1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
#include <pybind11/pybind11.h>
#include <pybind11/embed.h> // Added this for interpreter management
#include <pybind11/stl.h>
#include <chrono>
#include <iostream>
#include <iomanip>
#include <vector>
namespace py = pybind11;
PYBIND11_EMBEDDED_MODULE(dummy, m) {} // Needed for embedding
class FluidsTester {
private:
py::scoped_interpreter guard; // RAII management of the Python interpreter
py::module_ fluids;
public:
FluidsTester() {
try {
// The interpreter is automatically initialized by scoped_interpreter
fluids = py::module_::import("fluids");
std::cout << "✓ Successfully imported fluids\n";
std::cout << "✓ Fluids version: " << fluids.attr("__version__").cast<std::string>() << "\n";
} catch (const std::exception& e) {
std::cerr << "Error initializing Python: " << e.what() << std::endl;
throw;
}
}
void test_fluids() {
try {
// Test basic Reynolds number calculation
auto Re = fluids.attr("Reynolds")(
py::arg("V") = 2.5,
py::arg("D") = 0.1,
py::arg("rho") = 1000,
py::arg("mu") = 0.001
).cast<double>();
std::cout << "✓ Reynolds number calculation successful: " << Re << "\n";
assert(Re > 0);
// Test friction factor calculation
auto fd = fluids.attr("friction_factor")(
py::arg("Re") = 1e5,
py::arg("eD") = 0.0001
).cast<double>();
std::cout << "✓ Friction factor calculation successful: " << fd << "\n";
assert(fd > 0 && fd < 1);
std::cout << "\nAll basic tests completed successfully!\n";
} catch (const std::exception& e) {
std::cerr << "Error in fluids tests: " << e.what() << std::endl;
throw;
}
}
void test_atmosphere() {
try {
// Test ATMOSPHERE_1976 class
auto atm = fluids.attr("ATMOSPHERE_1976")(py::arg("Z") = 5000);
std::cout << "\nTesting atmosphere at 5000m elevation:\n";
std::cout << "✓ Temperature: " << std::fixed << std::setprecision(4)
<< atm.attr("T").cast<double>() << "\n";
std::cout << "✓ Pressure: " << atm.attr("P").cast<double>() << "\n";
std::cout << "✓ Density: " << std::setprecision(6)
<< atm.attr("rho").cast<double>() << "\n";
// Test derived properties
std::cout << "✓ Gravity: " << atm.attr("g").cast<double>() << "\n";
std::cout << "✓ Viscosity: " << std::scientific
<< atm.attr("mu").cast<double>() << "\n";
std::cout << "✓ Thermal conductivity: " << std::fixed
<< atm.attr("k").cast<double>() << "\n";
std::cout << "✓ Sonic velocity: " << std::setprecision(4)
<< atm.attr("v_sonic").cast<double>() << "\n";
// Test static methods
auto atm_class = fluids.attr("ATMOSPHERE_1976");
auto g_high = atm_class.attr("gravity")(py::arg("Z") = 1E5).cast<double>();
std::cout << "✓ High altitude gravity: " << std::setprecision(6)
<< g_high << "\n";
} catch (const std::exception& e) {
std::cerr << "Error in atmosphere tests: " << e.what() << std::endl;
throw;
}
}
void test_tank() {
try {
// Test basic tank creation
auto T1 = fluids.attr("TANK")(
py::arg("V") = 10,
py::arg("L_over_D") = 0.7,
py::arg("sideB") = "conical",
py::arg("horizontal") = false
);
std::cout << "\nTesting tank calculations:\n";
std::cout << "✓ Tank length: " << std::fixed << std::setprecision(6)
<< T1.attr("L").cast<double>() << "\n";
std::cout << "✓ Tank diameter: " << T1.attr("D").cast<double>() << "\n";
// Test torispherical tank
auto DIN = fluids.attr("TANK")(
py::arg("L") = 3,
py::arg("D") = 5,
py::arg("horizontal") = false,
py::arg("sideA") = "torispherical",
py::arg("sideB") = "torispherical",
py::arg("sideA_f") = 1,
py::arg("sideA_k") = 0.1,
py::arg("sideB_f") = 1,
py::arg("sideB_k") = 0.1
);
std::cout << "✓ Tank max height: " << DIN.attr("h_max").cast<double>() << "\n";
std::cout << "✓ Height at V=40: " << DIN.attr("h_from_V")(40).cast<double>() << "\n";
std::cout << "✓ Volume at h=4.1: " << std::setprecision(5)
<< DIN.attr("V_from_h")(4.1).cast<double>() << "\n";
} catch (const std::exception& e) {
std::cerr << "Error in tank tests: " << e.what() << std::endl;
throw;
}
}
void test_reynolds() {
try {
std::cout << "\nTesting Reynolds number calculations:\n";
// Test with density and viscosity
auto Re1 = fluids.attr("Reynolds")(
py::arg("V") = 2.5,
py::arg("D") = 0.25,
py::arg("rho") = 1.1613,
py::arg("mu") = 1.9E-5
).cast<double>();
std::cout << "✓ Re (with rho, mu): " << std::fixed << std::setprecision(4) << Re1 << "\n";
assert(std::abs(Re1 - 38200.6579) < 0.1);
// Test with kinematic viscosity
auto Re2 = fluids.attr("Reynolds")(
py::arg("V") = 2.5,
py::arg("D") = 0.25,
py::arg("nu") = 1.636e-05
).cast<double>();
std::cout << "✓ Re (with nu): " << Re2 << "\n";
assert(std::abs(Re2 - 38202.934) < 0.1);
} catch (const std::exception& e) {
std::cerr << "Error in Reynolds tests: " << e.what() << std::endl;
throw;
}
}
void test_psd() {
try {
std::cout << "\nTesting particle size distribution functionality:\n";
// Create vectors for discrete PSD
std::vector<double> ds = {240, 360, 450, 562.5, 703, 878, 1097, 1371, 1713,
2141, 2676, 3345, 4181, 5226, 6532};
std::vector<double> numbers = {65, 119, 232, 410, 629, 849, 990, 981, 825,
579, 297, 111, 21, 1};
// Create a discrete PSD
auto psd = fluids.attr("particle_size_distribution").attr("ParticleSizeDistribution")(
py::arg("ds") = ds,
py::arg("fractions") = numbers,
py::arg("order") = 0
);
std::cout << "✓ Created discrete PSD\n";
// Test mean sizes
auto d21 = psd.attr("mean_size")(2, 1).cast<double>();
std::cout << "✓ Size-weighted mean diameter: " << std::fixed
<< std::setprecision(4) << d21 << "\n";
assert(std::abs(d21 - 1857.788) < 0.1);
auto d10 = psd.attr("mean_size")(1, 0).cast<double>();
std::cout << "✓ Arithmetic mean diameter: " << d10 << "\n";
assert(std::abs(d10 - 1459.372) < 0.1);
// Test percentile calculations
auto d10_percentile = psd.attr("dn")(0.1).cast<double>();
auto d90_percentile = psd.attr("dn")(0.9).cast<double>();
std::cout << "✓ D10: " << d10_percentile << "\n";
std::cout << "✓ D90: " << d90_percentile << "\n";
// Test probability functions
auto pdf_val = psd.attr("pdf")(1000).cast<double>();
auto cdf_val = psd.attr("cdf")(5000).cast<double>();
std::cout << "✓ PDF at 1000: " << std::scientific << pdf_val << "\n";
std::cout << "✓ CDF at 5000: " << std::fixed << std::setprecision(6) << cdf_val << "\n";
// Test lognormal distribution
auto psd_log = fluids.attr("particle_size_distribution").attr("PSDLognormal")(
py::arg("s") = 0.5,
py::arg("d_characteristic") = 5E-6
);
std::cout << "✓ Created lognormal PSD\n";
auto vssa = psd_log.attr("vssa").cast<double>();
std::cout << "✓ Volume specific surface area: " << std::setprecision(2)
<< vssa << "\n";
auto span = psd_log.attr("dn")(0.9).cast<double>() -
psd_log.attr("dn")(0.1).cast<double>();
std::cout << "✓ Span: " << std::scientific << span << "\n";
auto ratio_7525 = (psd_log.attr("dn")(0.75).cast<double>() /
psd_log.attr("dn")(0.25).cast<double>());
std::cout << "✓ D75/D25 ratio: " << std::fixed << std::setprecision(6)
<< ratio_7525 << "\n";
} catch (const std::exception& e) {
std::cerr << "Error in PSD tests: " << e.what() << std::endl;
throw;
}
}
void benchmark_fluids() {
std::cout << "\nRunning benchmarks:\n";
// Benchmark friction factor calculation
std::cout << "\nBenchmarking friction_factor:\n";
auto start = std::chrono::high_resolution_clock::now();
for(int i = 0; i < 1000000; i++) {
fluids.attr("friction_factor")(
py::arg("Re") = 1e5,
py::arg("eD") = 0.0001
);
}
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Time for 1e6 friction_factor calls: "
<< duration.count() << " microseconds\n";
std::cout << "Average time per call: "
<< duration.count() / 1000000.0 << " microseconds\n";
// Benchmark tank creation
std::cout << "\nBenchmarking TANK creation:\n";
start = std::chrono::high_resolution_clock::now();
for(int i = 0; i < 1000; i++) {
fluids.attr("TANK")(
py::arg("L") = 3,
py::arg("D") = 5,
py::arg("horizontal") = false,
py::arg("sideA") = "torispherical",
py::arg("sideB") = "torispherical",
py::arg("sideA_f") = 1,
py::arg("sideA_k") = 0.1,
py::arg("sideB_f") = 1,
py::arg("sideB_k") = 0.1
);
}
end = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Average time per tank creation: "
<< duration.count() / 1000.0 << " microseconds\n";
}
};
int main() {
try {
std::cout << "Running fluids tests from C++...\n";
FluidsTester tester;
tester.test_fluids();
tester.test_atmosphere();
tester.test_tank();
tester.test_reynolds();
tester.test_psd();
tester.benchmark_fluids();
std::cout << "\nAll tests completed!\n";
return 0;
} catch (const std::exception& e) {
std::cerr << "Fatal error: " << e.what() << std::endl;
return 1;
}
}
|