANK creation:\n")
  t2 <- system.time({
    for(i in 1:1000) {
      fluids$TANK(L=3, D=5, horizontal=FALSE,
                  sideA="torispherical", sideB="torispherical",
                  sideA_f=1, sideA_k=0.1, sideB_f=1, sideB_k=0.1)
    }
  })
  cat(sprintf("Time for 1000 TANK creations: %.6f seconds\n", t2["elapsed"]))
  cat(sprintf("Average time per creation: %.6f seconds\n", t2["elapsed"]/1000))
}

# Run the tests
test_fluids()
test_atmosphere()
test_tank()
test_reynolds()
test_psd()
benchmark_fluids()